1
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
2
|
Sirolimus loaded chitosan functionalized PLGA nanoparticles protect against sodium iodate-induced retinal degeneration. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Wong FSY, Tsang KK, Chan BP, Lo ACY. Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 2023; 293:121948. [PMID: 36516686 DOI: 10.1016/j.biomaterials.2022.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Treatments of vision-threatening retinal diseases are often hampered by drug delivery difficulties. Polyelectrolytically-coated alginate encapsulated-cell therapy (ECT) systems have shown therapeutic efficacy through prolonged in vivo drug delivery but still face various biocompatibility, viability, drug delivery and mechanical stability issues in clinical trials. Here, novel, injectable alginate-poly-l-lysine (AP)-coated composite alginate-collagen (CAC) ECT gels were developed for sustained ocular drug delivery, and their long-term performance was compared with non-coated CAC ECT gels. All optimised AP-coated gels (AP1- and AP5.5-CAC ECT: 2 mg/ml collagen, 1.5% high molecular weight alginate, 50,000 cells/gel, with 0.01% or 0.05% poly-l-lysine coating for 5 min, followed by 0.15% alginate coating) and non-coated gels showed effective cell proliferation control, cell viability support and continuous delivery of bioactive glial cell-derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with retinal degeneration, resulting in reduced photoreceptor apoptosis and retinal function loss. At 6 months post-implantation, no host-tissue attachment or ingrowth was detected on the retrieved gels. Non-coated gels were mechanically more stable than AP5.5-coated ones under the current cell loading. This study demonstrated that both coated and non-coated ECT gels can serve as well-controlled, sustained drug delivery platforms for treating posterior eye diseases without immunosuppression.
Collapse
Affiliation(s)
- Francisca Siu Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ken Kin Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Shpak AA, Guekht AB, Druzhkova TA, Troshina AA, Gulyaeva NV. Glial cell line-derived neurotrophic factor (GDNF) in patients with primary open-angle glaucoma and age-related cataract. Mol Vis 2022; 28:39-47. [PMID: 35656168 PMCID: PMC9108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To study glial cell line-derived neurotrophic factor (GDNF) concentrations in aqueous humor (AH), lacrimal fluid (LF), and blood serum (BS) in patients with age-related cataract and primary open-angle glaucoma (POAG). METHODS GDNF was studied in AH, LF, and BS in 47 patients with age-related cataract, and 30 patients with POAG combined with cataract (one eye in each person). AH was sampled during cataract surgery. RESULTS GDNF concentration (pg/ml) in patients with POAG and cataract was lower than in cataract-only patients (p<0.001), both in AH (46.3±31.1 versus 88.9±46.9) and in LF (222±101 versus 344±134). The difference was not significant for the GDNF concentration in BS (194±56 versus 201±45). In the earlier (early and moderate) stages of POAG, compared to later (advanced and severe) stages, GDNF concentration was significantly lower in LF (176±99 versus 258±91; p = 0.027) and in BS (165±42 versus 217±55; p = 0.017), while GDNF concentration in AH showed an insignificant difference (40.0±25.7 versus 51.1±34.7). In patients with POAG, GDNF concentration in LF and BS was inversely correlated with the Humphrey visual field index: Pearson's correlation coefficient r = -0.465 (p = 0.01) for LF and r = -0.399 (p = 0.029) for BS. When compared to the cataract group, patients in the earlier stages of POAG showed significantly lower GDNF concentrations in all studied biologic fluids. CONCLUSIONS Compared to patients with cataract only, GDNF levels are lower in the AH and LF of patients with POAG and cataract, especially at earlier stages of the disease (at these stages, the GDNF level in BS is also lower). At earlier stages of POAG, compared to later stages, GDNF content is lower in LF and BS. These data could serve as a reason for the therapeutic use of GDNF in patients with POAG.
Collapse
Affiliation(s)
- Alexander A. Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| | - Alla B. Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Tatiana A. Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Anna A. Troshina
- The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| | - Natalia V. Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Manna S, Jana S. Marine Polysaccharides in Tailor- Made Drug Delivery. Curr Pharm Des 2022; 28:1046-1066. [DOI: 10.2174/1381612828666220328122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Abstract:
Marine sources have attracted much interest as an emerging source of biomaterials in drug delivery applications. Amongst all other marine biopolymers, polysaccharides have been the mostly investigated class of biomaterials. The low cytotoxic behavior, in combination with the newly explored health benefits of marine polysaccharides has made it one of the prime research areas in the pharmaceutical and biomedical fields. In this review, we focused on all available marine polysaccharides, including their classification based on biological sources. The applications of several marine polysaccharides in recent years for tissue-specific novel drug delivery including gastrointestinal, brain tissue, transdermal, ocular, liver, and lung have also been discussed here. The abundant availability in nature, cost-effective extraction, and purification process along with a favorable biodegradable profile will encourage researchers to continue investigating marine polysaccharides for exploring newer applications in targeting specific delivery of therapeutics.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal -700125, India
| | - Sougata Jana
- Department of Pharmaceutics, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata, India
| |
Collapse
|
6
|
Nair DSR, Thomas BB. Stem Cell-based Treatment Strategies for Degenerative Diseases of the Retina. Curr Stem Cell Res Ther 2022; 17:214-225. [PMID: 34348629 PMCID: PMC9129886 DOI: 10.2174/1574888x16666210804112104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The main cause of progressive vision impairment in retinal degenerative diseases is the dysfunction of photoreceptors and the underlying retinal pigment epithelial cells. The inadequate regenerative capacity of the neural retina and lack of established therapeutic options demand the development of clinical-grade protocols to halt the degenerative process in the eye or replace the damaged cells by using stem cell-derived products. Recently, stem cell-based regenerative therapies have been at the forefront of clinical investigations for retinal dystrophies. OBJECTIVE This article will review different stem cell-based therapies currently employed for retinal degenerative diseases, recent clinical trials, and major challenges in the translation of these therapies from bench to bedside. METHODOLOGY A systematic literature review was conducted to identify potentially relevant articles published in MEDLINE/PubMed, Embase, ClinicalTrials.gov, Drugs@FDA, European Medicines Agency, and World Health Organization International Clinical Trials Registry Platform. RESULTS Transplantation of healthy cells to replace damaged cells in the outer retina is a clinically relevant concept because the inner retina that communicates with the visual areas of the brain remains functional even after the photoreceptors are completely lost. Various methods have been established for the differentiation of pluripotent stem cells into different retinal cell types that can be used for therapies. Factors released from transplanted somatic stem cells showed trophic support and photoreceptor rescue during the early stages of the disease. Several preclinical and phase I/II clinical studies using terminally differentiated photoreceptor/retinal pigment epithelial cells derived from pluripotent stem cells have shown proof of concept for visual restoration in Age-related Macular Degeneration (AMD), Stargardt disease, and Retinitis Pigmentosa (RP). CONCLUSION Cell replacement therapy has great potential for vision restoration. The results obtained from the initial clinical trials are encouraging and indicate its therapeutic benefits. The current status of the therapies suggests that there is a long way to go before these results can be applied to routine clinical practice. Input from the ongoing multicentre clinical trials will give a more refined idea for the future design of clinical-grade protocols to transplant GMP level HLA matched cells.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, USA,Correspondence: , Tel: 323-442-5593
| |
Collapse
|
7
|
Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel) 2021; 13:1852. [PMID: 34199641 PMCID: PMC8199729 DOI: 10.3390/polym13111852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate (ALG), a polysaccharide derived from brown seaweed, has been extensively investigated as a biomaterial not only in tissue engineering but also for numerous biomedical sciences owing to its wide availability, good compatibility, weak cytotoxicity, low cost, and ease of gelation. Nevertheless, alginate lacks cell-binding sites, limiting long-term cell survival and viability in 3D culture. Collagen (Col), a major component protein found in the extracellular matrix (ECM), exhibits excellent biocompatibility and weak immunogenicity. Furthermore, collagen contains cell-binding motifs, which facilitate cell attachment, interaction, and spreading, consequently maintaining cell viability and promoting cell proliferation. Recently, there has been a growing body of investigations into collagen-based hydrogel trying to overcome the poor mechanical properties of collagen. In particular, collagen-alginate composite (CAC) hydrogel has attracted much attention due to its excellent biocompatibility, gelling under mild conditions, low cytotoxicity, controllable mechanic properties, wider availability as well as ease of incorporation of other biomaterials and bioactive agents. This review aims to provide an overview of the properties of alginate and collagen. Moreover, the application of CAC hydrogel in tissue engineering and biomedical sciences is also discussed.
Collapse
Affiliation(s)
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
8
|
Walimbe T, Panitch A. Best of Both Hydrogel Worlds: Harnessing Bioactivity and Tunability by Incorporating Glycosaminoglycans in Collagen Hydrogels. Bioengineering (Basel) 2020; 7:E156. [PMID: 33276506 PMCID: PMC7711789 DOI: 10.3390/bioengineering7040156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Collagen, the most abundant protein in mammals, has garnered the interest of scientists for over 50 years. Its ubiquitous presence in all body tissues combined with its excellent biocompatibility has led scientists to study its potential as a biomaterial for a wide variety of biomedical applications with a high degree of success and widespread clinical approval. More recently, in order to increase their tunability and applicability, collagen hydrogels have frequently been co-polymerized with other natural and synthetic polymers. Of special significance is the use of bioactive glycosaminoglycans-the carbohydrate-rich polymers of the ECM responsible for regulating tissue homeostasis and cell signaling. This review covers the recent advances in the development of collagen-based hydrogels and collagen-glycosaminoglycan blend hydrogels for biomedical research. We discuss the formulations and shortcomings of using collagen in isolation, and the advantages of incorporating glycosaminoglycans (GAGs) in the hydrogels. We further elaborate on modifications used on these biopolymers for tunability and discuss tissue specific applications. The information presented herein will demonstrate the versatility and highly translational value of using collagen blended with GAGs as hydrogels for biomedical engineering applications.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
- Department of Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Nian S, Kearns VR, Wong DSH, Bachhuka A, Vasilev K, Williams RL, Lai WW, Lo A, Sheridan CM. Plasma polymer surface modified expanded polytetrafluoroethylene promotes epithelial monolayer formation in vitro and can be transplanted into the dystrophic rat subretinal space. J Tissue Eng Regen Med 2020; 15:49-62. [PMID: 33180364 DOI: 10.1002/term.3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate whether the surface modification of expanded polytetrafluoroethylene (ePTFE) using an n-heptylamine (HA) plasma polymer would allow for functional epithelial monolayer formation suitable for subretinal transplant into a non-dystrophic rat model. Freshly isolated iris pigment epithelial (IPE) cells from two rat strains (Long Evans [LE] and Dark Agouti [DA]) were seeded onto HA, fibronectin-coated n-heptylamine modified (F-HA) and unmodified ePFTE and fibronectin-coated tissue culture (F-TCPS) substrates. Both F-HA ePTFE and F-TCPS substrates enabled functional monolayer formation with both strains of rat. Without fibronectin coating, only LE IPE formed a monolayer on HA-treated ePTFE. Functional assessment of both IPE strains on F-HA ePTFE demonstrated uptake of POS that increased significantly with time that was greater than control F-TCPS. Surgical optimization using Healon GV and mixtures of Healon GV: phosphate buffered saline (PBS) to induce retinal detachment demonstrated that only Healon GV:PBS allowed F-HA ePTFE substrates to be successfully transplanted into the subretinal space of Royal College of Surgeons rats, where they remained flat beneath the neural retina for up to 4 weeks. No apparent substrate-induced inflammatory response was observed by fundus microscopy or immunohistochemical analysis, indicating the potential of this substrate for future clinical applications.
Collapse
Affiliation(s)
- Shen Nian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David S H Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Akash Bachhuka
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Wico W Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Amy Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Deng Y, Yang X, Zhang X, Cao H, Mao L, Yuan M, Liao W. Novel fenugreek gum-cellulose composite hydrogel with wound healing synergism: Facile preparation, characterization and wound healing activity evaluation. Int J Biol Macromol 2020; 160:1242-1251. [DOI: 10.1016/j.ijbiomac.2020.05.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
|
11
|
Pena CD, Zhang S, Majeska R, Venkatesh T, Vazquez M. Invertebrate Retinal Progenitors as Regenerative Models in a Microfluidic System. Cells 2019; 8:cells8101301. [PMID: 31652654 PMCID: PMC6829900 DOI: 10.3390/cells8101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insufficient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to our understanding of retinogenesis and the development of effective, cell-based approaches to retinal replacement. The current article describes a new bio-engineering approach to investigate the migratory responses of innate collections of RPCs upon extracellular substrates by combining microfluidics with the well-established invertebrate model of Drosophila melanogaster. Experiments utilized microfluidics to investigate how the composition, size, and adhesion of RPC clusters on defined extracellular substrates affected migration to exogenous chemotactic signaling. Results demonstrated that retinal cluster size and composition influenced RPC clustering upon extracellular substrates of concanavalin (Con-A), Laminin (LM), and poly-L-lysine (PLL), and that RPC cluster size greatly altered collective migratory responses to signaling from Fibroblast Growth Factor (FGF), a primary chemotactic agent in Drosophila. These results highlight the significance of examining collective cell-biomaterial interactions on bio-substrates of emerging biomaterials to aid directional migration of transplanted cells. Our approach further introduces the benefits of pairing genetically controlled models with experimentally controlled microenvironments to advance cell replacement therapies.
Collapse
Affiliation(s)
- Caroline D Pena
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Stephanie Zhang
- Department of Biomedical Engineering, The State University of New York at Binghamton, NY 13902, USA.
| | - Robert Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Tadmiri Venkatesh
- Department of Biology, City College of New York, New York, NY 10031, USA.
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08854, USA.
| |
Collapse
|
12
|
Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials 2019; 201:53-67. [DOI: 10.1016/j.biomaterials.2019.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
|
13
|
Abstract
Biomaterials play a critical role in regenerative strategies such as stem cell-based therapies and tissue engineering, aiming to replace, remodel, regenerate, or support damaged tissues and organs. The design of appropriate three-dimensional (3D) scaffolds is crucial for generating bio-inspired replacement tissues. These scaffolds are primarily composed of degradable or non-degradable biomaterials and can be employed as cells, growth factors, or drug carriers. Naturally derived and synthetic biomaterials have been widely used for these purposes, but the ideal biomaterial remains to be found. Researchers from diversified fields have attempted to design and fabricate novel biomaterials, aiming to find novel theranostic approaches for tissue engineering and regenerative medicine. Since no single biomaterial has been found to possess all the necessary characteristics for an ideal performance, over the years scientists have tried to develop composite biomaterials that complement and combine the beneficial properties of multiple materials into a superior matrix. Herein, we highlight the structural features and performance of various biomaterials and their application in regenerative medicine and for enhanced tissue engineering approaches.
Collapse
|
14
|
Modified cells as potential ocular drug delivery systems. Drug Discov Today 2018; 24:1621-1626. [PMID: 30562585 DOI: 10.1016/j.drudis.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Drug delivery to ocular targets is problematic, especially in retinal disease treatment. Therefore, targeted drug delivery, prolonged drug action, and minimally invasive treatments are needed. In this review, we describe cell technologies for drug delivery. These technologies are based on genetic engineering and nongenetic-based approaches for cell modification. In principle, cell technologies enable targeted delivery, long drug action, and minimally invasive administration, but they have only been sparsely studied for ocular drug delivery. Herein, these technologies are discussed in the ocular context.
Collapse
|
15
|
Krishnaswami V, Kandasamy R, Alagarsamy S, Palanisamy R, Natesan S. Biological macromolecules for ophthalmic drug delivery to treat ocular diseases. Int J Biol Macromol 2018; 110:7-16. [DOI: 10.1016/j.ijbiomac.2018.01.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
|
16
|
Strauss K, Chmielewski J. Advances in the design and higher-order assembly of collagen mimetic peptides for regenerative medicine. Curr Opin Biotechnol 2017; 46:34-41. [PMID: 28126669 DOI: 10.1016/j.copbio.2016.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Regenerative medicine makes use of cell-supporting biomaterials to replace lost or damaged tissue. Collagen holds great potential in this regard caused by its biocompatibility and structural versatility. While natural collagen has shown promise for regenerative medicine, collagen mimetic peptides (CMPs) have emerged that allow far higher degrees of customization and ease of preparation. A wide range of two and three-dimensional assemblies have been generated from CMPs, many of which accommodate cellular adhesion and encapsulation, through careful sequence design and the exploitation of electrostatic and hydrophobic forces. But the methodology that has generated the greatest plethora of viable biomaterials is metal-promoted assembly of CMP triple helices-a rapid process that occurs under physiological conditions. Architectures generated in this manner promote cell growth, enable directed attachment of bioactive cargo, and produce living tissue.
Collapse
Affiliation(s)
- Kevin Strauss
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Wong FSY, Tsang KK, Lo ACY. Delivery of therapeutics to posterior eye segment: cell-encapsulating systems. Neural Regen Res 2017; 12:576-577. [PMID: 28553333 PMCID: PMC5436351 DOI: 10.4103/1673-5374.205093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Francisca S Y Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ken K Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|