1
|
Qin B, Chen X, Zhu J, Kopechek J, Helfield B, Yu F, Cyriac J, Lavery L, Grandis JR, Villanueva FS. Ultrasound enhanced siRNA delivery using cationic liposome-microbubble complexes for the treatment of squamous cell carcinoma. Nanotheranostics 2024; 8:285-297. [PMID: 38577322 PMCID: PMC10988211 DOI: 10.7150/ntno.90516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.
Collapse
Affiliation(s)
- Bin Qin
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhui Zhu
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Kopechek
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon Helfield
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Yu
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jissy Cyriac
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda Lavery
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Flordeliza S. Villanueva
- Center for Ultrasound for Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Mohammed SA, Amjad MW, Acosta MF, Chen X, Lavery L, Hanrahan D, Unger EC, Meuillet EJ, Pacella JJ. Fibrin-targeted phase shift microbubbles for the treatment of microvascular obstruction. Nanotheranostics 2024; 8:33-47. [PMID: 38164499 PMCID: PMC10750123 DOI: 10.7150/ntno.85092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/20/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: Microvascular obstruction (MVO) following percutaneous coronary intervention (PCI) is a common problem associated with adverse clinical outcomes. We are developing a novel treatment, termed sonoreperfusion (SRP), to restore microvascular patency. This entails using ultrasound-targeted microbubble cavitation (UTMC) of intravenously administered gas-filled lipid microbubbles (MBs) to dissolve obstructive microthrombi in the microvasculature. In our prior work, we used standard-sized lipid MBs. In the present study, to improve upon the efficiency and efficacy of SRP, we sought to determine the therapeutic efficacy of fibrin-targeted phase shift microbubbles (FTPSMBs) in achieving successful reperfusion of MVO. We hypothesized that owing to their much smaller size and affinity for thrombus, FTPSMBs would provide more effective dissolution of microthrombi when compared to that of the corresponding standard-sized lipid MBs. Methods: MVO in the rat hindlimb was created by direct injection of microthrombi into the left femoral artery. Definity MBs (Lantheus Medical Imaging) were infused through the jugular vein for contrast-enhanced ultrasound imaging (CEUS). A transducer was positioned vertically above the hindlimb for therapeutic US delivery during the concomitant administration of various therapeutic formulations, including (1) un-targeted MBs; (2) un-targeted phase shift microbubbles (PSMBs); (3) fibrin-targeted MB (FTMBs); and (4) fibrin-targeted PSMBs (FTPSMBs). CEUS cine loops with burst replenishment were obtained at baseline (BL), 10 min post-MVO, and after each of two successive 10-minute SRP treatment sessions (TX1, TX2) and analyzed (MATLAB). Results: In-vitro binding affinity assay showed increased fibrin binding peptide (FBP) affinity for the fibrin clots compared with the untargeted peptide (DK12). Similarly, in our in-vitro model of MVO, we observed a higher binding affinity of fluorescently labeled FTPSMBs with the porcine microthrombi compared to FTMBs, PSMBs, and MBs. Finally, in our hindlimb model, we found that UTMC with FTPSMBs yielded the greatest recovery of blood volume (dB) and flow rate (dB/sec) following MVO, compared to all other treatment groups. Conclusions: SRP with FTPSMBs achieves more rapid and complete reperfusion of MVO compared to FTMBs, PSMBs, and MBs. Studies to explore the underlying physical and molecular mechanisms are underway.
Collapse
Affiliation(s)
- Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Maria F. Acosta
- Microvascular Therapeutics (MVT), Inc. 1635 E. 18 th Street, Tucson, AZ, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Linda Lavery
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Dillon Hanrahan
- Microvascular Therapeutics (MVT), Inc. 1635 E. 18 th Street, Tucson, AZ, USA
| | - Evan C. Unger
- Microvascular Therapeutics (MVT), Inc. 1635 E. 18 th Street, Tucson, AZ, USA
| | | | - John J. Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Feroze RA, Kopechek J, Zhu J, Chen X, Villanueva FS. Ultrasound-Induced Microbubble Cavitation for Targeted Delivery of MiR-29b Mimic to Treat Cardiac Fibrosis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2573-2580. [PMID: 37749011 DOI: 10.1016/j.ultrasmedbio.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Cardiac fibrosis contributes to adverse ventricular remodeling and is associated with loss of miR-29b. Overexpression of miR-29b via plasmid or intravenous injection of microRNA mimic has blunted fibrosis, but these are inefficient and non-targeted delivery strategies. In this study, we tested the hypothesis that delivery of microRNA-29b (miR-29b) using ultrasound-targeted microbubble cavitation (UTMC) of miR-29b-loaded microbubbles would attenuate cardiac fibrosis and preserve left ventricular (LV) function. METHODS Lipid microbubbles were loaded with miR-29b mimic (miR-29b-MB) or negative control (NC) mimic (NC-MB), placed with cardiac fibroblasts (CFs) and treated with pulsed ultrasound. Cells were harvested to measure downstream fibrotic mediators. Mice received angiotensin II (ANG II) infusion causing afterload increase and direct ANG II-induced cardiac fibrosis. UTMC of miRNA-loaded microbubbles was administered to the heart at days 0, 3 and 7. Serial echocardiography was performed, and hearts were harvested on day 10. RESULTS UTMC treatment of CFs with miR-29b-MB increased miR-29b and decreased fibrotic transcripts compared with NC-MB treatment. In vivo UTMC + NC-MB led to increased LV mass, reduction in cardiac function and increase in fibrotic markers, demonstrating ANGI II-induced adverse cardiac remodeling. Mice treated with UTMC + miR-29b-MB had preservation of cardiac function, downregulation of cardiac fibrillin and trends of lower COL1A1, COL1A2 and COL3 mRNA and decreased cardiac α-smooth muscle protein. CONCLUSION UTMC-mediated delivery of miR-29b mimic blunts expression of fibrosis markers and preserves LV function in ANG II-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Rafey A Feroze
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Kopechek
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Jianhui Zhu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Kar A, Gupta S, Matilal A, Kumar D, Sarkar S. Nanotherapeutics for the Myocardium: A Potential Alternative for Treating Cardiac Diseases. J Cardiovasc Pharmacol 2023; 82:180-188. [PMID: 37341530 DOI: 10.1097/fjc.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
ABSTRACT Cardiovascular diseases (CVDs) are the foremost cause of morbidity and mortality worldwide. Current clinical interventions include invasive approaches for progressed conditions and pharmacological assistance for initial stages, which has systemic side effects. Preventive, curative, diagnostic, and theranostic (therapeutic + diagnostic) approaches till date are not very useful in combating the ongoing CVD epidemic, which demands a promising efficient alternative approach. To combat the growing CVD outbreak globally, the ideal strategy is to make the therapeutic intervention least invasive and direct to the heart to reduce the bystander effects on other organs and increase the bioavailability of the therapeutics to the myocardium. The application of nanoscience and nanoparticle-mediated approaches have gained a lot of momentum because of their efficient passive and active myocardium targeting capability owing to their improved specificity and controlled release. This review provides extensive insight into the various types of nanoparticles available for CVDs, their mechanisms of targeting (eg, direct or indirect), and the utmost need for further development of bench-to-bedside cardiac tissue-based nanomedicines. Furthermore, the review aims to summarize the different ideas and methods of nanoparticle-mediated therapeutic approaches to the myocardium till date with present clinical trials and future perspectives. This review also reflects the potential of such nanoparticle-mediated tissue-targeted therapies to contribute to the sustainable development goals of good health and well-being.
Collapse
Affiliation(s)
- Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
5
|
Strategies and challenges for non-viral delivery of non-coding RNAs to the heart. Trends Mol Med 2023; 29:70-91. [PMID: 36371335 DOI: 10.1016/j.molmed.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
Non-coding RNAs (ncRNAs), such as miRNAs and long non-coding RNAs (lncRNAs) have been reported as regulators of cardiovascular pathophysiology. Their transient effect and diversified mechanisms of action offer a plethora of therapeutic opportunities for cardiovascular diseases (CVDs). However, physicochemical RNA features such as charge, stability, and structural organization hinder efficient on-target cellular delivery. Here, we highlight recent preclinical advances in ncRNA delivery for the cardiovascular system using non-viral approaches. We identify the unmet needs and advance possible solutions towards clinical translation. Finding the optimal delivery vehicle and administration route is vital to improve therapeutic efficacy and safety; however, given the different types of ncRNAs, this may ultimately not be frameable within a one-size-fits-all approach.
Collapse
|
6
|
Yu GZ, Ramasamy T, Fazzari M, Chen X, Freeman B, Pacella JJ. Lipid nitroalkene nanoparticles for the focal treatment of ischemia reperfusion. Nanotheranostics 2022; 6:215-229. [PMID: 34976596 PMCID: PMC8671954 DOI: 10.7150/ntno.62351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Rationale: The treatment of microvascular obstruction (MVO) using ultrasound-targeted LNP cavitation (UTC) therapy mechanically relieves the physical obstruction in the microcirculation but does not specifically target the associated inflammatory milieu. Electrophilic fatty acid nitroalkene derivatives (nitro-fatty acids), that display pleiotropic anti-inflammatory signaling and transcriptional regulatory actions, offer strong therapeutic potential but lack a means of rapid targeted delivery. The objective of this study was to develop nitro-fatty acid-containing lipid nanoparticles (LNP) that retain the mechanical efficacy of standard LNP and can rapidly target delivery of a tissue-protective payload that reduces inflammation and improves vascular function following ischemia-reperfusion. Methods: The stability and acoustic behavior of nitro-fatty acid LNP (NO2-FA-LNP) were characterized by HPLC-MS/MS and ultra-high-speed microscopy. The LNP were then used in a rat hindlimb model of ischemia-reperfusion injury with ultrasound-targeted cavitation. Results: Intravenous administration of NO2-FA-LNP followed by ultrasound-targeted LNP cavitation (UTC) in both healthy rat hindlimb and following ischemia-reperfusion injury showed enhanced NO2-FA tissue delivery and microvascular perfusion. In addition, vascular inflammatory mediator expression and lipid peroxidation were decreased in tissues following ischemia-reperfusion revealed NO2-FA-LNP protected against inflammatory injury. Conclusions: Vascular targeting of NO2-FA-LNP with UTC offers a rapid method of focal anti-inflammatory therapy at sites of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Centner CS, Moore JT, Baxter ME, Long ZT, Miller JM, Kovatsenko ES, Xie B, Menze MA, Berson RE, Bates PJ, Yaddanapudi K, Kopechek JA. Acoustofluidic-mediated molecular delivery to human T cells with a three-dimensional-printed flow chamber. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4534. [PMID: 34972278 DOI: 10.1121/10.0009054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cell-based therapies have garnered significant interest to treat cancer and other diseases. Acoustofluidic technologies are in development to improve cell therapy manufacturing by facilitating rapid molecular delivery across the plasma membrane via ultrasound and microbubbles (MBs). In this study, a three-dimensional (3D) printed acoustofluidic device was used to deliver a fluorescent molecule, calcein, to human T cells. Intracellular delivery of calcein was assessed after varying parameters such as MB face charge, MB concentration, flow channel geometry, ultrasound pressure, and delivery time point after ultrasound treatment. MBs with a cationic surface charge caused statistically significant increases in calcein delivery during acoustofluidic treatment compared to MBs with a neutral surface charge (p < 0.001). Calcein delivery was significantly higher with a concentric spiral channel geometry compared to a rectilinear channel geometry (p < 0.001). Additionally, calcein delivery was significantly enhanced at increased ultrasound pressures of 5.1 MPa compared to lower ultrasound pressures between 0-3.8 MPa (p < 0.001). These results demonstrate that a 3D-printed acoustofluidic device can significantly enhance intracellular delivery of biomolecules to T cells, which may be a viable approach to advance cell-based therapies.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - John T Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Mary E Baxter
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Zachary T Long
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jacob M Miller
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Benjamin Xie
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - R Eric Berson
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Paula J Bates
- School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Kavitha Yaddanapudi
- Department of Surgery, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
8
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
9
|
Grygorczyk R, Boudreault F, Ponomarchuk O, Tan JJ, Furuya K, Goldgewicht J, Kenfack FD, Yu F. Lytic Release of Cellular ATP: Physiological Relevance and Therapeutic Applications. Life (Basel) 2021; 11:life11070700. [PMID: 34357072 PMCID: PMC8307140 DOI: 10.3390/life11070700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The lytic release of ATP due to cell and tissue injury constitutes an important source of extracellular nucleotides and may have physiological and pathophysiological roles by triggering purinergic signalling pathways. In the lungs, extracellular ATP can have protective effects by stimulating surfactant and mucus secretion. However, excessive extracellular ATP levels, such as observed in ventilator-induced lung injury, act as a danger-associated signal that activates NLRP3 inflammasome contributing to lung damage. Here, we discuss examples of lytic release that we have identified in our studies using real-time luciferin-luciferase luminescence imaging of extracellular ATP. In alveolar A549 cells, hypotonic shock-induced ATP release shows rapid lytic and slow-rising non-lytic components. Lytic release originates from the lysis of single fragile cells that could be seen as distinct spikes of ATP-dependent luminescence, but under physiological conditions, its contribution is minimal <1% of total release. By contrast, ATP release from red blood cells results primarily from hemolysis, a physiological mechanism contributing to the regulation of local blood flow in response to tissue hypoxia, mechanical stimulation and temperature changes. Lytic release of cellular ATP may have therapeutic applications, as exemplified by the use of ultrasound and microbubble-stimulated release for enhancing cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Ryszard Grygorczyk
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: (R.G.); (F.Y.)
| | - Francis Boudreault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Olga Ponomarchuk
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Ju Jing Tan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Kishio Furuya
- Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Joseph Goldgewicht
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Falonne Démèze Kenfack
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - François Yu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: (R.G.); (F.Y.)
| |
Collapse
|
10
|
Janis BR, Priddy MC, Otto MR, Kopechek JA, Menze MA. Sonoporation enables high-throughput loading of trehalose into red blood cells. Cryobiology 2020; 98:73-79. [PMID: 33359645 DOI: 10.1016/j.cryobiol.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Despite recent advances in biostabilization, clinical blood supplies still experience shortages and storage limitations for red blood cells (RBCs) have not yet been sufficiently addressed. Storing RBCs in a frozen or dried state is an appealing solution to address storage limitations, but many promising cryoprotectants, including the non-reducing sugar trehalose, are impermeant to mammalian cell membranes and cannot be utilized effectively using currently available compound-loading methods. We found that transient pore formation induced by ultrasound and microbubbles (sonoporation) offers an effective means of loading trehalose into RBCs to facilitate long-term storage in a frozen or desiccated state. The protective potential of trehalose loading was demonstrated by freezing processed RBCs at -1 °C/min to -80 °C, then either storing the cells at -80 °C or lyophilizing them. RBCs were either thawed or rehydrated after 42 days of storage and evaluated for membrane integrity and esterase activity to estimate recovery and cell viability. The intracellular concentration of trehalose reached 40 mM after sonoporation and over 95% of treated RBCs were recovered after loading. Loading of trehalose was sufficient to maintain RBC morphology and esterase activity in most cells during freezing (>90% RBC recovery) and to a lower degree after lyophilization and rehydration (>20% recovery). Combining sonoporation with an integrated fluidics device allowed for rapid loading of up to 70 mM trehalose into RBCs. These results demonstrate the potential of sonoporation-mediated trehalose loading to increase recovery of viable RBCs, which could lead to effective methods for long-term stabilization of RBCs.
Collapse
Affiliation(s)
- Brett R Janis
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA.
| | - Mariah C Priddy
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Meghan R Otto
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, KY, 40292, USA.
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
11
|
Preventive Effect of Albumin Nano TPA Gene Plasmid Ultrasound Microbubble Carrier System on Thrombosis after Cardiac Valve Replacement. J CHEM-NY 2020. [DOI: 10.1155/2020/9041821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After cardiac valve replacement, most patients will have different degrees of thrombosis, different parts of the thrombus, and even more frequent occurrence of postoperative thrombosis; therefore, the prevention of postoperative thrombosis is particularly important. The purpose of this study was to investigate the preventive effect of albumin nano tPA gene plasmid ultrasound microbubble carrier system on thrombosis, especially in cardiac valve. The experimental control method was used. Firstly, 11 dogs meeting the experimental requirements were selected. Secondly, the data of albumin nanoparticles and microbubbles were analyzed. The average size of albumin particles was 132.0 nm, the average size of microbubbles was 3.1 ± 1.6 μm, and the zeta potential was 13.70 ± 1.95 MV. The concentration of microbubbles was 4.2 ± 1.3 × 10/ml. Finally, 11 dogs were divided into two groups. The experimental group was treated with albumin nanoparticles ultrasound microbubble, and the others were the control group. It was found that the levels of tPA and D-dimer in the experimental group were significantly increased and maintained at a high level at 1 week after operation, and the prothrombin time was detected and the international normalized ratio was calculated at the same time. No significant changes were found in the experimental group.
Collapse
|
12
|
Ramasamy T, Chen X, Qin B, Johnson DE, Grandis JR, Villanueva FS. STAT3 decoy oligonucleotide-carrying microbubbles with pulsed ultrasound for enhanced therapeutic effect in head and neck tumors. PLoS One 2020; 15:e0242264. [PMID: 33206698 PMCID: PMC7673576 DOI: 10.1371/journal.pone.0242264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription-3 (STAT3) is an oncogenic transcription factor implicated in carcinogenesis, tumor progression, and drug resistance in head and neck squamous cell carcinoma (HNSCC). A decoy oligonucleotide targeting STAT3 offers a promising anti-tumor strategy, but achieving targeted tumor delivery of the decoy with systemic administration poses a significant challenge. We previously showed the potential for STAT3 decoy-loaded microbubbles, in conjunction with ultrasound targeted microbubble cavitation (UTMC), to decrease tumor growth in murine squamous cell carcinoma. As a next step towards clinical translation, we sought to determine the anti-tumor efficacy of our STAT3 decoy delivery platform against human HNSCC and the effect of higher STAT3 decoy microbubble loading on tumor cell inhibition. STAT3 decoy was loaded on cationic lipid microbubbles (STAT3-MB) or loaded on liposome-conjugated lipid microbubbles to form STAT3-loaded liposome-microbubble complexes (STAT3-LPX). UTMC treatment efficacy with these two formulations was evaluated in vitro using viability and apoptosis assays in CAL33 (human HNSCC) cells. Anti-cancer efficacy in vivo was performed in a CAL33 tumor murine xenograft model. UTMC with STAT3-MB caused significantly lower CAL33 cell viability compared to UTMC with STAT3-LPX (56.8±8.4% vs 84.5±8.8%, respectively, p<0.05). In vivo, UTMC with STAT3-MB had strong anti-tumor effects, with significantly less tumor burden and greater survival compared to that of UTMC with microbubbles loaded with a mutant control decoy and untreated control groups (p<0.05). UTMC with STAT3 decoy-loaded microbubbles significantly decreases human HNSSC tumor progression. These data set the stage for clinical translation of our microbubble platform as an imaged-guided, targeted delivery strategy for STAT3 decoy, or other nucleotide-based therapeutics, in human cancer treatment.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel E. Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Flordeliza S. Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Dong W, Wu P, Qin M, Guo S, Liu H, Yang X, He W, Bouakaz A, Wan M, Zong Y. Multipotent miRNA Sponge-Loaded Magnetic Nanodroplets with Ultrasound/Magnet-Assisted Delivery for Hepatocellular Carcinoma Therapy. Mol Pharm 2020; 17:2891-2910. [PMID: 32678617 DOI: 10.1021/acs.molpharmaceut.0c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene therapy is likely to be the most promising way to tackle cancer, while defects in molecular strategies and delivery systems have led to an impasse in clinical application. Here, it is found that onco-miRNAs of the miR-515 and -449 families were upregulated in hepatocellular carcinoma (HCC), and the sponge targeting miR-515 family had a significant probability to suppress cancer cell proliferation. Then, we constructed non-toxic sponge-loaded magnetic nanodroplets containing 20% C6F14 (SLMNDs-20%) that are incorporated with fluorinated superparamagnetic iron oxide nanoparticles enhancing external magnetism-assisted targeting and enabling a direct visualization of SLMNDs-20% distribution in vivo via magnetic resonance imaging monitoring. SLMNDs-20% could be vaporized by programmable focused ultrasound (FUS) activation, achieving ∼45% in vitro sponge delivery efficiency and significantly enhancing in vivo sponge delivery without a clear apoptosis. Moreover, the sponge-1-carrying SLMNDs-20% could effectively suppress proliferation of xenograft HCC after FUS exposure because sponge-1-suppressing onco-miR-515 enhanced the expression of anti-oncogenes (P21, CD22, TIMP1, NFKB, and E-cadherin) in cancer cells. The current results indicated that ultrasonic cavitation-inducing sonoporation enhanced the intracellular delivery of sponge-1 using SLMNDs-20% after magnetic-assisted accumulation, which was a therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Wei Dong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pengying Wu
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengfan Qin
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shifang Guo
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huasheng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xinxing Yang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Ultrasound, The First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Wen He
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ayache Bouakaz
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours 37000, France
| | - Mingxi Wan
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yujin Zong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
14
|
Gorick CM, Mathew AS, Garrison WJ, Thim EA, Fisher DG, Copeland CA, Song J, Klibanov AL, Miller GW, Price RJ. Sonoselective transfection of cerebral vasculature without blood-brain barrier disruption. Proc Natl Acad Sci U S A 2020; 117:5644-5654. [PMID: 32123081 PMCID: PMC7084076 DOI: 10.1073/pnas.1914595117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Treatment of many pathologies of the brain could be improved markedly by the development of noninvasive therapeutic approaches that elicit robust, endothelial cell-selective gene expression in specific brain regions that are targeted under MR image guidance. While focused ultrasound (FUS) in conjunction with gas-filled microbubbles (MBs) has emerged as a noninvasive modality for MR image-guided gene delivery to the brain, it has been used exclusively to transiently disrupt the blood-brain barrier (BBB), which may induce a sterile inflammation response. Here, we introduce an MR image-guided FUS method that elicits endothelial-selective transfection of the cerebral vasculature (i.e., "sonoselective" transfection), without opening the BBB. We first determined that activating circulating, cationic plasmid-bearing MBs with pulsed low-pressure (0.1 MPa) 1.1-MHz FUS facilitates sonoselective gene delivery to the endothelium without MRI-detectable disruption of the BBB. The degree of endothelial selectivity varied inversely with the FUS pressure, with higher pressures (i.e., 0.3-MPa and 0.4-MPa FUS) consistently inducing BBB opening and extravascular transfection. Bulk RNA sequencing analyses revealed that the sonoselective low-pressure regimen does not up-regulate inflammatory or immune responses. Single-cell RNA sequencing indicated that the transcriptome of sonoselectively transfected brain endothelium was unaffected by the treatment. The approach developed here permits targeted gene delivery to blood vessels and could be used to promote angiogenesis, release endothelial cell-secreted factors to stimulate nerve regrowth, or recruit neural stem cells.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Alexander S Mathew
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - William J Garrison
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - E Andrew Thim
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Caitleen A Copeland
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - G Wilson Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908;
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
15
|
Centner CS, Murphy EM, Priddy MC, Moore JT, Janis BR, Menze MA, DeFilippis AP, Kopechek JA. Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system. BIOMICROFLUIDICS 2020; 14:024114. [PMID: 32341725 PMCID: PMC7176461 DOI: 10.1063/1.5144617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/22/2020] [Indexed: 05/07/2023]
Abstract
Preservation of erythrocytes in a desiccated state for storage at ambient temperature could simplify blood transfusions in austere environments, such as rural clinics, far-forward military operations, and during space travel. Currently, storage of erythrocytes is limited by a short shelf-life of 42 days at 4 °C, and long-term preservation requires a complex process that involves the addition and removal of glycerol from erythrocytes before and after storage at -80 °C, respectively. Natural compounds, such as trehalose, can protect cells in a desiccated state if they are present at sufficient levels inside the cell, but mammalian cell membranes lack transporters for this compound. To facilitate compound loading across the plasma membrane via ultrasound and microbubbles (sonoporation), a polydimethylsiloxane-based microfluidic device was developed. Delivery of fluorescein into erythrocytes was tested at various conditions to assess the effects of parameters such as ultrasound pressure, ultrasound pulse interval, microbubble dose, and flow rate. Changes in ultrasound pressure and mean flow rate caused statistically significant increases in fluorescein delivery of up to 73 ± 37% (p < 0.05) and 44 ± 33% (p < 0.01), respectively, compared to control groups, but no statistically significant differences were detected with changes in ultrasound pulse intervals. Following freeze-drying and rehydration, recovery of viable erythrocytes increased by up to 128 ± 32% after ultrasound-mediated loading of trehalose compared to control groups (p < 0.05). These results suggest that ultrasound-mediated molecular delivery in microfluidic channels may be a viable approach to process erythrocytes for long-term storage in a desiccated state at ambient temperatures.
Collapse
Affiliation(s)
- Connor S. Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Emily M. Murphy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Mariah C. Priddy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - John T. Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Brett R. Janis
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Michael A. Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Jonathan A. Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
16
|
DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019; 31:687-709. [PMID: 31250671 PMCID: PMC6909742 DOI: 10.1089/ars.2018.7674] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Highly prevalent in Western cultures, obesity, metabolic syndrome, and diabetes increase the risk of cardiovascular morbidity and mortality and cost health care systems billions of dollars annually. At the cellular level, obesity, metabolic syndrome, and diabetes are associated with increased production of reactive oxygen species (ROS). Increased levels of ROS production in key organ systems such as adipose tissue, skeletal muscle, and the vasculature cause disruption of tissue homeostasis, leading to increased morbidity and risk of mortality. More specifically, growing evidence implicates the nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzymes in these pathologies through impairment of insulin signaling, inflammation, and vascular dysfunction. The NOX family of enzymes is a major driver of redox signaling through its production of superoxide anion, hydrogen peroxide, and attendant downstream metabolites acting on redox-sensitive signaling molecules. Recent Advances: The primary goal of this review is to highlight recent advances and survey our present understanding of cell-specific NOX enzyme contributions to metabolic diseases. Critical Issues: However, due to the short half-lives of individual ROS and/or cellular defense systems, radii of ROS diffusion are commonly short, often restricting redox signaling and oxidant stress to localized events. Thus, special emphasis should be placed on cell type and subcellular location of NOX enzymes to better understand their role in the pathophysiology of metabolic diseases. Future Directions: We discuss the targeting of NOX enzymes as potential therapy and bring to light potential emerging areas of NOX research, microparticles and epigenetics, in the context of metabolic disease.
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung and Blood, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Kopechek JA, McTiernan CF, Chen X, Zhu J, Mburu M, Feroze R, Whitehurst DA, Lavery L, Cyriac J, Villanueva FS. Ultrasound and Microbubble-targeted Delivery of a microRNA Inhibitor to the Heart Suppresses Cardiac Hypertrophy and Preserves Cardiac Function. Am J Cancer Res 2019; 9:7088-7098. [PMID: 31660088 PMCID: PMC6815962 DOI: 10.7150/thno.34895] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRs) are dysregulated in pathological left ventricular hypertrophy. AntimiR inhibition of miR-23a suppressed hypertension-induced cardiac hypertrophy in preclinical models, but clinical translation is limited by a lack of cardiac-targeted delivery systems. Ultrasound-targeted microbubble cavitation (UTMC) utilizes microbubbles as nucleic acid carriers to target delivery of molecular therapeutics to the heart. The objective of this study was to evaluate the efficacy of UTMC targeted delivery of antimiR-23a to the hearts of mice for suppression of hypertension-induced cardiac hypertrophy. Methods: Cationic lipid microbubbles were loaded with 300 pmol negative control antimiR (NC) or antimiR-23a. Mice received continuous phenylephrine infusion via implanted osmotic minipumps, then UTMC treatments with intravenously injected antimiR-loaded microbubbles 0, 3, and 7 days later. At 2 weeks, hearts were harvested and miR-23a levels were measured. Left ventricular (LV) mass and function were assessed with echocardiography. Results: UTMC treatment with antimiR-23a decreased cardiac miR-23a levels by 41 ± 8% compared to UTMC + antimiR-NC controls (p < 0.01). Furthermore, LV mass after 1 week of phenylephrine treatment was 17 ± 10% lower following UTMC + antimiR-23a treatment compared to UTMC + antimiR-NC controls (p = 0.02). At 2 weeks, fractional shortening was 23% higher in the UTMC + antimiR-23a mice compared to UTMC + antimiR-NC controls (p < 0.01). Conclusions: UTMC is an effective technique for targeted functional delivery of antimiRs to the heart causing suppression of cardiac hypertrophy and preservation of systolic function. This approach could represent a revolutionary therapy for patients suffering from pathological cardiac hypertrophy and other cardiovascular conditions.
Collapse
|
18
|
Escoffre JM, Bouakaz A. Minireview: Biophysical Mechanisms of Cell Membrane Sonopermeabilization. Knowns and Unknowns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10151-10165. [PMID: 30525655 DOI: 10.1021/acs.langmuir.8b03538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for the delivery of low-molecular-weight chemotherapeutic molecules, nucleic acids, therapeutic peptides, and antibodies in vitro and in vivo. Its clinical applications are under investigation for local delivery drug in oncology and neurology. However, the biophysical mechanisms supporting the acoustically mediated membrane permeabilization are not fully established. This review describes the present state of the investigations concerning the acoustically mediated stimuli (i.e., mechanical, chemical, and thermal stimuli) as well as the molecular and cellular actors (i.e., membrane pores and endocytosis) involved in the reversible membrane permeabilization process. The different hypotheses, which were proposed to give a biophysical description of the membrane permeabilization, are critically discussed.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| |
Collapse
|
19
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
20
|
Bhutto DF, Murphy EM, Priddy MC, Centner CC, Moore Iv JB, Bolli R, Kopechek JA. Effect of Molecular Weight on Sonoporation-Mediated Uptake in Human Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2662-2672. [PMID: 30274682 DOI: 10.1016/j.ultrasmedbio.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 05/23/2023]
Abstract
Ultrasound-induced microbubble destruction can enhance drug delivery to cells. The molecular weight of therapeutic compounds varies significantly (from <1 kDa for small molecule drugs, to 7-15 kDa for siRNAs/miRNAs, to >1000 kDa for DNA plasmids). Therefore, the objective of this study was to determine the relationship between uptake efficiency and molecular weight using equal molar concentrations. Uptake efficiency of fluorescent compounds with different molecular weights (0.3, 10 and 2000 kDa) was explored in vitro using human cardiac mesenchymal cells and breast cancer cells exposed to microbubbles and 2.5-MHz ultrasound pulses. Uptake by viable cells was quantified using flow cytometry. After correction for the fluorescence yield of each compound, there was a significant size-dependent difference in fluorescence intensity, indicating an inverse relationship between size and uptake efficiency. These results suggest that diffusion of therapeutic compounds across permeabilized cell membranes may be an important mechanism for ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Danyal F Bhutto
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Emily M Murphy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Mariah C Priddy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Connor C Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Joseph B Moore Iv
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA; Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
21
|
Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, Kutty S, Leong-Poi H, Lindner JR, Main ML, Mathias W, Park MM, Senior R, Villanueva F. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr 2018; 31:241-274. [DOI: 10.1016/j.echo.2017.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Cationic gas-filled microbubbles for ultrasound-based nucleic acids delivery. Biosci Rep 2017; 37:BSR20160619. [PMID: 29180378 PMCID: PMC5741830 DOI: 10.1042/bsr20160619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
The use of ultrasound has gained great interest for nucleic acids delivery. Ultrasound can reach deep tissues in non-invasive manner. The process of sonoporation is based on the use of low-frequency ultrasound combined with gas-filled microbubbles (MBs) allowing an improved delivery of molecules including nucleic acids in the insonified tissue. For in vivo gene transfer, the engineering of cationic MBs is essential for creating strong electrostatic interactions between MBs and nucleic acids leading to their protection against nucleases degradation and high concentration within the target tissue. Cationic MBs must be stable enough to withstand nucleic acids interaction, have a good size distribution for in vivo administration, and enough acoustic activity to be detected by echography. This review aims to summarize the basic principles of ultrasound-based delivery and new knowledge acquired in these recent years about this method. A focus is made on gene delivery by discussing reported studies made with cationic MBs including ours. They have the ability for efficient delivery of plasmid DNA (pDNA), mRNA or siRNA. Last, we discuss about the key challenges that have to be faced for a fine use of this delivery system.
Collapse
|
23
|
Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017; 261:246-262. [DOI: 10.1016/j.jconrel.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|