1
|
Zhu P, Zhang C, Chen J, Zeng X. Multilevel systemic engineering of Bacillus licheniformis for efficient production of acetoin from lignocellulosic hydrolysates. Int J Biol Macromol 2024; 279:135142. [PMID: 39208901 DOI: 10.1016/j.ijbiomac.2024.135142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bio-refining lignocellulosic resource offers a renewable and sustainable approach for producing biofuels and biochemicals. However, the conversion efficiency of lignocellulosic resource is still challenging due to the intrinsic inefficiency in co-utilization of xylose and glucose. In this study, the industrial bacterium Bacillus licheniformis was engineered for biorefining lignocellulosic resource to produce acetoin. First, adaptive evolution was conducted to improve acetoin tolerance, leading to a 19.6 % increase in acetoin production. Then, ARTP mutagenesis and 60Co-γ irradiation was carried out to enhance the production of acetoin, obtaining 73.0 g/L acetoin from glucose. Further, xylose uptake and xylose utilization pathway were rewired to facilitate the co-utilization of xylose and glucose, enabling the production of 60.6 g/L acetoin from glucose and xylose mixtures. Finally, this efficient cell factory was utilized for acetoin production from lignocellulosic hydrolysates with the highest titer of 68.3 g/L in fed-batch fermentation. This strategy described here holds great applied potential in the biorefinery of lignocellulose for the efficient synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Pan Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jiaying Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Liu J, Liu D, Sun T, Fan TP, Cai Y. Construction and characterization of a promoter library with varying strengths to enhance acetoin production from xylose in Serratia marcescens. Biotechnol Appl Biochem 2024; 71:553-564. [PMID: 38225826 DOI: 10.1002/bab.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Serratia marcescens is utilized as a significant enterobacteria in the production of various high-value secondary metabolites. Acetoin serves as a crucial foundational compound of development and finds application in a broad range of fields. Furthermore, S. marcescens HBQA-7 is capable of utilizing xylose as its exclusive carbon source for acetoin production. The objective of this study was to utilize a constitutive promoter screening strategy to enhance both xylose utilization and acetoin production in S. marcescens HBQA-7. By utilizing RNA-seq, we identified the endogenous constitutive promoter P6 that is the most robust, which facilitated the overexpression of the sugar transporter protein GlfL445I, α-acetyl lactate synthase, and α-acetyl lactate decarboxylase, respectively. The resultant recombinant strains exhibited enhanced xylose utilization rates and acetoin yields. Subsequently, a recombinant plasmid, denoted as pBBR1MCS-P6-glfL445IalsSalsD, was constructed, simultaneously expressing the aforementioned three genes. The resulting recombinant strain, designated as S3, demonstrated a 1.89-fold boost in xylose consumption rate compared with the original strain during shake flask fermentation. resulting in the accumulation of 7.14 g/L acetoin in the final fermentation medium. Subsequently, in a 5 L fermenter setup, the acetoin yield reached 48.75 g/L, corresponding to a xylose-to-acetoin conversion yield of 0.375 g/g.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Shen X, Xu H, Wang T, Zhang R, Sun X, Yuan Q, Wang J. Rational protein engineering of a ketoacids decarboxylase for efficient production of 1,2,4-butanetriol from arabinose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:172. [PMID: 37957743 PMCID: PMC10644656 DOI: 10.1186/s13068-023-02414-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Lignocellulose, the most abundant non-edible feedstock on Earth, holds substantial potential for eco-friendly chemicals, fuels, and pharmaceuticals production. Glucose, xylose, and arabinose are primary components in lignocellulose, and their efficient conversion into high-value products is vital for economic viability. While glucose and xylose have been explored for such purpose, arabinose has been relatively overlooked. RESULTS This study demonstrates a microbial platform for producing 1,2,4-butanetriol (BTO) from arabinose, a versatile compound with diverse applications in military, polymer, rubber and pharmaceutical industries. The screening of the key pathway enzyme, keto acids decarboxylase, facilitated the production of 276.7 mg/L of BTO from arabinose in Escherichia coli. Through protein engineering of the rate-limiting enzyme KivD, which involved reducing the size of the binding pocket to accommodate a smaller substrate, its activity improved threefold, resulting in an increase in the BTO titer to 475.1 mg/L. Additionally, modular optimization was employed to adjust the expression levels of pathway genes, further enhancing BTO production to 705.1 mg/L. CONCLUSION The present study showcases a promising microbial platform for sustainable BTO production from arabinose. These works widen the spectrum of potential lignocellulosic products and lays the foundation for comprehensive utilization of lignocellulosic components.
Collapse
Affiliation(s)
- Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Hongchao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Tong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Ruihua Zhang
- College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
4
|
Li T, Liu P, Guo G, Liu Z, Zhong L, Guo L, Chen C, Hao N, Ouyang P. Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis. AMB Express 2023; 13:25. [PMID: 36853576 PMCID: PMC9975146 DOI: 10.1186/s13568-023-01532-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Okara, a renewable biomass resource, is a promising fermentative raw material for the bio-production of value-added chemicals due to its abundance and low-costs. we developed a process for the enzymatic hydrolysis of okara, and then engineered Bacillus subtilis to utilize mixed sugars to produce acetoin in okara hydrolysis without the addition of a supplemental nitrogen source. Okara was initially hydrolyzed with cellulase, β-glucosidase, and pectinase to obtain okara hydrolysate containing mixed sugars (32.78 ± 0.23 g/L glucose, 1.43 ± 0.064 g/L arabinose, 7.74 ± 0.11 g/L galactose) and amino acids. In this study, Bacillus subtilis 168 was used as the acetoin-producing strain, and the key genes bdhA and acoA of the acetoin catabolism pathway were knocked out to improve the fermentation yield of acetoin. In order to utilize the galactose in the hydrolysate, the recombinant strain BS03 (Bacillus subtilis168∆bdhA∆acoA) was used to overexpress the arabinose transporter-encoding gene (araE) drive heterologous expression of the Leloir pathway gene (galKTE). The corn dry powder concentration was optimized to 29 g/L in the reducing sugar okara hydrolysate. The results show that the recombinant bacterium BS03 could still synthesize 11.79 g/L acetoin without using corn dry powder as a nitrogen source. Finally, using okara enzymatic hydrolysate as the carbon and nitrogen source, 11.11 g/L and 29.7 g/L acetoin were obtained by batch fermentation and fed-batch fermentation, respectively, which was further converted to 5.33 g/L and 13.37 g/L tetramethylpyrazine (TTMP) by reaction with an ammonium salt.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Gege Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhaoxing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lei Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lianxia Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ning Hao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Awan ZA, Shoaib A, Schenk PM, Ahmad A, Alansi S, Paray BA. Antifungal potential of volatiles produced by Bacillus subtilis BS-01 against Alternaria solani in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2023; 13:1089562. [PMID: 36777534 PMCID: PMC9909239 DOI: 10.3389/fpls.2022.1089562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 05/30/2023]
Abstract
Bacterial biocontrol agent/s (BCAs) against plant diseases are eco-friendly and sustainable options for profitable agricultural crop production. Specific beneficial strains of Bacillus subtilis are effective in controlling many fungal diseases including Alternaria blight caused by a notorious pathogen "Alternaria solani". In the present study, the biocontrol attributes of a newfangled strain of B. subtilis (BS-01) have been investigated and its bioactive compounds were also identified against A. solani. The volatile organic compounds (VOCs) produced by BS-01 in organic solvents viz., n-hexane, dichloromethane, and ethyl acetate were extracted and their antifungal efficacy has evaluated against A. solani. Also, the preventive and curative biocontrol method to reduce the fungal load of A. solani was estimated by both foliar and seed applications on infected tomato (Solanum lycopersicum) plants as determined by quantitative PCR assays. Growth chamber bioassay revealed that both foliar and seed application of BS-01 on tomato plants previously or subsequently infected by A. solani significantly reduced the pathogen load on inoculated tomato foliage. Results showed that antifungal bioassays with various concentrations (10-100 mg mL-1) of extracted metabolites produced by BS-01 in ethyl acetate fraction showed the highest inhibition in fungal biomass (extracellular metabolites: 69-98% and intracellular metabolites: 48-85%) followed by n-hexane (extracellular metabolites: 63-88% and intracellular metabolites: 35-62%) and dichloromethane (extracellular metabolites: 41-74% and intracellular metabolites: 42-70%), respectively. The extracted volatile compounds of BS-01 were identified via GC-MS analysis and were found in great proportions in the organic fractions as major potent antifungal constituents including triphenylphosphine oxide; pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl); pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl); n-hexadecanoic acid; n-tridecan-1-ol; octadecane; octadecanoic acid; eicosane and dodecyl acrylate. Separate or mixture of these bioactive VOCs had the potential to mitigate the tomato early blight disease severity in the field that would act as a sustainable plant protection strategy to generate profitable tomato production.
Collapse
Affiliation(s)
- Zoia Arshad Awan
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Amna Shoaib
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alansi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bilal Ahamad Paray
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Sheng L, Madika A, Lau MSH, Zhang Y, Minton NP. Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in Parageobacillus thermoglucosidasius NCIMB 11955. Front Bioeng Biotechnol 2023; 11:1191079. [PMID: 37200846 PMCID: PMC10185769 DOI: 10.3389/fbioe.2023.1191079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
The current climate crisis has emphasised the need to achieve global net-zero by 2050, with countries being urged to set considerable emission reduction targets by 2030. Exploitation of a fermentative process that uses a thermophilic chassis can represent a way to manufacture chemicals and fuels through more environmentally friendly routes with a net reduction in greenhouse gas emissions. In this study, the industrially relevant thermophile Parageobacillus thermoglucosidasius NCIMB 11955 was engineered to produce 3-hydroxybutanone (acetoin) and 2,3-butanediol (2,3-BDO), organic compounds with commercial applications. Using heterologous acetolactate synthase (ALS) and acetolactate decarboxylase (ALD) enzymes, a functional 2,3-BDO biosynthetic pathway was constructed. The formation of by-products was minimized by the deletion of competing pathways surrounding the pyruvate node. Redox imbalance was addressed through autonomous overexpression of the butanediol dehydrogenase and by investigating appropriate aeration levels. Through this, we were able to produce 2,3-BDO as the predominant fermentation metabolite, with up to 6.6 g/L 2,3-BDO (0.33 g/g glucose) representing 66% of the theoretical maximum at 50°C. In addition, the identification and subsequent deletion of a previously unreported thermophilic acetoin degradation gene (acoB1) resulted in enhanced acetoin production under aerobic conditions, producing 7.6 g/L (0.38 g/g glucose) representing 78% of the theoretical maximum. Furthermore, through the generation of a ΔacoB1 mutant and by testing the effect of glucose concentration on 2,3-BDO production, we were able to produce 15.6 g/L of 2,3-BDO in media supplemented with 5% glucose, the highest titre of 2,3-BDO produced in Parageobacillus and Geobacillus species to date.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Abubakar Madika
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew S. H. Lau
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Minton,
| |
Collapse
|
7
|
High production of acetoin from glycerol by Bacillus subtilis 35. Appl Microbiol Biotechnol 2022; 107:175-185. [DOI: 10.1007/s00253-022-12301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
|
8
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
9
|
Genomic and Transcriptional Characteristics of Strain Rum-meliibacillus sp. TYF-LIM-RU47 with an Aptitude of Directly Producing Acetoin from Lignocellulose. FERMENTATION 2022. [DOI: 10.3390/fermentation8080414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rummeliibacillus sp. TYF-LIM-RU47, isolated from the fermentation substrate of grain vinegar, could produce acetoin using a variety of carbon sources, including pentose, hexose and lignocellulose. The draft genome of TYF-LIM-RU47 was constructed and the genomic information revealed that TYF-LIM-RU47 contains genes related to starch and sucrose metabolism, pyruvate metabolism, the oxidative phosphorylation metabolic pathway and lignocellulosic metabolism. The acetoin anabolic pathway of TYF-LIM-RU47 has been deduced from the sequencing results, and acetoin is produced from α-acetolactate via decarboxylation and diacetyl reductase catalytic steps. The results of quantitative real-time PCR tests showed that the synthesis and degradation of acetoin had a dynamic balance in acetoin metabolism, and the transcription of the α-acetolactate synthase gene might exist to the extent of feedback regulation. This study can help researchers to better understand the bioinformation of thermophilic-lignocellulosic bacteria and the mechanisms of the acetoin biosynthesis pathway.
Collapse
|
10
|
Liang J, Roberts A, van Kranenburg R, Bolhuis A, Leak DJ. Relaxed control of sugar utilization in Parageobacillus thermoglucosidasius DSM 2542. Microbiol Res 2021; 256:126957. [PMID: 35032723 DOI: 10.1016/j.micres.2021.126957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023]
Abstract
Though carbon catabolite repression (CCR) has been intensively studied in some more characterised organisms, there is a lack of information of CCR in thermophiles. In this work, CCR in the thermophile, Parageobacillus thermoglucosidasius DSM 2542 has been studied during growth on pentose sugars in the presence of glucose. Physiological studies under fermentative conditions revealed a loosely controlled CCR when DSM 2542 was grown in minimal medium supplemented with a mixture of glucose and xylose. This atypical CCR pattern was also confirmed by studying xylose isomerase expression level by qRT-PCR. Fortuitously, the pheB gene, which encodes catechol 2, 3-dioxygenase was found to have a cre site highly similar to the consensus catabolite-responsive element (cre) at its 3' end and was used to confirm that expression of pheB from a plasmid was under stringent CCR control. Bioinformatic analysis suggested that the CCR regulation of xylose metabolism in P. thermoglucosidasius DSM 2542 might occur primarily via control of expression of pentose transporter operons. Relaxed control of sugar utilization might reflect a lower affinity of the CcpA-HPr (Ser46-P) or CcpA-Crh (Ser46-P) complexes to the cre(s) in these operons.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Biology and Biochemistry, University of Bath, UK.
| | - Adam Roberts
- Department of Biology and Biochemistry, University of Bath, UK
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, The Netherlands; Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, The Netherlands
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, UK
| | - David J Leak
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
11
|
Abstract
The growing need for industrial production of bio-based acetoin and 2,3-butanediol (2,3-BD) is due to both environmental concerns, and their widespread use in the food, pharmaceutical, and chemical industries. Acetoin is a common spice added to many foods, but also a valuable reagent in many chemical syntheses. Similarly, 2,3-BD is an indispensable chemical on the platform in the production of synthetic rubber, printing inks, perfumes, antifreeze, and fuel additives. This state-of-the-art review focuses on representatives of the genus Bacillus as prospective producers of acetoin and 2,3-BD. They have the following important advantages: non-pathogenic nature, unpretentiousness to growing conditions, and the ability to utilize a huge number of substrates (glucose, sucrose, starch, cellulose, and inulin hydrolysates), sugars from the composition of lignocellulose (cellobiose, mannose, galactose, xylose, and arabinose), as well as waste glycerol. In addition, these strains can be improved by genetic engineering, and are amenable to process optimization. Bacillus spp. are among the best acetoin producers. They also synthesize 2,3-BD in titer and yield comparable to those of the pathogenic producers. However, Bacillus spp. show relatively lower productivity, which can be increased in the course of challenging future research.
Collapse
|
12
|
Cui Z, Wang Z, Zheng M, Chen T. Advances in biological production of acetoin: a comprehensive overview. Crit Rev Biotechnol 2021; 42:1135-1156. [PMID: 34806505 DOI: 10.1080/07388551.2021.1995319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acetoin, a high-value-added bio-based platform chemical, is widely used in foods, cosmetics, agriculture, and the chemical industry. It is an important precursor for the synthesis of: 2,3-butanediol, liquid hydrocarbon fuels and heterocyclic compounds. Since the fossil resources are becoming increasingly scarce, biological production of acetoin has received increasing attention as an alternative to chemical synthesis. Although there are excellent reviews on the: application, catabolism and fermentative production of acetoin, little attention has been paid to acetoin production via: electrode-assisted fermentation, whole-cell biocatalysis, and in vitro/cell-free biocatalysis. In this review, acetoin biosynthesis pathways and relevant key enzymes are firstly reviewed. In addition, various strategies for biological acetoin production are summarized including: cell-free biocatalysis, whole-cell biocatalysis, microbial fermentation, and electrode-assisted fermentation. The advantages and disadvantages of the different approaches are discussed and weighed, illustrating the increasing progress toward economical, green and efficient production of acetoin. Additionally, recent advances in acetoin extraction and recovery in downstream processing are also briefly reviewed. Moreover, the current issues and future prospects of diverse strategies for biological acetoin production are discussed, with the hope of realizing the promises of industrial acetoin biomanufacturing in the near future.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Meiyu Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
13
|
Godoy P, García-Franco A, Recio MI, Ramos JL, Duque E. Synthesis of aromatic amino acids from 2G lignocellulosic substrates. Microb Biotechnol 2021; 14:1931-1943. [PMID: 34403199 PMCID: PMC8449653 DOI: 10.1111/1751-7915.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida is a highly solvent‐resistant microorganism and useful chassis for the production of value‐added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two‐step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan‐genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6‐phosphogluconate and subsequently metabolizes it through the Entner–Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked‐out to avoid the production of the dead‐end product xylonate. We generated a set of DOT‐T1E‐derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT‐T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l−1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.
Collapse
Affiliation(s)
- Patricia Godoy
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Ana García-Franco
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - María-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain.,BioEnterprise Master Program, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan-Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
14
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
15
|
Xu H, Tian Y, Wang S, Zhu K, Zhu L, He Q, Li W, Liu J. Batch fermentation kinetics of acetoin produced by Bacillus subtilis HB-32. Prep Biochem Biotechnol 2021; 51:1004-1007. [PMID: 33686924 DOI: 10.1080/10826068.2021.1885047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this work was to study the changes of bacterial cell growth, acetion formation and glucose consumption with fermentation time during batch cultivation. RESULTS A mathematical model of cell growth, product synthesis, and substrate consumption changes with time during the batch cultivation of acetion was established. By analyzing the fitting curve of the kinetic model, it is found that the calculated value of the model fits well with the experimental value, and the fitting model R2 is greater than 0.98. CONCLUSIONS The kinetic model established in this experiment can better reflect the batch cultivation process of acetion.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Yanjun Tian
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Shanshan Wang
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Kunfu Zhu
- Food and Drug College, Shandong Institute of Commercial Technology, Jinan, P. R. China
| | - Lei Zhu
- Shandong Zhushi Pharmaceutical Group Co., Ltd., Heze, P. R. China
| | - Qiangzhi He
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Wenjing Li
- Food and Drug College, Shandong Institute of Commercial Technology, Jinan, P. R. China
| | - Jianjun Liu
- Key Laboratory of Food and Fermentation Engineering of Shandong Province, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
16
|
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 2021; 41:339-354. [PMID: 33541146 DOI: 10.1080/07388551.2020.1856770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial cell factories provide vital platforms for the production of chemicals. Advanced biotechnological toolboxes have been developed to enhance their efficiency. However, these tools have limitations in improving physiological functions, and therefore boosting the efficiency (e.g. titer, rate, and yield) of microbial cell factories remains a challenge. In this review, we propose a strategy of microbial physiological engineering (MPE) to improve the efficiency of microbial cell factories. This strategy integrates tools from synthetic and systems biology to characterize and regulate physiological functions during chemical synthesis. MPE strategies mainly focus on the efficiency of substrate utilization, growth performance, stress tolerance, and the product export capacity of cell factories. In short, this review provides a new framework for resolving the bottlenecks that currently exist in low-efficiency cell factories.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Taiwo AE, Madzimbamuto TN, Ojumu TV. Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design. Heliyon 2020; 6:e05103. [PMID: 33072908 PMCID: PMC7548929 DOI: 10.1016/j.heliyon.2020.e05103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 02/02/2023] Open
Abstract
Microbial production of acetoin is eco-friendly and inexpensive when compared with its synthetic methods of production. In the present findings, bioproduction of acetoin in a typical bioreactor was discussed with a view to ascertain the seemingly comparative advantage of bioreactor system over shake flask, and more importantly, to confirm that corn steep liquor can indeed adequately be used as a replacement for other organic nitrogen sources. Taguchi design was statistically used to optimized the fermentation process which resulted in a 3-fold increase in molar yield (83%) corresponding to a six-fold increase in acetoin concentration (63.43 g/L), as compared to a similar study conducted in a shake flask. Although agitation rate was observed to be the most controlling, the bioreactor may underperform at agitation rate greater than 300 rpm. The optimum parameters for acetoin production in this study were 300 rpm agitation, 1.5 slpm aeration, 2 days fermentation time, and pH 6.5. The results show that the commercial production of acetoin can be envisioned using a biological approach that may be of economic advantage.
Collapse
Affiliation(s)
- Abiola Ezekiel Taiwo
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O Box 1609, Bellville, 7535, South Africa
| | | | - Tunde Victor Ojumu
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O Box 1609, Bellville, 7535, South Africa
| |
Collapse
|
18
|
Lu L, Mao Y, Kou M, Cui Z, Jin B, Chang Z, Wang Z, Ma H, Chen T. Engineering central pathways for industrial-level (3R)-acetoin biosynthesis in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:102. [PMID: 32398078 PMCID: PMC7216327 DOI: 10.1186/s12934-020-01363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Acetoin, especially the optically pure (3S)- or (3R)-enantiomer, is a high-value-added bio-based platform chemical and important potential pharmaceutical intermediate. Over the past decades, intense efforts have been devoted to the production of acetoin through green biotechniques. However, efficient and economical methods for the production of optically pure acetoin enantiomers are rarely reported. Previously, we systematically engineered the GRAS microorganism Corynebacterium glutamicum to efficiently produce (3R)-acetoin from glucose. Nevertheless, its yield and average productivity were still unsatisfactory for industrial bioprocesses. RESULTS In this study, cellular carbon fluxes in the acetoin producer CGR6 were further redirected toward acetoin synthesis using several metabolic engineering strategies, including blocking anaplerotic pathways, attenuating key genes of the TCA cycle and integrating additional copies of the alsSD operon into the genome. Among them, the combination of attenuation of citrate synthase and inactivation of phosphoenolpyruvate carboxylase showed a significant synergistic effect on acetoin production. Finally, the optimal engineered strain CGS11 produced a titer of 102.45 g/L acetoin with a yield of 0.419 g/g glucose at a rate of 1.86 g/L/h in a 5 L fermenter. The optical purity of the resulting (3R)-acetoin surpassed 95%. CONCLUSION To the best of our knowledge, this is the highest titer of highly enantiomerically enriched (3R)-acetoin, together with a competitive product yield and productivity, achieved in a simple, green processes without expensive additives or substrates. This process therefore opens the possibility to achieve easy, efficient, economical and environmentally-friendly production of (3R)-acetoin via microbial fermentation in the near future.
Collapse
Affiliation(s)
- Lingxue Lu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Mengyun Kou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhishuai Chang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
19
|
Lü C, Ge Y, Cao M, Guo X, Liu P, Gao C, Xu P, Ma C. Metabolic Engineering of Bacillus licheniformis for Production of Acetoin. Front Bioeng Biotechnol 2020; 8:125. [PMID: 32154242 PMCID: PMC7047894 DOI: 10.3389/fbioe.2020.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Acetoin is a potential platform compound for a variety of chemicals. Bacillus licheniformis MW3, a thermophilic and generally regarded as safe (GRAS) microorganism, can produce 2,3-butanediol with a high concentration, yield, and productivity. In this study, B. licheniformis MW3 was metabolic engineered for acetoin production. After deleting two 2,3-butanediol dehydrogenases encoding genes budC and gdh, an engineered strain B. licheniformis MW3 (ΔbudCΔgdh) was constructed. Using fed-batch fermentation of B. licheniformis MW3 (ΔbudCΔgdh), 64.2 g/L acetoin was produced at a productivity of 2.378 g/[L h] and a yield of 0.412 g/g from 156 g/L glucose in 27 h. The fermentation process exhibited rather high productivity and yield of acetoin, indicating that B. licheniformis MW3 (ΔbudCΔgdh) might be a promising acetoin producer.
Collapse
Affiliation(s)
- Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yongsheng Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xiaoting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Peihai Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
20
|
Ji F, Feng Y, Li M, Yang Y, Wang T, Wang J, Bao Y, Xue S. Studies on structure-function relationships of acetolactate decarboxylase from Enterobacter cloacae. RSC Adv 2018; 8:39066-39073. [PMID: 35558320 PMCID: PMC9090609 DOI: 10.1039/c8ra07379a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022] Open
Abstract
Acetoin is an important bio-based platform chemical with wide applications. Among all bacterial strains, Enterobacter cloacae is a well-known acetoin producer via α-acetolactate decarboxylase (ALDC), which converts α-acetolactate into acetoin and is identified as the key enzyme in the biosynthetic pathway of acetoin. In this work, the enzyme properties of Enterobacter cloacae ALDC (E.c.-ALDC) were characterized, revealing a K m value of 12.19 mM and a k cat value of 0.96 s-1. Meanwhile, the optimum pH of E.c.-ALDC was 6.5, and the activity of E.c.-ALDC was activated by Mn2+, Ba2+, Mg2+, Zn2+ and Ca2+, while Cu2+ and Fe2+ significantly inhibited ALDC activity. More importantly, we solved and reported the first crystal structure of E.c.-ALDC at 2.4 Å resolution. The active centre consists of a zinc ion coordinated by highly conserved histidines (199, 201 and 212) and glutamates (70 and 259). However, the conserved Arg150 in E.c.-ALDC orients away from the zinc ion in the active centre of the molecule, losing contact with the zinc ion. Molecular docking of the two enantiomers of α-acetolactate, (R)-acetolactate and (S)-acetolactate allows us to further investigate the interaction networks of E.c.-ALDC with the unique conformation of Arg150. In the models, no direct contacts are observed between Arg150 and the substrates, which is unlikely to maintain the stabilization function of Arg150 in the catalytic reaction. The structure of E.c.-ALDC provides valuable information about its function, allowing a deeper understanding of the catalytic mechanism of ALDCs.
Collapse
Affiliation(s)
- Fangling Ji
- School of Life Science and Biotechnology, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Yanbin Feng
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Mingyang Li
- School of Life Science and Biotechnology, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Yongliang Yang
- School of Life Science and Biotechnology, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Tianqi Wang
- School of Life Science and Biotechnology, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Yongming Bao
- School of Life Science and Biotechnology, Dalian University of Technology Dalian Liaoning 116024 P. R. China
- School of Food and Environment Science and Engineering, Dalian University of Technology Panjin Liaoning 12422 P. R. China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| |
Collapse
|
21
|
Fan X, Wu H, Jia Z, Li G, Li Q, Chen N, Xie X. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Appl Microbiol Biotechnol 2018; 102:8753-8762. [DOI: 10.1007/s00253-018-9316-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
|
22
|
Förster AH, Beblawy S, Golitsch F, Gescher J. Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:65. [PMID: 28293295 PMCID: PMC5348906 DOI: 10.1186/s13068-017-0745-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/28/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND This paper describes the metabolic engineering of Escherichia coli for the anaerobic fermentation of glucose to acetoin. Acetoin has well-established applications in industrial food production and was suggested to be a platform chemical for a bio-based economy. However, the biotechnological production is often hampered by the simultaneous formation of several end products in the absence of an electron acceptor. Moreover, typical production strains are often potentially pathogenic. The goal of this study was to overcome these limitations by establishing an electrode-assisted fermentation process in E. coli. Here, the surplus of electrons released in the production process is transferred to an electrode as anoxic and non-depletable electron acceptor. RESULTS In a first step, the central metabolism was steered towards the production of pyruvate from glucose by deletion of genes encoding for enzymes of central reactions of the anaerobic carbon metabolism (ΔfrdA-D ΔadhE ΔldhA Δpta-ack). Thereafter, the genes for the acetolactate synthase (alsS) and the acetolactate decarboxylase (alsD) were expressed in this strain from a plasmid. Addition of nitrate as electron acceptor led to an anaerobic acetoin production with a yield of up to 0.9 mol acetoin per mol of glucose consumed (90% of the theoretical maximum). In a second step, the electron acceptor nitrate was replaced by a carbon electrode. This interaction necessitated the further expression of c-type cytochromes from Shewanella oneidensis and the addition of the soluble redox shuttle methylene blue. The interaction with the non-depletable electron acceptor led to an acetoin formation with a yield of 79% of the theoretical maximum (0.79 mol acetoin per mol glucose). CONCLUSION Electrode-assisted fermentations are a new strategy to produce substances of biotechnological value that are more oxidized than the substrates. Here, we show for the first time a process in which the commonly used chassis strain E. coli was tailored for an electrode-assisted fermentation approach branching off from the central metabolite pyruvate. At this early stage, we see promising results regarding carbon and electron recovery and will use further strain development to increase the anaerobic metabolic turnover rate.
Collapse
Affiliation(s)
- Andreas H. Förster
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Frederik Golitsch
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- Department of Microbiology of Natural and Technical Interfaces, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Bursac T, Gralnick JA, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 2017; 114:1283-1289. [DOI: 10.1002/bit.26243] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Thea Bursac
- Department of Applied Biology; Institute for Applied Biosciences; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Microbiology; University of Minnesota; Twin Cities St. Paul, Minnesota
| | - Johannes Gescher
- Department of Applied Biology; Institute for Applied Biosciences; Karlsruhe Institute of Technology; Karlsruhe Germany
- Department of Microbiology of Natural and Technical Interfaces; Institute of Functional Interfaces; Karlsruhe Institute of Technology; Eggenstein-Leopoldshafen Germany
| |
Collapse
|