1
|
Kim M, Park CS, Moon C, Kim J, Yang S, Jang L, Jang JY, Jeong CM, Lee HS, Kim K, Byeon H, Kim HH. Structural and quantitative comparison of viral infection-associated N-glycans in plasma from humans, pigs, and chickens: Greater similarity between humans and chickens than pigs. Antiviral Res 2024; 231:106009. [PMID: 39326504 DOI: 10.1016/j.antiviral.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Host N-glycans play an essential role in the attachment, invasion, and infection processes of viruses, including zoonotic infectious diseases. The similarity of N-glycans in the trachea and lungs of humans and pigs facilitates the cross-species transmission of influenza viruses through respiratory tracts. In this study, the structure and quantity of N-glycans in the plasma of humans, pigs, and chickens were analyzed using liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry. N-glycans in humans (35), pigs (28), and chickens (53) were identified, including the most abundant, species-common, and species-specific N-glycans. Among the N-glycans (relative quantity >0.5%), the sialic acid derivative of N-acetylneuraminic acid was identified in humans (the sum of the relative quantities of each; 64.3%), pigs (45.5%), and chickens (64.4%), whereas N-glycolylneuraminic acid was only identified in pigs (18.1%). Sialylated N-glycan linkage isomers are the influenza virus receptors (α2-6 in humans, α2-3 and α2-6 in pigs, and α2-3 in chickens). Only α2-6 linkages (human, 58.2%; pig, 44.8%; and chicken, 60.6%) were more abundant than α2-3/α2-6 linkages (human, 4.6%; pig, 0.6%; and chicken, 3.4%) and only α2-3 linkages (human, 1.5%; pig, 0.1%; and chicken, 0.4%). Fucosylation, which can promote viral infection through immune modulation, was more abundant in pigs (76.1%) than in humans (36.4%) and chickens (16.7%). Bisecting N-acetylglucosamine, which can suppress viral infection by inhibiting sialylation, was identified in humans (10.3%) and chickens (16.9%), but not in pigs. These results indicate that plasma N-glycans are similar in humans and chickens. This is the first study to compare plasma N-glycans in humans, pigs, and chickens.
Collapse
Affiliation(s)
- Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Ochiai H, Elouali S, Yamamoto T, Asai H, Noguchi M, Nishiuchi Y. Chemical and Chemoenzymatic Synthesis of Peptide and Protein Therapeutics Conjugated with Human N-Glycans. ChemMedChem 2024; 19:e202300692. [PMID: 38572578 DOI: 10.1002/cmdc.202300692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Glycosylation is one of the most ubiquitous post-translational modifications. It affects the structure and function of peptides/proteins and consequently has a significant impact on various biological events. However, the structural complexity and heterogeneity of glycopeptides/proteins caused by the diversity of glycan structures and glycosylation sites complicates the detailed elucidation of glycan function and hampers their clinical applications. To address these challenges, chemical and/or enzyme-assisted synthesis methods have been developed to realize glycopeptides/proteins with well-defined glycan morphologies. In particular, N-glycans are expected to be useful for improving the solubility, in vivo half-life and aggregation of bioactive peptides/proteins that have had limited clinical applications so far due to their short duration of action in the blood and unsuitable physicochemical properties. Chemical glycosylation performed in a post-synthetic procedure can be used to facilitate the development of glycopeptide/protein analogues or mimetics that are superior to the original molecules in terms of physicochemical and pharmacokinetic properties. N-glycans are used to modify targets because they are highly biodegradable and biocompatible and have structures that already exist in the human body. On the practical side, from a quality control perspective, close attention should be paid to their structural homogeneity when they are to be applied to pharmaceuticals.
Collapse
Affiliation(s)
- Hirofumi Ochiai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Sofia Elouali
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Takahiro Yamamoto
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Hiroaki Asai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Masato Noguchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Yuji Nishiuchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
- Graduate School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
3
|
El-Kafrawy SA, Abbas AT, Oelkrug C, Tahoon M, Ezzat S, Zumla A, Azhar EI. IgY antibodies: The promising potential to overcome antibiotic resistance. Front Immunol 2023; 14:1065353. [PMID: 36742328 PMCID: PMC9896010 DOI: 10.3389/fimmu.2023.1065353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistant bacteria are a growing threat to global health security. Whilst the emergence of antimicrobial resistance (AMR) is a natural phenomenon, it is also driven by antibiotic exposure in health care, agriculture, and the environment. Antibiotic pressure and inappropriate use of antibiotics are important factors which drive resistance. Apart from their use to treat bacterial infections in humans, antibiotics also play an important role in animal husbandry. With limited antibiotic options, alternate strategies are required to overcome AMR. Passive immunization through oral, nasal and topical administration of egg yolk-derived IgY antibodies from immunized chickens were recently shown to be effective for treating bacterial infections in animals and humans. Immunization of chickens with specific antigens offers the possibility of creating specific antibodies targeting a wide range of antibiotic-resistant bacteria. In this review, we describe the growing global problem of antimicrobial resistance and highlight the promising potential of the use of egg yolk IgY antibodies for the treatment of bacterial infections, particularly those listed in the World Health Organization priority list.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Aymn T Abbas
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura, Egypt
| | | | - Marwa Tahoon
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sameera Ezzat
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.,MARC for Medical Services and Scientific Research, 6th of October City, Giza, Egypt
| | - Alimuddin Zumla
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom.,National Institute for Health and Care Research (NIHR) Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Li W, Li H, Yan C, Chen S, Zhao X. The transcriptome pattern of liver, spleen and hypothalamus provides insights into genetic and biological changes in roosters in response to castration. Front Genet 2022; 13:1030886. [DOI: 10.3389/fgene.2022.1030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Chicken is widely accepted by consumers because of its delicate taste and abundant animal protein. The rooster after castration (capon) is believed to show better flavor, however, the molecular changes of the underpinned metabolism after castration is not yet understood. In this study, we aimed to figure out the alternation of meat quality and underpinned molecular mechanism via transcriptomic profiling of liver, spleen and hypothalamus as targeted organs in response to the castration. We identified differential expressed genes and their enriched functions and pathways in these organs between capon and rooster samples through RNA-seq analysis. In the liver, the lipid metabolism with targeted FABP1gene was found significantly enriched, which may be as one of the factors contributing to increased fat deposition and thus better meat flavor in capons than roosters, as predicted by the significantly lower shear force in capons than in roosters in meat quality experiments. However, the ability to xenobiotic detoxification and excretion, vitamin metabolism, and antioxidative effect of hemoglobin evidenced of the capon may be compromised by the alternation of SULT, AOX1, CYP3A5, HBA1, HBBA, and HBAD. Besides, in both the spleen and hypothalamus, PTAFR, HPX, CTLA4, LAG3, ANPEP, CD24, ITGA2B, ITGB3, CD2, CD7, and BLB2 may play an important role in the immune system including function of platelet and T cell, development of monocyte/macrophage and B cell in capons as compared to roosters. In conclusion, our study sheds lights into the possible molecular mechanism of better meat flavor, fatty deposit, oxidative detoxification and immune response difference between capons and roosters.
Collapse
|
5
|
Losfeld ME, Scibona E, Lin CW, Aebi M. Glycosylation network mapping and site-specific glycan maturation in vivo. iScience 2022; 25:105417. [DOI: 10.1016/j.isci.2022.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
|
6
|
A simple and economic three-step process for producing highly purified Fab’ fragments directly from the egg yolk water-soluble fraction. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123486. [DOI: 10.1016/j.jchromb.2022.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
|
7
|
Zlatina K, Galuska SP. Immunoglobulin Glycosylation - An Unexploited Potential for Immunomodulatory Strategies in Farm Animals. Front Immunol 2021; 12:753294. [PMID: 34733284 PMCID: PMC8558360 DOI: 10.3389/fimmu.2021.753294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
The function of antibodies, namely the identification and neutralization of pathogens, is mediated by their antigen binding site (Fab). In contrast, the subsequent signal transduction for activation of the immune system is mediated by the fragment crystallizable (Fc) region, which interacts with receptors or other components of the immune system, such as the complement system. This aspect of binding and interaction is more precise, readjusted by covalently attached glycan structures close to the hinge region of immunoglobulins (Ig). This fine-tuning of Ig and its actual state of knowledge is the topic of this review. It describes the function of glycosylation at Ig in general and the associated changes due to corresponding glycan structures. We discuss the functionality of IgG glycosylation during different physiological statuses, like aging, lactation and pathophysiological processes. Further, we point out what is known to date about Ig glycosylation in farm animals and how new achievements in vaccination may contribute to improved animal welfare.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
8
|
Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1942063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - S. Janani
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Selvakumar Rajendran
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Naoual Oukkache
- Venoms and Toxins Laboratory, Institute Pasteur of Morocco, Casablanca, Morocco
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
9
|
Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Commun Chem 2021; 4:92. [PMID: 36697781 PMCID: PMC9814355 DOI: 10.1038/s42004-021-00532-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 01/28/2023] Open
Abstract
N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MSn, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MSn using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis.
Collapse
|
10
|
Ahmadi TS, Mousavi Gargari SL, Talei D. Anti-flagellin IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound murine models in a non-type-specific mode. Mol Immunol 2021; 136:118-127. [PMID: 34130152 DOI: 10.1016/j.molimm.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa (PA) is one of the most dominant causes of nosocomial infections in burn patients. Increasing emergence of antibiotic-resistant strains highlights the need for novel antimicrobial agents. Flagellin, the main component protein of flagellum, is determined as the major antigen interacting with anti-P. aeruginosa IgY antibodies. The current study was aimed to evaluate the antibacterial potency of IgY antibodies raised against recombinant type A, and B flagellins. The immunogenicity and specificity of IgY antibodies were confirmed through indirect ELISA and western blot analysis, respectively. Anti-flagellin IgYs reduced the motility, biofilm formation and invasion potency of both strains. The cell surface hydrophobicity (CSH) of bacteria was increased upon IgY treatment, and in vitro opsonophagocytosis assay confirmed the high protective potency of specific antibodies via polymorphonuclear leukocyte (PMN)-augmented bacterial cell killing. The protective efficacy of IgYs was also studied in both acute pneumonia and burn wound murine models. Anti-flagellin B-IgY induced 100 % and 40 % protection against laboratory, and hospital strains in burn wound model, respectively. Protection in acute pneumonia against all strains was 100 %. Anti-flagellin A-IgY failed to protect mice in burn wound model, but provided 100 % protection against all strains in acute pneumonia challenge. In vitro, ex vivo and in vivo experiments confirmed the dose-dependent and non-type specific essence of anti-flagellin IgY antibodies, providing the benefit of covering all strain types in a dose dependent manner. Our findings provide evidence that anti-flagellin IgY antibodies qualify as novel economical therapeutic option against PA infection.
Collapse
Affiliation(s)
- Tooba Sadat Ahmadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Daryush Talei
- Medicinal Plants Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
11
|
Constantin C, Neagu M, Diana Supeanu T, Chiurciu V, A Spandidos D. IgY - turning the page toward passive immunization in COVID-19 infection (Review). Exp Ther Med 2020; 20:151-158. [PMID: 32536989 PMCID: PMC7282020 DOI: 10.3892/etm.2020.8704] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
The world is facing one of the major outbreaks of viral infection of the modern history, however, as vaccine development workflow is still tedious and can not control the infection spreading, researchers are turning to passive immunization as a good and quick alternative to treat and contain the spreading. Within passive immunization domain, raising specific immunoglobulin (Ig)Y against acute respiratory tract infection has been developing for more than 20 years. Far from being an obsolete chapter we will revise the IgY-technology as a new frontier for research and clinic. A wide range of IgY applications has been effectively confirmed in both human and animal health. The molecular particularities of IgY give them functional advantages recommending them as good candidates in this endeavor. Obtaining specific IgY is sustained by reliable and nature friendly methodology as an alternative for mammalian antibodies. The aria of application is continuously enlarging from bacterial and viral infections to tumor biology. Specific anti-viral IgY were previously tested in several designs, thus its worth pointing out that in the actual COVID-19 pandemic context, respiratory infections need an enlarged arsenal of therapeutic approaches and clearly the roles of IgY should be exploited in depth.
Collapse
Affiliation(s)
- Carolina Constantin
- Immunology Laboratory, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Laboratory, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania.,Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Choi J, Kim M, Lee J, Seo Y, Ham Y, Lee J, Lee J, Kim JK, Kwon MH. Antigen-binding affinity and thermostability of chimeric mouse-chicken IgY and mouse-human IgG antibodies with identical variable domains. Sci Rep 2019; 9:19242. [PMID: 31848417 PMCID: PMC6917740 DOI: 10.1038/s41598-019-55805-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Constant (C)-region switching of heavy (H) and/or light (L) chains in antibodies (Abs) can affect their affinity and specificity, as demonstrated using mouse, human, and chimeric mouse-human (MH) Abs. However, the consequences of C-region switching between evolutionarily distinct mammalian and avian Abs remain unknown. To explore C-region switching in mouse-chicken (MC) Abs, we investigated antigen-binding parameters and thermal stability of chimeric MC-6C407 and MC-3D8 IgY Abs compared with parental mouse IgGs and chimeric MH Abs (MH-6C407 IgG and MH-3D8 IgG) bearing identical corresponding variable (V) regions. The two MC-IgYs exhibited differences in antigen-binding parameters and thermal stability from their parental mouse Abs. However, changes were similar to or less than those between chimeric MH Abs and their parental mouse Abs. The results demonstrate that mammalian and avian Abs share compatible V-C region interfaces, which may be conducive for the design and utilization of mammalian-avian chimeric Abs.
Collapse
Affiliation(s)
- Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Joungmin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Yeonkyoung Ham
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jihyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jeonghyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, 51140, South Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea. .,Department of Microbiology, Ajou University School of Medicine, 206 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
13
|
Abstract
Ultrahigh performance liquid chromatography (UHPLC) uses small stationary-phase particle size (<2 μm) and high pressure in order to achieve rapid and efficient separations. The speed and high resolution of this method has made it a valuable tool for analyzing the complex glycosylation patterns found in post-translationally modified proteins. This article highlights the differences between UHPLC and HPLC and reviews recent UHPLC applications and developments for detecting glycosylated proteins (e.g., glycomics studies) and characterizing glycosylated pharmaceuticals (e.g., monoclonal antibodies).
Collapse
|
14
|
Three-dimensional culture of chicken primordial germ cells (cPGCs) in defined media containing the functional polymer FP003. PLoS One 2018; 13:e0200515. [PMID: 30240390 PMCID: PMC6150485 DOI: 10.1371/journal.pone.0200515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
Scalable production of avian cell lines exhibits a valuable potential on therapeutic application by producing recombinant proteins and as the substrate for virus growth due to the special glycosylation occurs in avian species. Chicken primordial germ cells (cPGCs), a germinal pluripotent avian cell type, present the ability of self-renewal, an anchorage-independent cell growth and the ability to be genetically modified. This cell type could be an interesting bioreactor system for industrial purposes. This study sought to establish an expandable culture system with defined components for three-dimensional (3D) culture of cPGCs. cPGCs were cultured in medium supplemented with the functional polymer FP003. Viscoelasticity was low in this medium but cPGCs did not sediment in culture and efficiencies of space and nutrient utilization were thus enhanced and consequently their expansion was improved. The total number of cPGCs increased by 17-fold after 1 week of culture in 3D-FAot medium, an aseric defined medium containing FP003 polymer, FGF2 and Activin A as growth factors and Ovotransferrin as protein. Moreover, cPGC cell lines stably expressed the germline-specific reporter VASA:tdTOMATO, as well as other markers of cPGCs, for more than 1 month upon culture in 3D-FAot medium, indicating that the characteristics of these cells are maintained. In summary, this novel 3D culture system can be used to efficiently expand cPGCs in suspension without mechanical stirring, which is available for long-term culture and no loss of cellular properties was found. This system provides a platform for large-scale culture of cPGCs.
Collapse
|
15
|
Abbas AT, El-Kafrawy SA, Sohrab SS, Azhar EIA. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Hum Vaccin Immunother 2018; 15:264-275. [PMID: 30230944 PMCID: PMC6363154 DOI: 10.1080/21645515.2018.1514224] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Emergence of drug resistance among the causative organisms for respiratory tract infections represents a critical challenge to the global health care community. Further, although vaccination can prevent disease, vaccine development is impeded by several factors. Therefore, novel approaches to treat and manage respiratory infections are urgently needed. Passive immunization represents a possible alternative to meet this need. Immunoglobulin Y antibodies (IgYs) from the yolk of chicken eggs have previously been used against bacterial and viral infections in human and animals. Their advantages include lack of reaction with mammalian Fc receptors, low production cost, and ease of extraction. Compared to mammalian IgGs, they have higher target specificity and greater binding avidity. They also possess remarkable pathogen-neutralizing activity in the respiratory tract and lungs. In this review, we provide an overview of avian IgYs and describe their potential therapeutic applications for the prevention and treatment of respiratory infections.
Collapse
Affiliation(s)
- Aymn Talat Abbas
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biotechnology Research Laboratories, Gastroeneterology, Surgery Centre, Mansoura University, Mansoura, Egypt
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Ahmed Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Sindhu R, Manonmani H. Expression and characterization of recombinant l -asparaginase from Pseudomonas fluorescens. Protein Expr Purif 2018; 143:83-91. [DOI: 10.1016/j.pep.2017.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
17
|
Sheng L, He Z, Liu Y, Ma M, Cai Z. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk. Int J Biol Macromol 2018; 108:277-283. [DOI: 10.1016/j.ijbiomac.2017.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/26/2023]
|