1
|
Zhou LT, Gokyer D, Madkins K, Beestrum M, Horton DE, Duncan FE, Babayev E. The Effects of Heat Stress on the Ovary, Follicles and Oocytes: A Systematic Review. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626831. [PMID: 39677695 PMCID: PMC11643117 DOI: 10.1101/2024.12.04.626831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Climate change is driving significant environmental changes with profound implications for human health, including fertility. While the detrimental effects of heat on spermatogenesis are well-documented, the impact of elevated temperatures on ovaries and female fertility remains less explored. This review systematically examines the literature on heat stress (HS) effects on mammalian ovaries, follicles, and oocytes. Evidence from mammalian models indicates that HS significantly impairs ovarian function, disrupting hormone profiles, reducing ovarian size and weight, altering histology, decreasing granulosa cell viability, and compromising oocyte quality. Efforts to develop strategies and substances to mitigate these adverse effects are ongoing, but further research into the underlying mechanisms is urgently needed.
Collapse
Affiliation(s)
- Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Krystal Madkins
- Galter Health Sciences Library & Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Molly Beestrum
- Galter Health Sciences Library & Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel E. Horton
- Department of Earth, Environmental, and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zhu Z, Wu J, Wen Y, Wu X, Bao H, Wang M, Kang K. Advances in the Effects of Heat Stress on Ovarian Granulosa Cells: Unveiling Novel Ferroptosis Pathways. Vet Sci 2024; 11:464. [PMID: 39453056 PMCID: PMC11511475 DOI: 10.3390/vetsci11100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Heat stress has been one of the key research areas for researchers due to the wide-ranging effects and complex mechanisms of action of its stress product reactive oxygen species (ROS). The aim of this paper is to comprehensively review and summarize the effects of heat stress on ovarian granulosa cells and their mechanism of action. We systematically reviewed the effects of heat stress on ovarian granulosa cells, including intracellular steroid hormone changes, oxidative stress, apoptosis, and mitochondrial function. Meanwhile, this paper discusses in detail several major mechanisms by which heat stress induces apoptosis in ovarian granulosa cells, such as through the activation of apoptosis-related genes, induction of endoplasmic reticulum stress, and the mitochondrial pathway. In addition, we analyzed the mechanism of ferroptosis in ovarian granulosa cells under heat stress conditions, summarized the potential association between heat stress and ferroptosis in light of the existing literature, and explored the key factors in the mechanism of action of heat stress, such as the signaling pathways of Nrf2/Keap1, HSPs, and JNK, and analyzed their possible roles in the process of ferroptosis. Finally, this paper provides an outlook on the future research direction, describing the possible interaction between heat stress and ferroptosis, with a view to providing a theoretical basis for further understanding and revealing the complex mechanism of ferroptosis occurrence in ovarian granulosa cells under heat stress.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Jiang Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Yuguo Wen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Xiaocheng Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Huimingda Bao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Min Wang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (J.W.)
| | - Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
4
|
Tutt DAR, Guven-Ates G, Kwong WY, Simmons R, Sang F, Silvestri G, Canedo-Ribeiro C, Handyside AH, Labrecque R, Sirard MA, Emes RD, Griffin DK, Sinclair KD. Developmental, cytogenetic and epigenetic consequences of removing complex proteins and adding melatonin during in vitro maturation of bovine oocytes. Front Endocrinol (Lausanne) 2023; 14:1280847. [PMID: 38027209 PMCID: PMC10647927 DOI: 10.3389/fendo.2023.1280847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.
Collapse
Affiliation(s)
- Desmond A. R. Tutt
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Gizem Guven-Ates
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Rob Simmons
- Paragon Veterinary Group, Carlisle, United Kingdom
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Alan H. Handyside
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Marc-André Sirard
- CRDSI, Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, QC, Canada
| | - Richard D. Emes
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
5
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
6
|
Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle. Animals (Basel) 2022; 13:ani13010098. [PMID: 36611707 PMCID: PMC9817902 DOI: 10.3390/ani13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Aquaporins (AQPs) are proteins with various functions related to proper cell function and early development in mammals. The aim of this study was to evaluate the presence of AQPs and determine their mRNA levels in the cumulus oocyte complex (COC) of four bovine breeds and in blastocysts of five bovine crosses. Grade I, II and III COCs were collected by ovum pick up from non-lactating heifers of the Brahaman, Holstein, Gir and Romosinuano breeds. Embryos were produced in vitro up to the blastocyst stage of the bovine ♀Gir × ♂Holstein, ♀Holstein × ♂Gir, ♀Brahman × ♂Holstein, ♀Holstein × ♂Brahman, and ♀Romosinuano × ♂Holstein crosses. mRNA expression of AQP1-AQP12b was estimated in COC and embryos by real-time-PCR. The presence of the twelve AQPs in the COCs and bovine embryos was established. Additionally, significant differences were determined in the expression of AQP6 and AQP12b in COCs, as well as in transcripts levels of AQP4, AQP8 and AQP9 from bovine embryos. Gene expression of AQPs in COCs and bovine embryos is consistent with the previously described biological functions. This is the first report of AQPs in COC of Gir, Brahman, Holstein and Romosinuano and embryos of five crossbreeds between Bos indicus and B. taurus.
Collapse
|
7
|
Astuti PK, Ilie DE, Gavojdian D, Wanjala G, Badaoui B, Ohran H, Pasic-Juhas E, Bagi Z, Jávor A, Kusza S. Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique. Sci Rep 2022; 12:22348. [PMID: 36572697 PMCID: PMC9792578 DOI: 10.1038/s41598-022-26909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
A study on 51 SNPs belonging to 29 genes related to heat stress was carried out in 720 sheep from 17 different breeds adapted to different climates from Hungary, Bosnia and Herzegovina, Morocco and Romania, using Kompetitive Allele-Specific Polymerase Chain Reaction. Genotype frequency and the Hardy-Weinberg equilibrium were calculated, followed by a clustering using the Principal Component Analysis. We analyzed the polymorphisms in the following genes analyzed: HSPA12A, HSP90AA1, IL33, DIO2, BTNL2, CSN2, ABCG1, CSN1S1, GHR, HSPA8, STAT3, and HCRT. We emphasized on HSPA12A and HSPA8 genes as they were successfully genotyped in all studied flocks in which genotype frequency patterns were identified. Contrary to previous findings, the A allele for HSPA8 SNP was not observed in the heat tolerant breeds, being found exclusively in cold-tolerant breeds. The principal component analysis could not clearly differentiate the breeds, while plot concentration was slightly varied among the three groups, with HSP90AA1 and IL33 SNPs' loading values significantly contributing to PC1 and PC2. We confirmed previous works that the HSPA12A, HSPA8, HSP90AA1 and IL33 SNPs are potential candidate markers for thermotolerance adaptation in sheep. This research contributes to the genetic variability of SNPs for thermotolerance adaptability in sheep.
Collapse
Affiliation(s)
- Putri Kusuma Astuti
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | | | - Dinu Gavojdian
- Research and Development Institute for Bovine Balotesti, 077015, Balotesti, Ilfov, Romania
| | - George Wanjala
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Bouabid Badaoui
- Mohammed V University in Rabat, Morocco and African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Pasic-Juhas
- Department of Physiology, University of Sarajevo, Veterinary Faculty, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Zoltán Bagi
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - András Jávor
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilvia Kusza
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
8
|
Klabnik JL, Christenson LK, Gunewardena SSA, Pohler KG, Rispoli LA, Payton RR, Moorey SE, Neal Schrick F, Edwards JL. Heat-induced increases in body temperature in lactating dairy cows: impact on the cumulus and granulosa cell transcriptome of the periovulatory follicle. J Anim Sci 2022; 100:skac121. [PMID: 35772768 PMCID: PMC9246673 DOI: 10.1093/jas/skac121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Cows acutely heat stressed after a pharmacologically induced luteinizing hormone (LH) surge had periovulatory changes in the follicular fluid proteome that may potentiate ovulation and impact oocyte developmental competence. Because the cellular origins of differentially abundant proteins were not known, we have examined the cumulus and granulosa cell transcriptomes from the periovulatory follicle in cows exhibiting varying levels of hyperthermia when occurring after the LH surge. After pharmacological induction of a dominant follicle, lactating dairy cows were administered gonadotropin releasing hormone (GnRH) and maintained in thermoneutral conditions (~67 temperature-humidity index [THI]) or heat stress conditions where THI was steadily increased for ~12 h (71 to 86 THI) and was sufficient to steadily elevate rectal temperatures. Cumulus-oocyte complexes and mural granulosa cells were recovered by transvaginal aspiration of dominant follicle content ~16 h after GnRH. Rectal temperature was used as a continuous, independent variable to identify differentially expressed genes (DEGs) increased or decreased per each 1 °C change in temperature. Cumulus (n = 9 samples) and granulosa (n = 8 samples) cells differentially expressed (false discovery rate [FDR] < 0.05) 25 and 87 genes, respectively. The majority of DEGs were upregulated by hyperthermia. Steady increases in THI are more like the "turning of a dial" than the "flipping of a switch." The moderate but impactful increases in rectal temperature induced modest fold changes in gene expression (<2-fold per 1 °C change in rectal temperature). Identification of cumulus DEGs involved in cell junctions, plasma membrane rafts, and cell-cycle regulation are consistent with marked changes in the interconnectedness and function of cumulus after the LH surge. Depending on the extent to which impacts may be occurring at the junctional level, cumulus changes may have indirect but impactful consequences on the oocyte as it undergoes meiotic maturation. Two granulosa cell DEGs have been reported by others to promote ovulation. Based on what is known, several other DEGs are suggestive of impacts on collagen formation or angiogenesis. Collectively these and other findings provide important insight regarding the extent to which the transcriptomes of the components of the periovulatory follicle (cumulus and mural granulosa cells) are affected by varying degrees of hyperthermia.
Collapse
Affiliation(s)
- Jessica L Klabnik
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha S A Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ky G Pohler
- Present address: Department of Animal Science, Pregnancy and Developmental Programming Area of Excellence, Texas A & M University, College Station, TX 77843, USA
| | - Louisa A Rispoli
- Present address: Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, OH 45220, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996, USA
| |
Collapse
|
9
|
De Rensis F, Saleri R, Garcia-Ispierto I, Scaramuzzi R, López-Gatius F. Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals (Basel) 2021; 11:ani11123406. [PMID: 34944184 PMCID: PMC8697862 DOI: 10.3390/ani11123406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Environmentally induced hyperthermia, also called heat stress (HS), compromises reproductive physiology in mammals. The number of oocytes is fixed after birth and they are stored in the ovary in a quiescent state (at the stage of the first meiotic prophase) in primordial follicles. There is evidence that HS alters the oocyte quality, the dynamics of follicular growth and ovulation. The dairy cow, submitted to the metabolic stress of high milk production, is a good model for studying the effects of HS on ovarian function. The aim of this review is to describe the influence of HS during the stages of follicular development in dairy cattle, from the activation of primordial follicles to ovulation. Some clinical aspects are also considered. Abstract Follicular organization starts during mid-to-late fetal life with the formation of primordial follicles. The bilateral interplay between the oocyte and adjoining somatic cells during follicular growth and ovulation may be sensitive to heat stress (HS). Mechanisms giving rise to pre-ovulatory temperature gradients across reproductive tissues are mostly regulated by the pre-ovulatory follicle, and because the cooling of the gonads and genital tract depends on a counter-current transfer system of heat, HS may be considered a major factor impairing ovulation, fertilization and early embryo development. There is evidence of a long-lasting influence of HS on oogenesis and final follicular maturation. Follicular stages that are susceptible to HS have not been precisely determined. Therefore, the aim of this review was to describe the influence of HS during the staged follicular development in dairy cattle, from the activation of primordial follicles to ovulation. Some clinical prospects are also considered.
Collapse
Affiliation(s)
- Fabio De Rensis
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 12, 43121 Parma, Italy;
| | - Roberta Saleri
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, 12, 43121 Parma, Italy;
- Correspondence:
| | - Irina Garcia-Ispierto
- Department of Animal Science, University of Lleida, 25198 Lleida, Spain;
- Agrotecnio Centre, 25198 Lleida, Spain;
| | - Rex Scaramuzzi
- Royal Veterinary College, London NW1 0TU, UK;
- Institute of Agriculture, University of Western Australia, Perth 6009, Australia
| | - Fernando López-Gatius
- Agrotecnio Centre, 25198 Lleida, Spain;
- Transfer in Bovine Reproduction SLu, 22300 Barbastro, Spain
| |
Collapse
|
10
|
Identification of Reference Genes for Expression Studies in the Whole-Blood from Three Cattle Breeds under Two States of Livestock Weather Safety. Animals (Basel) 2021; 11:ani11113073. [PMID: 34827805 PMCID: PMC8614315 DOI: 10.3390/ani11113073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Reductions in the fertility, body weight, and growth rate of cattle across the world are associated with the global warming phenomenon. Developing optimal management strategies is an important aspect of breeding programs for different breeds. Blood tissue undergoes dramatic physiological and metabolic changes during heat stress conditions, which involves the expression and regulation of a great number of genes across species. Real-time quantitative PCR (qPCR) is a method for the rapid and reliable quantification of mRNA transcription. Reference genes are used to normalize mRNA levels between different samples. Thus, the selection of high-quality reference genes is necessary for the interpretation of data generated by real-time PCR. Abstract Real-time PCR is widely used to study the relative abundance of mRNA due to its specificity, sensitivity, and repeatability quantification. However, relative quantification requires a reference gene, which should be stable in its expression, showing lower variation by experimental conditions or tissues. The aim of this study was to evaluate the stability of the expression of five commonly used reference genes (actb, ywhaz, b2m, sdha, and 18s rRNA) at different physiological stages (alert and emergency) in three different cattle breeds. In this study, five genes (actb, ywhaz, b2m, sdha, and 18s rRNA) were selected as candidate reference genes for expression studies in the whole blood from three cattle breeds (Romosinuano, Gyr, and Brahman) under heat stress conditions. The transcription stability of the candidate reference genes was evaluated using geNorm and NormFinder. The results showed that actb, 18SrRNA, and b2m expression were the most stable reference genes for whole blood of Gyr and Brahman breeds under two states of livestock weather safety (alert and emergency). Meanwhile, actb, b2m, and ywhaz were the most stable reference genes for the Romosinuano breed.
Collapse
|
11
|
Rosales-Martínez F, Rosendo-Ponce A, Cortez-Romero C, Gallegos-Sánchez J, Cuca-García JM, Becerril-Pérez CM. Relation of the maximum temperature and relative humidity close to the insemination with the tropical milking criollo heifer's gestation in three seasons. Trop Anim Health Prod 2020; 53:27. [PMID: 33226489 DOI: 10.1007/s11250-020-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
The high climatic variability of hot climates of the intertropical zone reduces cattle fertility. In dairy cows in temperates zones, the THI has been used to evaluate the temperature and relative humidity (RH) joint effect in reproduction, but its use is not recommended in all geographic zones; in hot climates, the maximum temperature (Tmax) can provide more convenient information than THI. The objective of this study was to determine the artificial insemination (AI) service seasons and their joint effect with the maximum temperature and relative humidity of the previous seven days, the service day, and posterior seven days to the AI in the tropical milking criollo (LT) heifer's gestation. Climatic data was used to define three seasons: hot-dry (HD), hot-humid (HH), and fresh-dry (FD), and 313 artificial insemination services from 176 heifers were analyzed over fourteen years. The seasons were determined by cluster analysis. Gestation at first service (GF) was analyzed with a logistic regression model and global gestation (GG) with a mixed linear generalized model. The Tmax of previous seven days insemination [Formula: see text] - 0.20 ± 0.09 (p ≤ 0.02) in HD (p ≤ 0.02) and RH of seven days posterior insemination [Formula: see text]= - 0.08 ± 0.04 (p ≤ 0.04) in HD (p ≤ 0.01) affected GF. No effect of the Tmax and RH on the service day was observed (p > 0.05). The highest GG probabilities were higher than 0.70 in HH and FD, making those seasons the most suitable for inseminating LT heifers.
Collapse
Affiliation(s)
- Froylan Rosales-Martínez
- Campus Montecillo, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo, 56230, Texococo, Estado de México, Mexico
| | - Adalberto Rosendo-Ponce
- Campus Veracruz, Colegio de Postgraduados, Carretera Federal Xalapa-Veracruz km 88.885, Manlio Fabio Altamirano, 94251, Veracruz, Mexico
| | - César Cortez-Romero
- Campus San Luis, Colegio de Postgraduados, Agustín de Iturbide No. 73, Salinas de Hidalgo, 78622, San Luis Potosí, Mexico
| | - Jaime Gallegos-Sánchez
- Campus Montecillo, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo, 56230, Texococo, Estado de México, Mexico
| | - Juan M Cuca-García
- Campus Montecillo, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo, 56230, Texococo, Estado de México, Mexico
| | - Carlos M Becerril-Pérez
- Campus Veracruz, Colegio de Postgraduados, Carretera Federal Xalapa-Veracruz km 88.885, Manlio Fabio Altamirano, 94251, Veracruz, Mexico.
| |
Collapse
|
12
|
Mishra SR. Significance of molecular chaperones and micro RNAs in acquisition of thermo-tolerance in dairy cattle. Anim Biotechnol 2020; 33:765-775. [PMID: 33121378 DOI: 10.1080/10495398.2020.1830788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ambient temperature is considered as the major abiotic factor which regulates body physiological mechanisms of all living creatures across the globe. Variation in ambient temperature which emulates thermoneutral zone culminates in heat stress. Heat stress has been emerged as major ultimatum to livestock's growth, development, production and reproduction across the world. Livestock's responds to the heat stress via different mechanisms such as behavioral, physiological, biochemical, endocrine and molecular mechanisms. Amongst the aforementioned mechanisms, molecular mechanism plays crucial role to achieve thermo-tolerance via expression of highly conserved family of proteins known as heat shock proteins (HSPs) across livestock species. HSPs serve as molecular chaperones to ameliorate the menace of heat stress in domestic species. In addition, microRNAs are small non-coding RNA which down regulates post-transcriptional gene expression by targeting various HSPs to regulate the thermoregulatory responses in livestock species. Despite of thermal adaptation mechanisms, heat stress breaches animal body homeostasis thereby depresses their production and productivity. Therefore, veterinary researches have been targeting to explore different repertoire of HSPs and microRNAs expression to counteract the rigors of heat stress thereby confer thermo-tolerance in livestock species. The present review highlights the significance of molecular chaperones and microRNAs in the acquisition of thermo-tolerance in dairy cattle.
Collapse
Affiliation(s)
- S R Mishra
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| |
Collapse
|
13
|
Abdelnour SA, Swelum AA, Abd El-Hack ME, Khafaga AF, Taha AE, Abdo M. Cellular and functional adaptation to thermal stress in ovarian granulosa cells in mammals. J Therm Biol 2020; 92:102688. [PMID: 32888576 DOI: 10.1016/j.jtherbio.2020.102688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
Abstract
Climate change represents a significant environmental challenge to human welfare. One of many negative impacts may be on animal reproduction. Elevated ambient temperature unfavourably influences reproductive processes in mammals. High temperature can affect reproductive processes such as follicle development and may alter follicular fluid concentrations of amino acids, fatty acids, minerals, enzymes, antioxidants defence and growth factors. These impacts may lead to inferior oocyte competence and abnormal granulosa cell (GCs) function. Mammalian oocytes are enclosed by GCs that secret hormones and signalling molecules to promote oocyte competence. GCs are essential for proper follicular development, oocyte maturation, ovulation, and luteinization. Many environmental stressors, including thermal stress, affect GC function and alter oocyte development and growth. Several studies documented a link between elevated ambient temperature and increased generation of cellular reactive oxygen species (ROS). ROS can damage DNA, reduce cell proliferation, and induce apoptosis in GCs, thus altering oocyte development. Additionally, thermal stress induces upregulation of thermal shock proteins, such as HSP70 and HSP90. This review provides an update on the influence of thermal stress on GCs of mammals. Discussions include impacts to steroidogenesis (estradiol and progesterone), proliferation and cell cycle transition, apoptosis, oxidative stress (ROS), antioxidants related genes, heat shock proteins (HSPs) and endoplasmic reticulum responses.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
14
|
Eslamizad M, Albrecht D, Kuhla B. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows. J Dairy Sci 2020; 103:8601-8614. [PMID: 32600758 DOI: 10.3168/jds.2020-18417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Global warming and accompanying high ambient temperatures reduce feed intake of dairy cows and shift the blood flow from the core of the body to the periphery. As a result, hypoxia may occur in the digestive tract accompanied by disruption of the intestinal barrier, local endotoxemia and inflammation, and altered nutrient absorption. However, whether the barrier of the rumen, like the intestine, is affected by ambient heat has not been studied so far. Lactating Holstein dairy cows were subjected to heat stress at 28°C (temperature-humidity index = 76; n = 5) with ad libitum feed intake or to thermoneutral conditions at 15°C (temperature-humidity index = 60; n = 5) and pair-feeding to heat-stressed animals for a total of 4 d. Gas exchange and feed intake behavior were measured in a respiration chamber, and rumen epithelia were taken after slaughter. Heat stress significantly reduced meal size and whole-body fat oxidation but increased meal frequency and carbohydrate oxidation. The mRNA expression of toll-like receptor 4 (TLR4) and tight junction proteins and the phosphorylation of TLR4 downstream targets (interleukin-1 receptor-associated kinase 4, stress-activated protein kinase, p38 mitogen-activated protein kinase, and nuclear factor k-B) in the rumen epithelium were not affected by heat. The proteomics approach revealed increased expression of rumen epithelium proteins involved in the AMP-activated protein kinase (AMPK) and insulin signaling pathways in heat-stressed cows. Also, proteins involved in chaperone-mediated folding of proteins were upregulated, whereas those involved in antioxidant defense system were downregulated. Further, we found evidence for increased carbohydrate phosphorylation accompanied with an increased flux of carbohydrates through the hexosamine biosynthetic pathway, providing substrates for protein glycosylation. In conclusion, the mild heat stress did not induce barrier dysfunction or inflammatory responses in the rumen epithelium of dairy cows, probably because of adaptations in feed intake behavior and defense mechanisms at the tissue level.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
15
|
Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim Reprod Sci 2020; 216:106348. [PMID: 32414470 DOI: 10.1016/j.anireprosci.2020.106348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/15/2023]
Abstract
Ambient temperatures that result in body temperatures beyond those of the thermo-neutral zone for dairy cattle can lead to reduced reproductive efficiencies that have negative effects on economic and productive efficiencies of dairy farms. In addition, in pregnant cows, ambient temperature-induced heat stress leads to modifications in the epigenome of the developing embryo, which, in turn, could lead to phenotypic variations in the sexually mature animal and its offspring. In the mammalian response to stress, adrenocorticotropic hormone stimulates the synthesis and secretion of glucocorticoids, which may have detrimental effects on the hypothalamic-pituitary-gonadal axis and the female estrous cycle. The aim of this review is to describe the effects of ambient heat stress on the reproductive system of dairy cattle and its potential trans-generational effects. There are many heat stress occurrences in dairy cattle during a large portion of the year in many countries and there is an increase in incidence with the onset of global warming. These heat stress conditions make it possible that the embryo/fetus of cows may be affected when heat stress conditions prevail in ways that there is impaired fertility of the sexually mature cows that develop from these embryos/fetuses. This is the outcome because of molecular changes in ovarian glucocorticoid response caused by epigenetic modifications established during fetal development.
Collapse
|
16
|
Jitjumnong J, Moonmanee T, Sudwan P, Mektrirat R, Osathanunkul M, Navanukraw C, Panatuk J, Yama P, Pirokad W, U-Krit W, Chaikol W. Associations among thermal biology, preovulatory follicle diameter, follicular and luteal vascularities, and sex steroid hormone concentrations during preovulatory and postovulatory periods in tropical beef cows. Anim Reprod Sci 2020; 213:106281. [PMID: 31987316 DOI: 10.1016/j.anireprosci.2020.106281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
The objectives were to evaluate effects of tropical seasons on thermal biology, preovulatory follicle (POF) diameter, POF and luteal vascularities, and estradiol (E2) and progesterone (P4) concentrations; and to determine the associations among the values for these variables during preovulatory and postovulatory periods in Thai native cows in tropical climates: cold, hot, and rainy seasons. Development and vascularity of the POF and corpora lutea (CL) were evaluated using color Doppler ultrasonography. The temperature-humidity index (THI) was greater when the preovulatory period occurred during the rainy season when compared with the occurrence during the hot and cold seasons of the year. Furthermore, POF diameter was less when the THI was greater. The THI was greater when the postovulatory period occurred during the rainy season when compared to the occurrence of the postovulatory period during the hot and cold seasons of the year. Furthermore, the CL vascularity and P4 concentration were less when the THI was greater. The THI was inversely correlated with CL vascularity and P4 concentrations. When the THI was greatest during the hot and rainy seasons of the year, there were the greatest negative effects on POF size, POF and CL blood flow, and concentrations of E2 and P4 during the preovulatory and postovulatory periods. While native Bos indicus are capable of adapting to tropical conditions, there are still negative effects, such as impaired POF and CL functions, when the THI induces heat stress.
Collapse
Affiliation(s)
- Jakree Jitjumnong
- Laboratory of Histology and Animal Disease Diagnosis, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand; Department of Animal Science, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Tossapol Moonmanee
- Laboratory of Histology and Animal Disease Diagnosis, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand.
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Chainarong Navanukraw
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, 40002 Khon Kaen, Thailand
| | - Julakorn Panatuk
- Faculty of Animal Science and Technology, Maejo University, 50290 Chiang Mai, Thailand
| | - Punnawut Yama
- Laboratory of Histology and Animal Disease Diagnosis, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Wilasinee Pirokad
- Laboratory of Histology and Animal Disease Diagnosis, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Warittha U-Krit
- Laboratory of Histology and Animal Disease Diagnosis, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Warunya Chaikol
- Laboratory of Histology and Animal Disease Diagnosis, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand
| |
Collapse
|