1
|
Juarez I, Su S, Herbert ZT, Teijaro JR, Moulton VR. Splicing factor SRSF1 is essential for CD8 T cell function and host antigen-specific viral immunity. Front Immunol 2022; 13:906355. [PMID: 36189299 PMCID: PMC9523749 DOI: 10.3389/fimmu.2022.906355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cytotoxic CD8 T cells are crucial for the host antigen-specific immune response to viral pathogens. Here we report the identification of an essential role for the serine/arginine-rich splicing factor (SRSF) 1 in CD8 T cell homeostasis and function. Specifically, SRSF1 is necessary for the maintenance of normal CD8 T lymphocyte numbers in the lymphoid compartment, and for the proliferative capacity and cytotoxic function of CD8 T cells. Furthermore, SRSF1 is required for antigen-specific IFN-γ cytokine responses in a viral infection challenge in mice. Transcriptomics analyses of Srsf1-deficient T cells reveal that SRSF1 controls proliferation, MAP kinase signaling and IFN signaling pathways. Mechanistically, SRSF1 controls the expression and activity of the Mnk2/p38-MAPK axis at the molecular level. Our findings reveal previously unrecognized roles for SRSF1 in the physiology and function of cytotoxic CD8 T lymphocytes and a potential molecular mechanism in viral immunopathogenesis.
Collapse
Affiliation(s)
- Ignacio Juarez
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Shi Su
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zachary T. Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Vaishali R. Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
3
|
Li Y, Sun C, Cui L, Wang Q. NLRC4 Gene Single Nucleotide Polymorphisms Are Associated with the Prognosis of Hemophagocytic Lymphohistiocytosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8581746. [PMID: 34925545 PMCID: PMC8683185 DOI: 10.1155/2021/8581746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To analyze and study the correlation between NLR family CARD domain-containing 4 (NLRC4) gene single nucleotide polymorphisms and the prognosis of patients with hemophagocytic lymphohistiocytosis (HLH). METHODS In this study, we retrospectively studied the clinical data of 62 HLH patients, including 40 males and 22 females. The genomic DNA was extracted, and the genotypes at rs385076 locus and rs479333 locus of the NLRC4 gene were analyzed. The level of blood interleukin-18 (IL-18) was analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with the TT genotype at the NLRC4 gene rs385076 locus, the mortality of HLH patients with TC genotype and CC genotype was higher (RR = 3.205, 95% CI: 1.277-4.788, p = 0.012; RR = 3.052, 95% CI: 1.098-4.753, p = 0.031). Taking the CC genotype at rs479333 of the NLRC4 gene as a reference, HLH patients with CG genotype and GG genotype had a higher risk of death (RR = 3.475, 95% CI: 1.488-5.775, p = 0.003; RR = 2.986, 95% CI: 1.014-5.570, p = 0.047). NLRC4 gene rs385076 T>C and rs479333 C>G were significantly related to the poor prognosis of HLH patients. The area under the curve (AUC) of the receiver operating curve (ROC) for the prognostic outcome of HLH with serum IL-18 level was 0.6813 (95% CI: 0.5365-0.8260, p = 0.0189). NLRC4 gene rs385076 T>C and rs479333 C>G were related to higher serum IL-18 levels. CONCLUSION NLRC4 gene rs385076 T>C and rs479333 C>G are related to the poor prognosis of HLH patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengdong Sun
- Department of Infectious Diseases, Beijing Jishuitan Hospital, Beijing 100096, China
| | - Liying Cui
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qiuying Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
Yang T, Mei Q, Zhang L, Chen Z, Zhu C, Fang X, Geng S, Pan A. Hemophagocytic lymphohistiocytosis is associated with Bartonella henselae infection in a patient with multiple susceptibility genes. Ann Clin Microbiol Antimicrob 2020; 19:28. [PMID: 32517705 PMCID: PMC7281694 DOI: 10.1186/s12941-020-00370-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/30/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Adult-onset hemophagocytic lymphohistiocytosis (HLH) is a rare and life-threatening condition, which is often triggered by certain types of infection, cancer and numerous autoimmune diseases; however, of the numerous infectious triggers associated with HLH, the consequences of Bartonella henselae infection have been rarely reported. CASE PRESENTATION A 48-year-old female presented with a 20-day history of intermittent fever accompanied by systemic rash, fatigue, anorexia and weight loss later she developed shock and unconsciousness. Blood tests showed a reduction of leukocyte, anemia and thrombocytopenia, and pathological results of a bone marrow biopsy confirmed hemophagocytic activity. Metagenomic next-generation sequencing (mNGS) analysis of the lymph node detected the presence of B. henselae. Whole exome sequencing revealed two gene variants, STXBP2 and IRF5, in this adult patient with secondary HLH. Then, she received minocycline and rifampin combination anti-infective therapy. Intravenous immunoglobulin for 5 days followed by a high dose of methylprednisolone were also administered. The patient was successfully discharged from the intensive care unit and remained in good condition after 2 months of follow-up. CONCLUSIONS mNGS served crucial roles in obtaining an etiological diagnosis, which suggested that screening for B. henselae should be considered in patients with HLH, especially those with a cat at home. In addition, the genetic defects were discovered to not only be present in primary HLH, but also in secondary HLH, even in the elderly.
Collapse
Affiliation(s)
- Tianjun Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Qing Mei
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Lei Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Zhendong Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Chunyan Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Xiaowei Fang
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Shike Geng
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China.,Department of Intensive Care Unit, Affiliated Provincial Hospital of Anhui Medical University, 17 Lujiang Road, Hefei, Anhui, China
| | - Aijun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China. .,Department of Intensive Care Unit, Affiliated Provincial Hospital of Anhui Medical University, 17 Lujiang Road, Hefei, Anhui, China.
| |
Collapse
|
5
|
Yang L, Shen K, Zhang M, Zhang W, Cai H, Lin L, Long X, Xing S, Tang Y, Xiong J, Wang J, Li D, Zhou J, Xiao M. Clinical Features and MicroRNA Expression Patterns Between AML Patients With DNMT3A R882 and Frameshift Mutations. Front Oncol 2019; 9:1133. [PMID: 31709191 PMCID: PMC6821681 DOI: 10.3389/fonc.2019.01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Background: DNA methyltransferase 3A (DNMT3A) plays a unique role in hematopoiesis and acute myeloid leukemia (AML) pathogenesis. While the influences of DNMT3A mutation subtypes are still under debate. Purpose: Exploration of the clinical and molecular differences between AML patients carrying DNMT3A R882 mutations and DNMT3A frameshift mutations. Methods: Next generation of sequencing (NGS) and clinical data of 118 AML patients in our center were analyzed and compared. NGS, mRNA and miRNA profiling and clinical data from 12 patients in TCGA database were integrative analyzed. Results: Among all patients enrolled, 113 patients were positive for the variants of interest. Overall, a total of 295 variants were discovered, among which 24 DNMT3A mutations were detected, including 1 non-sense, 20 missense, 3 frameshift mutations. And 7 DNMT3A R882 mutations (3 R882H, 2 R882C, and 2 R882P) were found. Clinical analysis from our cohort and TCGA database indicated that patients carrying DNMT3A R882 mutation exhibited significantly higher levels of peripheral blood hemoglobin and non-significantly inferior prognosis compared with patients with DNMT3A frameshift mutations. Integrative analysis indicated that miR-10b, miR-143, and miR-30a were significantly decreased in the DNMT3A R882 group. High miR-143 expression is significantly associated with better prognosis in AML patients with DNMT3A mutations. Conclusion: Different molecular and clinical characteristics existed between patients with DNMT3A variant subtypes. The distinct microRNA expression pattern for DNMT3A R882 AML patients might not only act as markers to predict disease prognosis, but also could be further investigated to develop novel therapeutic targets for patients with DNMT3A mutations.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ke'Feng Shen
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mei'Lan Zhang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao'Dong Cai
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li'Man Lin
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao'Lu Long
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shu'Gang Xing
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiong
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia'Chen Wang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Deng'Ju Li
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jian'Feng Zhou
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|