1
|
Voskoboynik Y, McCulloch AD, Sahoo D. Macrophages on the run: Exercise balances macrophage polarization for improved health. Mol Metab 2024; 90:102058. [PMID: 39476967 DOI: 10.1016/j.molmet.2024.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
OBJECTIVE Exercise plays a crucial role in maintaining and improving human health. However, the precise molecular mechanisms that govern the body's response to exercise or/compared to periods of inactivity remain elusive. Current evidence appears to suggest that exercise exerts a seemingly dual influence on macrophage polarization states, inducing both pro-immune response M1 activation and cell-repair-focused M2 activation. To reconcile this apparent paradox, we leveraged a comprehensive meta-analysis of 75 diverse exercise and immobilization published datasets (7000+ samples), encompassing various exercise modalities, sampling techniques, and species. METHODS 75 exercise and immobilization expression datasets were identified and processed for analysis. The data was analyzed using boolean relationships which uses binary gene expression relationships in order to increase the signal to noise achieved from the data, allowing for the use of comparison across such a diverse set of datasets. We utilized a boolean relationship-aided macrophage gene model [1], to model the macrophage polarization state in pre and post exercise samples in both immediate exercise and long term training. RESULTS Our modeling uncovered a key temporal dynamic: exercise triggers an immediate M1 surge, while long term training transitions to sustained M2 activation. These patterns were consistent across different species (human vs mouse), sampling methods (blood vs muscle biopsy), and exercise type (resistance vs endurance), and routinely showed statistically significant results. Immobilization was shown to have the opposite effect of exercise by triggering an immediate M2 activation. Individual characteristics like gender, exercise intensity and age were found to impact the degree of polarization without changing the overall patterns. To model macrophages within the specific context of muscle tissue, we identified a focused gene set signature of muscle resident macrophage polarization, allowing for the precise measurement of macrophage activity in response to exercise within the muscle. CONCLUSIONS These consistent patterns across all 75 examined studies suggest that the long term health benefits of exercise stem from its ability to orchestrate a balanced and temporally-regulated interplay between pro-immune response (M1) and reparative macrophage activity (M2). Similarly, it suggests that an imbalance between pro-immune and cell repair responses could facilitate disease development. Our findings shed light on the intricate molecular choreography behind exercise-induced health benefits with a particular insight on its effect on the macrophages within the muscle.
Collapse
Affiliation(s)
- Yotam Voskoboynik
- Department of Bioinformatics and System Biology, Jacobs School of Engineering, University of California San Diego, San Diego, United States
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, United States; Department of Medicine, University of California San Diego, United States
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, United States; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, United States.
| |
Collapse
|
2
|
Bishop NC, Burton JO, Graham-Brown MPM, Stensel DJ, Viana JL, Watson EL. Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nat Rev Nephrol 2023; 19:244-256. [PMID: 36650232 DOI: 10.1038/s41581-022-00675-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Increasing evidence indicates that exercise has beneficial effects on chronic inflammation, cardiorespiratory function, muscle and bone strength and metabolic markers in adults with chronic kidney disease (CKD), kidney failure or kidney transplants. However, the mechanisms that underlie these benefits have received little attention, and the available clinical evidence is mainly from small, short-duration (<12 weeks) exercise intervention studies. The available data, mainly from patients with CKD or on dialysis, suggest that exercise-mediated shifts towards a less inflammatory immune cell profile, enhanced activity of the NRF2 pathway and reduced monocyte infiltration into adipose tissue may underlie improvements in inflammatory biomarkers. Exercise-mediated increases in nitric oxide release and bioavailability, reduced angiotensin II accumulation in the heart, left ventricular remodelling and reductions in myocardial fibrosis may contribute to improvements in left ventricular hypertrophy. Exercise stimulates an anabolic response in skeletal muscle in CKD, but increases in mitochondrial mass and satellite cell activation seem to be impaired in this population. Exercise-mediated activation of the canonical wnt pathway may lead to bone formation and improvements in the levels of the bone-derived hormones klotho and fibroblast growth factor 23 (FGF23). Longer duration studies with larger sample sizes are needed to confirm these mechanisms in CKD, kidney failure and kidney transplant populations and provide evidence for targeted exercise interventions.
Collapse
Affiliation(s)
- Nicolette C Bishop
- School of Sport, Exercise and Health Sciences and National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK.
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.
| | - James O Burton
- School of Sport, Exercise and Health Sciences and National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Matthew P M Graham-Brown
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - David J Stensel
- School of Sport, Exercise and Health Sciences and National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - João L Viana
- Research Centre in Sports Sciences, Health Sciences and Human Development, University of Maia, Maia, Portugal
| | - Emma L Watson
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun 2020; 11:470. [PMID: 31980607 PMCID: PMC6981202 DOI: 10.1038/s41467-019-13869-w] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Here we use gene ontology and pathway analyses to reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identify NR4A3 as one of the most exercise- and inactivity-responsive genes, and establish a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database. The pathways that underlie the effects of exercise on metabolism remain incompletely described. Here, the authors perform a meta-analysis of transcriptomic data from 66 published datasets of human skeletal muscle. They identify pathways selectively activated by inactivity, aerobic or resistance exercise, and characterize NR4A3 as one of the genes responsive to inactivity.
Collapse
|
4
|
O'Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J 2018; 11:810-821. [PMID: 30524716 PMCID: PMC6275451 DOI: 10.1093/ckj/sfy052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle wasting is a common feature of chronic kidney disease (CKD) and is clinically relevant due to associations with quality of life, physical functioning, mortality and a number of comorbidities. Satellite cells (SCs) are a population of skeletal muscle progenitor cells responsible for accrual and maintenance of muscle mass by providing new nuclei to myofibres. Recent evidence from animal models and human studies indicates CKD may negatively affect SC abundance and function in response to stimuli such as exercise and damage. The aim of this review is to collate recent literature on the effect of CKD on SCs, with a particular focus on the myogenic response to exercise in this population. Exercise is widely recognized as important for the maintenance of healthy skeletal muscle mass and is increasingly advocated in the care of a number of chronic conditions. Therefore a greater understanding of the impact of uraemia upon SCs and the possible altered myogenic response in CKD is required to inform strategies to prevent uraemic cachexia.
Collapse
Affiliation(s)
- Tom F O'Sullivan
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester Trust, Leicester, UK
| | - Emma L Watson
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Shakoor E, Salesi M, Jahromi MK, Sadeghi H, Karimi MH, Yusof A. THE EFFECT OF EXERCISE ON INTERFERON GAMMA, BODY FAT AND BMI OF KIDNEY TRANSPLANT PATIENTS. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182405187030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ABSTRACT Introduction: Poor physical function and obesity are well documented in kidney transplant patients. Significant health benefits result from regular physical activity, many of which are important for kidney transplant patients. Objective: The aim of this study was to investigate the effects of 10-week combined exercises on Interferon Gamma (IFNγ), body fat percentage (BF%) and body mass index (BMI) in kidney transplant patients. Method: In a randomized controlled experimental design, 44 kidney transplant patients aged 20-50 years were randomly divided into two groups of exercise (n=23) and control (n=21). The exercise group participated in a cumulative training program for 10 weeks, three days a week, 60–90 minutes per day at 40-65% of predicted maximal heart rate reserve. A 5 ml venous blood sample and anthropometric parameters were taken from the subjects at baseline and after 10 weeks. Results: The exercise group showed an improvement in BF% (from 31.80±5.64 to 28.86 ± 5.82, p =0.001) and BMI (from 26.23 ± 1.81 to 25.45 ± 2.11, p = 0.001), but there was no significant change in the IFNγ level (from 0.06 ± 0.02 to 0.06 ± 0.02, p = 0.829). There was a significant difference between the control and exercise groups for BF% (p = 0.001) and BMI (p = 0.001). Conclusion: As a take-home message, it should be mentioned that combined exercise intervention is inexpensive and portable and can be performed at home or health centers for kidney transplant patients to reduce their weight and BF%. Evidence Level I; High quality randomized trial with or without statistically significant difference, but with narrow confidence intervals.
Collapse
|
6
|
Watanabe LP, Riddle NC. Characterization of the Rotating Exercise Quantification System (REQS), a novel Drosophila exercise quantification apparatus. PLoS One 2017; 12:e0185090. [PMID: 29016615 PMCID: PMC5634558 DOI: 10.1371/journal.pone.0185090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease that has reached epidemic proportions in the United States and has prompted international legislation in an attempt to curtail its prevalence. Despite the fact that one of the most prescribed treatment options for obesity is exercise, the genetic mechanisms underlying exercise response in individuals are still largely unknown. The fruit fly Drosophila melanogaster is a promising new model for studying exercise genetics. Currently, the lack of an accurate method to quantify the amount of exercise performed by the animals is limiting the utility of the Drosophila model for exercise genetics research. To address this limitation, we developed the Rotational Exercise Quantification System (REQS), a novel apparatus that is able to simultaneously induce exercise in flies while recording their activity levels. Thus, the REQS provides a method to standardize Drosophila exercise and ensure that all animals irrespective of genotype and sex experience the same level of exercise. Here, we provide a basic characterization of the REQS, validate its measurements using video-tracking technology, illustrate its potential use by presenting a comparison of two different exercise regimes, and demonstrate that it can be used to detect genotype-dependent variation in activity levels.
Collapse
Affiliation(s)
- Louis Patrick Watanabe
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nicole C. Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
7
|
Watson EL, Viana JL, Wimbury D, Martin N, Greening NJ, Barratt J, Smith AC. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease. Front Physiol 2017; 8:541. [PMID: 28804461 PMCID: PMC5532513 DOI: 10.3389/fphys.2017.00541] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD) and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients. Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt, P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall levels of oxidative stress have been studied. Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06), respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84), but this was restored following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively). There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism. Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is no longer present following a period of training. This indicates that resistance exercise does not provoke a detrimental on-going inflammatory response within the muscle.
Collapse
Affiliation(s)
- Emma L Watson
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Joao L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAIPorto, Portugal.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - David Wimbury
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Naomi Martin
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Neil J Greening
- Department of Respiratory Medicine, Institute for Lung Health, University Hospitals of Leicester NHS TrustLeicester, United Kingdom
| | - Jonathan Barratt
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of LeicesterLeicester, United Kingdom.,John Walls Renal Unit, University Hospitals of Leicester NHS TrustLeicester, United Kingdom
| |
Collapse
|