1
|
Hilton JBW, Kysenius K, Liddell JR, Mercer SW, Rautengarten C, Hare DJ, Buncic G, Paul B, Murray SS, McLean CA, Kilpatrick TJ, Beckman JS, Ayton S, Bush AI, White AR, Roberts BR, Donnelly PS, Crouch PJ. Integrated elemental analysis supports targeting copper perturbations as a therapeutic strategy in multiple sclerosis. Neurotherapeutics 2024; 21:e00432. [PMID: 39164165 PMCID: PMC11579877 DOI: 10.1016/j.neurot.2024.e00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating affliction of the central nervous system (CNS) that involves demyelination of neuronal axons and neurodegeneration resulting in disability that becomes more pronounced in progressive forms of the disease. The involvement of neurodegeneration in MS underscores the need for effective neuroprotective approaches necessitating identification of new therapeutic targets. Herein, we applied an integrated elemental analysis workflow to human MS-affected spinal cord tissue utilising multiple inductively coupled plasma-mass spectrometry methodologies. These analyses revealed shifts in atomic copper as a notable aspect of disease. Complementary gene expression and biochemical analyses demonstrated that changes in copper levels coincided with altered expression of copper handling genes and downstream functionality of cuproenzymes. Copper-related problems observed in the human MS spinal cord were largely reproduced in the experimental autoimmune encephalomyelitis (EAE) mouse model during the acute phase of disease characterised by axonal demyelination, lesion formation, and motor neuron loss. Treatment of EAE mice with the CNS-permeant copper modulating compound CuII(atsm) resulted in recovery of cuproenzyme function, improved myelination and lesion volume, and neuroprotection. These findings support targeting copper perturbations as a therapeutic strategy for MS with CuII(atsm) showing initial promise.
Collapse
Affiliation(s)
- James B W Hilton
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Kai Kysenius
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Stephen W Mercer
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Australia
| | - Gojko Buncic
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Bence Paul
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Victoria 3010, Australia; Elemental Scientific Lasers, LLC, 685 Old Buffalo Trail, Bozeman, MT 59715, United States
| | - Simon S Murray
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Joseph S Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 97331, United States
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Queensland Institute of Medical Research Berghofer, Herston, Queensland 4006, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322, United States
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Peter J Crouch
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
2
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
3
|
Stegnjaić G, Jevtić B, Lazarević M, Ignjatović Đ, Tomić M, Nikolovski N, Bjelobaba I, Momčilović M, Dimitrijević M, Miljković Đ, Stanisavljević S. Brain inflammation in experimental autoimmune encephalomyelitis induced in Dark Agouti rats with spinal cord homogenate. Immunol Lett 2024; 267:106852. [PMID: 38508497 DOI: 10.1016/j.imlet.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored. The reactivity of T and B cells to myelin basic protein, myelin oligodendrocyte glycoprotein, and β-synuclein was detected. Having in mind that reactivity against β-synuclein was previously associated with autoimmunity against the brain, the infiltration of immune cells into different brain compartments, i.e. pons, cerebellum, hippocampus, and cortex was determined. T cell infiltration was observed in all structures examined. This finding stimulated investigation of the effects of immunization on DA rat behavior using the elevated plus maze and the open field test. Rats recovered from EAE displayed increased anxiety-like behavior. These data support CFA-free EAE in DA rats as a useful model for multiple sclerosis research.
Collapse
Affiliation(s)
- Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Alsaad AMS, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Alomar HA, Ahmad SF. Histamine H4 Receptor Agonist, 4-Methylhistamine, Aggravates Disease Progression and Promotes Pro-Inflammatory Signaling in B Cells in an Experimental Autoimmune Encephalomyelitis Mouse Model. Int J Mol Sci 2023; 24:12991. [PMID: 37629172 PMCID: PMC10455358 DOI: 10.3390/ijms241612991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We sought to assess the impact of 4-Methylhistamine (4-MeH), a specific agonist targeting the Histamine H4 Receptor (H4R), on the progression of experimental autoimmune encephalomyelitis (EAE) and gain insight into the underlying mechanism. EAE is a chronic autoimmune, inflammatory, and neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, axonal damage, and neurodegeneration. Over the past decade, pharmacological research into the H4R has gained significance in immune and inflammatory disorders. For this study, Swiss Jim Lambert EAE mice were treated with 4-MeH (30 mg/kg/day) via intraperitoneal administration from days 14 to 42, and the control group was treated with a vehicle. Subsequently, we evaluated the clinical scores. In addition, flow cytometry was employed to estimate the impact of 4-Methylhistamine (4-MeH) on NF-κB p65, GM-CSF, MCP-1, IL-6, and TNF-α within CD19+ and CXCR5+ spleen B cells. Additionally, we investigated the effect of 4-MeH on the mRNA expression levels of Nf-κB p65, Gmcsf, Mcp1, Il6, and Tnfα in the brain of mice using RT-PCR. Notably, the clinical scores of EAE mice treated with 4-MeH showed a significant increase compared with those treated with the vehicle. The percentage of cells expressing CD19+NF-κB p65+, CXCR5+NF-κB p65+, CD19+GM-CSF+, CXCR5+GM-CSF+, CD19+MCP-1+, CXCR5+MCP-1+, CD19+IL-6+, CXCR5+IL-6+, CD19+TNF-α+, and CXCR5+TNF-α+ exhibited was more pronounced in 4-MeH-treated EAE mice when compared to vehicle-treated EAE mice. Moreover, the administration of 4-MeH led to increased expression of NfκB p65, Gmcsf, Mcp1, Il6, and Tnfα mRNA in the brains of EAE mice. This means that the H4R agonist promotes pro-inflammatory mediators aggravating EAE symptoms. Our results indicate the harmful role of H4R agonists in the pathogenesis of MS in an EAE mouse model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Liu P, Karim MR, Covelo A, Yue Y, Lee MK, Lin W. The UPR Maintains Proteostasis and the Viability and Function of Hippocampal Neurons in Adult Mice. Int J Mol Sci 2023; 24:11542. [PMID: 37511300 PMCID: PMC10380539 DOI: 10.3390/ijms241411542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The unfolded protein response (UPR), which comprises three branches: PERK, ATF6α, and IRE1, is a major mechanism for maintaining cellular proteostasis. Many studies show that the UPR is a major player in regulating neuron viability and function in various neurodegenerative diseases; however, its role in neurodegeneration is highly controversial. Moreover, while evidence suggests activation of the UPR in neurons under normal conditions, deficiency of individual branches of the UPR has no major effect on brain neurons in animals. It remains unclear whether or how the UPR participates in regulating neuronal proteostasis under normal and disease conditions. To determine the physiological role of the UPR in neurons, we generated mice with double deletion of PERK and ATF6α in neurons. We found that inactivation of PERK and ATF6α in neurons caused lysosomal dysfunction (as evidenced by decreased expression of the V0a1 subunit of v-ATPase and decreased activation of cathepsin D), impairment of autophagic flux (as evidenced by increased ratio of LC3-II/LC3-I and increased p62 level), and accumulation of p-tau and Aβ42 in the hippocampus, and led to impairment of spatial memory, impairment of hippocampal LTP, and hippocampal degeneration in adult mice. These results suggest that the UPR is required for maintaining neuronal proteostasis (particularly tau and Aβ homeostasis) and the viability and function of neurons in the hippocampus of adult mice.
Collapse
Affiliation(s)
- Pingting Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN 55455, USA
| | - Md Razaul Karim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN 55455, USA
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yuan Yue
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN 55455, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
7
|
Su Y, Li Z, Rang X, Wang Y, Fu J. Integrated Analysis and Identification of CSF-Derived Risk miRNAs and Pivotal Genes in Multiple Sclerosis. J Mol Neurosci 2022; 72:1916-1928. [PMID: 35819635 DOI: 10.1007/s12031-022-02007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) is a common chronic autoimmune disorder of the central nervous system that predominantly affects young adults. Mounting evidence indicates that deregulation of microRNAs (miRNAs) in cerebrospinal fluid (CSF) has been implicated in MS as a potential biomarker. However, comprehensive assessments of CSF miRNAs and their target genes are lacking. Here, aberrantly expressed CSF miRNAs of MS patients were obtained from numerous studies by manual search. With detailed information on these miRNAs, we utilized online databases to screen out immune-related target genes and further performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. To identify MS high-risk pathways and pivotal genes, pathway crosstalk and pathway-gene networks were constructed, followed by the establishment of a protein-protein interaction (PPI) network. The datasets collected from ArrayExpress were used to assess pivotal genes. Overall, 21 MS-related CSF miRNAs were included in this study. Subsequently, we identified 469 MS-related genes and 14 high-risk pathways. In the pathway-gene network, 27 critical MS-related genes participated in at least half of the high-risk pathways, and these genes were used to identify pivotal genes. Finally, miR-150, miR-328, and miR-34c-5p were determined to be risk miRNAs via the regulation of the pivotal risk genes MAPK1, AKT1, and VEGFA. Among them, VEGFA was validated to be significantly decreased in the CSF cells of MS patients by transcriptomic datasets. These findings may provide potential biomarkers or therapeutic targets and help elucidate the molecular mechanisms underlying the pathogenesis of MS.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Xinming Rang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yifei Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
8
|
Deerhake ME, Danzaki K, Inoue M, Cardakli ED, Nonaka T, Aggarwal N, Barclay WE, Ji RR, Shinohara ML. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 2021; 54:484-498.e8. [PMID: 33581044 PMCID: PMC7956124 DOI: 10.1016/j.immuni.2021.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.
Collapse
MESH Headings
- Animals
- Astrocytes/immunology
- Brain/pathology
- CARD Signaling Adaptor Proteins/metabolism
- Cell Communication
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Galectins/metabolism
- Gene Expression Regulation
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myeloid Cells/immunology
- Neurogenic Inflammation/immunology
- Oncostatin M/genetics
- Oncostatin M/metabolism
- Oncostatin M Receptor beta Subunit/metabolism
- Peptide Fragments/immunology
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Keiko Danzaki
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Emre D Cardakli
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Toshiaki Nonaka
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William E Barclay
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Sun Y, Ji J, Zha Z, Zhao H, Xue B, Jin L, Wang L. Effect and Mechanism of Catalpol on Remyelination via Regulation of the NOTCH1 Signaling Pathway. Front Pharmacol 2021; 12:628209. [PMID: 33708131 PMCID: PMC7940842 DOI: 10.3389/fphar.2021.628209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Promoting the differentiation of oligodendrocyte precursor cells (OPCs) is important for fostering remyelination in multiple sclerosis. Catalpol has the potential to promote remyelination and exert neuroprotective effects, but its specific mechanism is still unclear. Recent studies have shown that the NOTCH1 signaling pathway is involved in mediating OPC proliferation and differentiation. In this study, we elucidated that catalpol promoted OPC differentiation in vivo and vitro and explored the regulatory role of catalpol in specific biomolecular processes. Following catalpol administration, better and faster recovery of body weight and motor balance was observed in mice with cuprizone (CPZ)-induced demyelination. Luxol fast blue staining (LFB) and transmission electron microscopy (TEM) showed that catalpol increased the myelinated area and improved myelin ultrastructure in the corpus callosum in demyelinated mice. In addition, catalpol enhanced the expression of CNPase and MBP, indicating that it increased OPC differentiation. Additionally, catalpol downregulated the expression of NOTCH1 signaling pathway-related molecules, such as JAGGED1, NOTCH1, NICD1, RBPJ, HES5, and HES1. We further demonstrated that in vitro, catalpol enhanced the differentiation of OPCs into OLs and inhibited NOTCH1 signaling pathway activity. Our data suggested that catalpol may promote OPC differentiation and remyelination through modulation of the NOTCH1 pathway. This study provides new insight into the mechanism of action of catalpol in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Zheng Zha
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Core Facility Center, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Glaesel K, May C, Marcus K, Matschke V, Theiss C, Theis V. miR-129-5p and miR-130a-3p Regulate VEGFR-2 Expression in Sensory and Motor Neurons during Development. Int J Mol Sci 2020; 21:ijms21113839. [PMID: 32481647 PMCID: PMC7312753 DOI: 10.3390/ijms21113839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023] Open
Abstract
The wide-ranging influence of vascular endothelial growth factor (VEGF) within the central (CNS) and peripheral nervous system (PNS), for example through effects on axonal growth or neuronal cell survival, is mainly mediated by VEGF receptor 2 (VEGFR-2). However, the regulation of VEGFR-2 expression during development is not yet well understood. As microRNAs are considered to be key players during neuronal maturation and regenerative processes, we identified the two microRNAs (miRNAs)-miR-129-5p and miR-130a-3p-that may have an impact on VEGFR-2 expression in young and mature sensory and lower motor neurons. The expression level of VEGFR-2 was analyzed by using in situ hybridization, RT-qPCR, Western blot, and immunohistochemistry in developing rats. microRNAs were validated within the spinal cord and dorsal root ganglia. To unveil the molecular impact of our candidate microRNAs, dissociated cell cultures of sensory and lower motor neurons were transfected with mimics and inhibitors. We depicted age-dependent VEGFR-2 expression in sensory and lower motor neurons. In detail, in lower motor neurons, VEGFR-2 expression was significantly reduced during maturation, in conjunction with an increased level of miR-129-5p. In sensory dorsal root ganglia, VEGFR-2 expression increased during maturation and was accompanied by an overexpression of miR-130a-3p. In a second step, the functional significance of these microRNAs with respect to VEGFR-2 expression was proven. Whereas miR-129-5p seems to decrease VEGFR-2 expression in a direct manner in the CNS, miR-130a-3p might indirectly control VEGFR-2 expression in the PNS. A detailed understanding of genetic VEGFR-2 expression control might promote new strategies for the treatment of severe neurological diseases like ischemia or peripheral nerve injury.
Collapse
Affiliation(s)
- Kevin Glaesel
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| | - Caroline May
- Medical Proteom-Center, Ruhr University Bochum, 44780 Bochum, NRW, Germany; (C.M.); (K.M.)
| | - Katrin Marcus
- Medical Proteom-Center, Ruhr University Bochum, 44780 Bochum, NRW, Germany; (C.M.); (K.M.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, 44780 Bochum, Germany; (K.G.); (V.M.); (V.T.)
| |
Collapse
|
11
|
Kalinin S, Meares GP, Lin SX, Pietruczyk EA, Saher G, Spieth L, Nave KA, Boullerne AI, Lutz SE, Benveniste EN, Feinstein DL. Liver kinase B1 depletion from astrocytes worsens disease in a mouse model of multiple sclerosis. Glia 2019; 68:600-616. [PMID: 31664743 PMCID: PMC7337013 DOI: 10.1002/glia.23742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
Abstract
Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Shao Xia Lin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | | | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Anne I Boullerne
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Yue Y, Stanojlovic M, Lin Y, Karsenty G, Lin W. Oligodendrocyte-specific ATF4 inactivation does not influence the development of EAE. J Neuroinflammation 2019; 16:23. [PMID: 30709400 PMCID: PMC6357515 DOI: 10.1186/s12974-019-1415-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/24/2019] [Indexed: 01/13/2023] Open
Abstract
Background Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating and neurodegenerative diseases of the CNS. Although recent studies suggest the neuroprotective effects of oligodendrocytes in neurodegenerative diseases, it remains unknown whether oligodendrocyte death induced by inflammatory attacks contributes to neurodegeneration in MS and EAE. Upon endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) promotes cell survival through induction of activating transcription factor 4 (ATF4) by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). We have generated a mouse model that allows for temporally controlled activation of PERK specifically in oligodendrocytes. Our previous study has demonstrated that PERK activation specifically in oligodendrocytes attenuates EAE disease severity and ameliorates EAE-induced oligodendrocyte apoptosis, demyelination, and axon degeneration, without altering inflammation. Methods We determined whether oligodendrocyte-specific PERK activation reduced neuron loss in the CNS of EAE mice using the mouse model that allows for temporally controlled activation of PERK specifically in oligodendrocytes. We further generated a mouse model that allows for inactivation of ATF4 specifically in oligodendrocytes, and determined the effects of ATF4 inactivation in oligodendrocytes on mice undergoing EAE. Results We showed that protection of oligodendrocytes resulting from PERK activation led to attenuation of neuron loss in the CNS gray matter of EAE mice. Surprisingly, we found that ATF4 inactivation specifically in oligodendrocytes did not alter EAE disease severity and had no effect on oligodendrocyte loss, demyelination, axon degeneration, neuron loss, and inflammation in EAE mice. Conclusions These findings suggest the neuroprotective effects of PERK activation in oligodendrocytes in EAE, and rule out the involvement of ATF4 in oligodendrocytes in the development of EAE. These results imply that the protective effects of PERK activation in oligodendrocytes in MS and EAE are not mediated by ATF4.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Milos Stanojlovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yifeng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA. .,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Stone S, Yue Y, Stanojlovic M, Wu S, Karsenty G, Lin W. Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis. JCI Insight 2019; 4:124232. [PMID: 30674717 DOI: 10.1172/jci.insight.124232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating and neurodegenerative diseases of the CNS. Although neurodegeneration is the major contributor to chronic disability in MS, mechanisms governing the viability of axons and neurons in MS and EAE remain elusive. Data indicate that activation of pancreatic endoplasmic reticulum kinase (PERK) influences, positively or negatively, neuron and axon viability in various neurodegenerative diseases through induction of ATF4. In this study, we demonstrate that the PERK pathway was activated in neurons during EAE. We found that neuron-specific PERK inactivation impaired EAE resolution and exacerbated EAE-induced axon degeneration, neuron loss, and demyelination. Surprisingly, neuron-specific ATF4 inactivation did not alter EAE disease course or EAE-induced axon degeneration, neuron loss, and demyelination. These results suggest that PERK activation in neurons protects axons and neurons against inflammation in MS and EAE through ATF4-independent mechanisms.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Yue
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Milos Stanojlovic
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Yue Y, Stone S, Lin W. Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regen Res 2018; 13:1507-1515. [PMID: 30127103 PMCID: PMC6126134 DOI: 10.4103/1673-5374.237109] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor nuclear factor κB (NF-κB) plays major roles in inflammatory diseases through regulation of inflammation and cell viability. Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). It has been shown that NF-κB is activated in multiple cell types in the CNS of MS patients, including T cells, microglia/macrophages, astrocytes, oligodendrocytes, and neurons. Interestingly, data from animal model studies, particularly studies of experimental autoimmune encephalomyelitis, have suggested that NF-κB activation in these individual cell types has distinct effects on the development of MS. In this review, we will cover the current literature on NF-κB and the evidence for its role in the development of MS and its animal model experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler 2017; 23:1442-1452. [PMID: 28537780 DOI: 10.1177/1352458517709362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration plays a key role in multiple sclerosis (MS) contributing to long-term disability in patients. The prognosis is, however, unpredictable coloured by complex disease mechanisms which can only be clearly appreciated using biomarkers specific to pathobiology of the underlying process. Here, we describe six promising neurodegenerative biomarkers in MS (neurofilament proteins, neurofilament antibodies, tau, N-acetylaspartate, chitinase and chitinase-like proteins and osteopontin), critically evaluating the evidence using a modified Bradford Hill criteria.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Lin W. Neuroprotective effects of vascular endothelial growth factor A in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regen Res 2017; 12:70-71. [PMID: 28250748 PMCID: PMC5319243 DOI: 10.4103/1673-5374.198982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|