1
|
Toczek M, Ryszkiewicz P, Remiszewski P, Schlicker E, Krzyżewska A, Kozłowska H, Malinowska B. Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis. Int J Mol Sci 2023; 24:10942. [PMID: 37446125 DOI: 10.3390/ijms241310942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes.
Collapse
Affiliation(s)
- Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| |
Collapse
|
2
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
3
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Speckle-tracking strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol 2018; 19:388-393. [PMID: 29848923 PMCID: PMC5998859 DOI: 10.14744/anatoljcardiol.2018.76429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective There is growing evidence regarding the numerous adverse effects of synthetic cannabinoids (SCBs) on the cardiovascular system; however, no studies have shown the cardiovascular effects of opioids using strain echocardiography. This study examines the cardiac structure and function using echocardiographic strain imaging in heroin and synthetic cannabinoid users. Methods This double-blind study included patients who were admitted or referred to a rehabilitation center for heroin (n=31) and synthetic cannabinoid users (n=30). Heroin users and synthetic cannabinoid users were compared with healthy volunteers (n=32) using two-dimensional (2D) speckle-tracking (ST) echocardiography. Results No differences were found in the baseline characteristics and 2D echocardiography values. The mean global longitudinal strain value was −20.5%±2.4% for SCB users, −22.3%±2.4% for opioid users, and −22.5%±2.2% for healthy volunteers (p=0.024). The mean apical 2-chamber (AP2C) L-strain values were −20.1%±3.1%, −22.4%±3.0%, and −22.3%±2.8% for SCB users, opioid users, and healthy volunteers, respectively (p=0.032). The mean apical 4-chamber (AP4C) L-strain values were −20.7%±2.5% for SCB users, −23.2%±3.2% for opioid users, and −23.8%±3.1% for healthy volunteers (p<0.001). Conclusion SCBs are potential causes of subclinical left ventricular dysfunction.
Collapse
|
5
|
Marcus DJ, Henderson-Redmond AN, Gonek M, Zee ML, Farnsworth JC, Amin RA, Andrews MJ, Davis BJ, Mackie K, Morgan DJ. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption. PLoS One 2017; 12:e0174826. [PMID: 28426670 PMCID: PMC5398885 DOI: 10.1371/journal.pone.0174826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.
Collapse
Affiliation(s)
- David J. Marcus
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Angela N. Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Maciej Gonek
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Michael L. Zee
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Jill C. Farnsworth
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Randa A. Amin
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Mary-Jeanette Andrews
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Brian J. Davis
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Daniel J. Morgan
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| |
Collapse
|