1
|
Park H, Ryu H, Zhang S, Kim S, Chung C. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacology 2025; 50:540-547. [PMID: 39528624 PMCID: PMC11735983 DOI: 10.1038/s41386-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea.
| |
Collapse
|
2
|
Cameron S, Weston-Green K, Newell KA. The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression. Transl Psychiatry 2024; 14:499. [PMID: 39702626 DOI: 10.1038/s41398-024-03199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression. However, the molecular basis of habenula dysfunction in depression remains elusive and it is unclear how the preclinical advancements translate to the clinical field. METHODS A systematic literature search was conducted following the PRISMA guidelines. The two search terms depress* and habenula* were applied across Scopus, Web of Science and PubMed databases. Studies eligible for inclusion must have examined the habenula in clinical cases of depression or preclinical models of depression and compared their measures to an appropriate control. RESULTS Preclinical studies (n = 63) measured markers of habenula activity (n = 16) and neuronal firing (n = 22), largely implicating habenula hyperactivity in depression. Neurotransmission was briefly explored (n = 15), suggesting imbalances within excitatory and inhibitory habenula signalling. Additional preclinical studies reported neuroconnectivity (n = 1), inflammatory (n = 3), genomic (n = 3) and circadian rhythm (n = 3) abnormalities. Seven preclinical studies (11%) included both males and females. From these, 5 studies (71%) reported a significant difference between the sexes in at least one habenula measure taken. Clinical studies (n = 24) reported abnormalities in habenula connectivity (n = 15), volume (n = 6) and molecular markers (n = 3). Clinical studies generally included male and female subjects (n = 16), however, few of these studies examined sex as a biological variable (n = 6). CONCLUSIONS Both preclinical and clinical evidence suggest the habenula is disrupted in depression. However, there are opportunities for sex-specific analyses across both areas. Preclinical evidence consistently suggests habenula hyperactivity as a primary driver for the development of depressive symptoms. Clinical studies support gross habenula abnormalities such as altered activation, connectivity, and volume, with emerging evidence of blood brain barrier dysfunction, however, progress is limited by a lack of detailed molecular analyses and limited imaging resolution.
Collapse
Affiliation(s)
- Sarah Cameron
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
3
|
Park H, Ryu H, Zhang S, Rhee J, Chung C. Mu-opioid receptor activation in the habenula modulates synaptic transmission and depression-like behaviors. Neurobiol Dis 2024; 198:106543. [PMID: 38821376 DOI: 10.1016/j.nbd.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Opioid system dysregulation in response to stress is known to lead to psychiatric disorders including major depression. Among three different types of opioid receptors, the mu-type receptors (mORs) are highly expressed in the habenula complex, however, the action of mORs in this area and its interaction with stress exposure is largely unknown. Therefore, we investigated the roles of mORs in the habenula using male rats of an acute learned helplessness (aLH) model. First, we found that mOR activation decreased both excitatory and inhibitory synaptic transmission onto the lateral habenula (LHb). Intriguingly, this mOR-induced synaptic depression was reduced in an animal model of depression compared to that of controls. In naïve animals, we found an unexpected interaction between mORs and the endocannabinoid (eCB) signaling occurring in the LHb, which mediates presynaptic alteration occurring with mOR activation. However, we did not observe presynaptic alteration by mOR activation after stress exposure. Moreover, selective mOR activation in the habenula before, but not after, stress exposure effectively reduced helpless behaviors compared to aLH animals. Our observations are consistent with clinical reports suggesting the involvement of mOR signaling in depression, and additionally reveal a critical time window of mOR action in the habenula for ameliorating helplessness symptoms.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeehae Rhee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Muniandy S, Few LL, Khoo BY, Hassan SA, Yvonne-Τee GB, See Too WC. Dysregulated expression of miR‑367 in disease development and its prospects as a therapeutic target and diagnostic biomarker (Review). Biomed Rep 2023; 19:91. [PMID: 37901877 PMCID: PMC10603372 DOI: 10.3892/br.2023.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
MicroRNA (miR)-367 has a wide range of functions in gene regulation and as such plays a critical role in cell proliferation, differentiation and development, making it an essential molecule in various physiological processes. miR-367 belongs to the miR-302/367 cluster and is located in the intronic region of human chromosome 4 on the 4q25 locus. Dysregulation of miR-367 is associated with various disease conditions, including cancer, inflammation and cardiac conditions. Moreover, miR-367 has shown promise both as a tumor suppressor and a potential diagnostic biomarker for breast, gastric and prostate cancer. The elucidation of the essential role of miR-367 in inflammation, development and cardiac diseases emphasizes its versatility in regulating various physiological processes beyond cancer biology. However, further research is necessary to fully understand the complex regulatory mechanisms involving miR-367 in different physiological and pathological contexts. In conclusion, the versatility and significance of miR-367 makes it a promising candidate for further study and in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shaleniprieya Muniandy
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Asma' Hassan
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Get Bee Yvonne-Τee
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
5
|
Fiori LM, Kos A, Lin R, Théroux JF, Lopez JP, Kühne C, Eggert C, Holzapfel M, Huettl RE, Mechawar N, Belzung C, Ibrahim EC, Chen A, Turecki G. miR-323a regulates ERBB4 and is involved in depression. Mol Psychiatry 2021; 26:4191-4204. [PMID: 33219358 DOI: 10.1038/s41380-020-00953-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls. Thirty-two miRNAs showed significantly correlated expression between the two regions (False Discovery Rate < 0.05), of which four, miR-204-5p, miR-320b, miR-323a-3p, and miR-331-3p, displayed upregulated expression in MDD. We assessed the expression of predicted target genes of differentially expressed miRNAs in the brain, and found that the expression of erb-b2 receptor tyrosine kinase 4 (ERBB4), a gene encoding a neuregulin receptor, was downregulated in both regions, and was influenced by miR-323a-3p in vitro. Finally, we assessed the effects of manipulating miRNA expression in the mouse ACC on anxiety- and depressive-like behaviors. Mice in which miR-323-3p was overexpressed or knocked-down displayed increased and decreased emotionality, respectively. Additionally, these mice displayed significantly downregulated and upregulated expression of Erbb4, respectively. Overall, our findings indicate the importance of brain miRNAs in the pathology of MDD, and emphasize the involvement of miR-323a-3p and ERBB4 in this phenotype. Future studies further characterizing miR-323a-3p and neuregulin signaling in depression are warranted.
Collapse
Affiliation(s)
- Laura M Fiori
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rixing Lin
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jean-Francois Théroux
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudia Kühne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carola Eggert
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Holzapfel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rosa-Eva Huettl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Catherine Belzung
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - El Chérif Ibrahim
- Aix-Marseille Université, CNRS, INT, Institute Neuroscience Timone, Marseille, France
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany. .,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Vinchure OS, Kulshreshtha R. miR-490: A potential biomarker and therapeutic target in cancer and other diseases. J Cell Physiol 2020; 236:3178-3193. [PMID: 33094503 DOI: 10.1002/jcp.30119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as posttranscriptional gene regulators. Among a pool of >2600 known human mature miRNAs, only a small subset have been functionally interrogated and a further smaller pool shown to be associated with the pathogenesis of a variety of diseases suggesting their critical role in maintaining homeostasis. Here, we draw your attention to one such miRNA, miR-490, that has been reported to be deregulated in a myriad of diseases (23 diseases) ranging from cardiomyopathy, depression, and developmental disorders to many cancer types (28 cancer types), such as hepatocellular carcinoma, gastric cancer, cancers of the reproductive and central nervous system among others. The prognostic and diagnostic potential of miR-490 has been reported in many diseases including cancer underlining its clinical relevance. We also collate a complex plethora of epigenetic (histone and DNA methylation), transcriptional (TF), and posttranscriptional (lncRNA and circRNA) mechanisms that have been shown to tightly regulate miR-490 levels. The targets of miR-490 involve a range of cancer-related genes involved in the regulation of various cancer hallmarks like cell proliferation, migration, and invasion, apoptotic cell death, angiogenesis, and so forth. Overall, our in-depth review highlights for the first time the emerging role of miR-490 in disease pathology, diagnosis, and prognosis that assigns a unique therapeutic potential to miR-490 in the era of precision medicine.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Li C, Cao F, Li S, Huang S, Li W, Abumaria N. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus. Front Mol Neurosci 2018; 10:454. [PMID: 29375311 PMCID: PMC5768633 DOI: 10.3389/fnmol.2017.00454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications.
Collapse
Affiliation(s)
- Chaoqun Li
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feifei Cao
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengli Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nashat Abumaria
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
McLaughlin I, Dani JA, De Biasi M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J Neurochem 2017; 142 Suppl 2:130-143. [PMID: 28791703 PMCID: PMC6740332 DOI: 10.1111/jnc.14008] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/09/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
Abstinence from chronic use of addictive drugs triggers an aversive withdrawal syndrome that compels relapse and deters abstinence. Many features of this syndrome are common across multiple drugs, involving both affective and physical symptoms. Some of the network signaling underlying withdrawal symptoms overlaps with activity that is associated with aversive mood states, including anxiety and depression. Given these shared features, it is not surprising that a particular circuit, the dorsal diencephalic conduction system, and the medial habenula (MHb) and interpeduncular nucleus (IPN), in particular, have been identified as critical to the emergence of aversive states that arise both as a result and, independently, of drug addiction. As the features of this circuit continue to be characterized, the MHb-IPN axis is emerging as a viable target for therapeutics to aid in the treatment of addiction to multiple drugs of abuse as well as mood-associated disorders. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ian McLaughlin
- Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department Neuroscience Graduate Group, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John A. Dani
- Department Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mariella De Biasi
- Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|