1
|
Kong X, Guo X, Lin J, Liu H, Zhang H, Hu H, Shi W, Ji R, Jashenko R, Wang H. Transcriptomic analysis of the gonads of Locusta migratoria (Orthoptera: Acrididae) following infection with Paranosema locustae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:763-775. [PMID: 39465585 DOI: 10.1017/s0007485324000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Paranosema locustae is an environmentally friendly parasitic predator with promising applications in locust control. In this study, transcriptome sequencing was conducted on gonadal tissues of Locusta migratoria males and females infected and uninfected with P. locustae at different developmental stages. A total of 18,635 differentially expressed genes (DEGs) were identified in female ovary tissue transcriptomes, with the highest number of DEGs observed at 1 day post-eclosion (7141). In male testis tissue transcriptomes, a total of 32,954 DEGs were identified, with the highest number observed at 9 days post-eclosion (11,245). Venn analysis revealed 25 common DEGs among female groups and 205 common DEGs among male groups. Gene ontology and Kyoto Encyclopaedia of Genes and Genome analyses indicated that DEGs were mainly enriched in basic metabolism such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and immune response processes. Protein-protein interaction analysis results indicated that L. migratoria regulates the expression of immune- and reproductive-related genes to meet the body's demands in different developmental stages after P. locustae infection. Immune- and reproductive-related genes in L. migratoria gonadal tissue were screened based on database annotation information and relevant literature. Genes such as Tsf, Hex1, Apolp-III, Serpin, Defense, Hsp70, Hsp90, JHBP, JHE, JHEH1, JHAMT, and VgR play important roles in the balance between immune response and reproduction in gonadal tissues. For transcriptome validation, Tsf, Hex1, and ApoLp-III were selected and verified by quantitative real-time polymerase chain reaction (qRT-PCR). Correlation analysis revealed that the qRT-PCR expression patterns were consistent with the RNA-Seq results. These findings contribute to further understanding the interaction mechanisms between locusts and P. locustae.
Collapse
Affiliation(s)
- Xuewei Kong
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Xinrui Guo
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Jun Lin
- Central for Prevention and Control of Prediction & Forecast Prevention of Locust and Rodent, Xinjiang Uygur Autonomous Region, China
| | - Hui Liu
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Huihui Zhang
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Hongxia Hu
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Wangpeng Shi
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Rong Ji
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Roman Jashenko
- Ministry of Education and Science of the Republic of Kazakhstan, Almaty 050060, Kazakhstan
| | - Han Wang
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| |
Collapse
|
2
|
Seldeslachts A, Maurstad MF, Øyen JP, Undheim EAB, Peigneur S, Tytgat J. Exploring oak processionary caterpillar induced lepidopterism (Part 1): unveiling molecular insights through transcriptomics and proteomics. Cell Mol Life Sci 2024; 81:311. [PMID: 39066932 PMCID: PMC11335235 DOI: 10.1007/s00018-024-05330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Lepidopterism, a skin inflammation condition caused by direct or airborne exposure to irritating hairs (setae) from processionary caterpillars, is becoming a significant public health concern. Recent outbreaks of the oak processionary caterpillar (Thaumetopoea processionea) have caused noteworthy health and economic consequences, with a rising frequency expected in the future, exacerbated by global warming promoting the survival of the caterpillar. Current medical treatments focus on symptom relief due to the lack of an effective therapy. While the source is known, understanding the precise causes of symptoms remain incomplete understood. In this study, we employed an advanced method to extract venom from the setae and identify the venom components through high-quality de novo transcriptomics, venom proteomics, and bioinformatic analysis. A total of 171 venom components were identified, including allergens, odorant binding proteins, small peptides, enzymes, enzyme inhibitors, and chitin biosynthesis products, potentially responsible for inflammatory and allergic reactions. This work presents the first comprehensive proteotranscriptomic database of T. processionea, contributing to understanding the complexity of lepidopterism. Furthermore, these findings hold promise for advancing therapeutic approaches to mitigate the global health impact of T. processionea and related caterpillars.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium
| | - Marius F Maurstad
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Philip Øyen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Division of biotechnology and plant health & viruses, bacteria and nematodes in forestry, agriculture and horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Oslo, Norway
| | | | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven , Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
3
|
Zhang N, Feng S, Duan S, Yin Y, Ullah H, Li H, Davaasambuu U, Wei S, Nong X, Zhang Z, Tu X, Wang G. LmFKBP24 interacts with LmEaster to inhibit the antifungal immunity of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105515. [PMID: 37666582 DOI: 10.1016/j.pestbp.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiting Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar-Swabi 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Undarmaa Davaasambuu
- School of Agroecology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Shuhua Wei
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China.
| |
Collapse
|
4
|
Almadiy AA, Al-Ghamdi MS, Al-Akeel RK, Soliman MM, Ali MM. Qualitative structure-activity relationships of aryl isoprenoid derivatives as biorational juvenoids - reweighing. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2023; 43:1-11. [PMID: 37360917 PMCID: PMC10206361 DOI: 10.1007/s42690-023-01025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Juvenoids are juvenile hormone (JH) mimetics, with specific structural features and defined molecular size that disrupt the target insect development. Juvenoid activity (= JH-type activity) of various isoprenoid-based derivatives as insecticidal candidates of the insect growth disruptors (IGDs) type were rated against the house fly, Musca domestica L. The epoxidized decenyl and nonenyl phenyl ether derivatives have more active compounds than those of both parent alkoxidized or olefinic structures. The highest juvenoid potency was shown by 3,4-methylenedioxyphenyl ethers of 8,9-epoxy-5,9-dimethy1-3,8-decadiene. Qualitative structure-activity relationships are offered to relate the chemical structure criteria to observed juvenoid-related activity. Differences in activity among the reported isoprenoid-based derivatives were qualitatively rationalized. This study advances understanding of the structural qualifications and activity determinants of isoprenoid juvenoids, which is important for the development of new filth flies eco-friendly insecticides. Supplementary Information The online version contains supplementary material available at 10.1007/s42690-023-01025-3.
Collapse
Affiliation(s)
- Abdulrhman A. Almadiy
- Group Leader of Medical Entomology, College of Science and Arts, Department of Biology, Najran University, King Abdulaziz Road, Najran, 1988 Saudi Arabia
| | - Mariam S. Al-Ghamdi
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 24381 Saudi Arabia
| | - Rasha K. Al-Akeel
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mustafa M. Soliman
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mona M. Ali
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613 Egypt
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| |
Collapse
|
5
|
Host–Pathogen Interactions between Metarhizium spp. and Locusts. J Fungi (Basel) 2022; 8:jof8060602. [PMID: 35736085 PMCID: PMC9224550 DOI: 10.3390/jof8060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The progress in research on the interactions between Metarhizium spp. and locusts has improved our understanding of the interactions between fungal infection and host immunity. A general network of immune responses has been constructed, and the pathways regulating fungal pathogenicity have also been explored in depth. However, there have been no systematic surveys of interaction between Metarhizium spp. and locusts. The pathogenesis of Metarhizium comprises conidial attachment, germination, appressorial formation, and colonization in the body cavity of the host locusts. Meanwhile, the locust resists fungal infection through humoral and cellular immunity. Here, we summarize the crucial pathways that regulate the pathogenesis of Metarhizium and host immune defense. Conidial hydrophobicity is mainly affected by the contents of hydrophobins and chitin. Appressorial formation is regulated by the pathways of MAPKs, cAMP/PKA, and Ca2+/calmodulin. Lipid droplets degradation and secreted enzymes contributed to fungal penetration. The humoral response of locust is coordinated by the Toll pathway and the ecdysone. The regulatory mechanism of hemocyte differentiation and migration is elusive. In addition, behavioral fever and density-dependent population immunity have an impact on the resistance of hosts against fungal infection. This review depicts a prospect to help us understand host–pathogen interactions and provides a foundation for the engineering of entomopathogenic fungi and the discovery of insecticidal targets to control insect pests.
Collapse
|
6
|
Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.). Protein Expr Purif 2021; 192:106032. [PMID: 34922007 DOI: 10.1016/j.pep.2021.106032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022]
Abstract
Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and β-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.
Collapse
|
7
|
Eleftherianos I, Zhang W, Heryanto C, Mohamed A, Contreras G, Tettamanti G, Wink M, Bassal T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. Int J Biol Macromol 2021; 191:277-287. [PMID: 34543628 DOI: 10.1016/j.ijbiomac.2021.09.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, Varese 21100, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Napoli Federico II, Via Università, 100, Portici 80055, Italy
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Taha Bassal
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
8
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Zhang J, Jiang H, Du Y, Keyhani NO, Xia Y, Jin K. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathog 2019; 15:e1007964. [PMID: 31461507 PMCID: PMC6713334 DOI: 10.1371/journal.ppat.1007964] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/06/2019] [Indexed: 11/17/2022] Open
Abstract
Chitin is an important component of the fungal cell wall with a family of chitin synthases mediating its synthesis. Here, we report on the genetic characterization of the full suite of seven chitin synthases (MaChsI-VII) identified in the insect pathogenic fungus, Metarhizium acridum. Aberrant distribution of chitin was most evident in targeted gene knockouts of MaChsV and MaChsVII. Mutants of MaChsI, MaChsIII, MaChsIV showed delayed conidial germination, whereas ΔMaChsII and ΔMaChsV mutants germinated more rapidly when compared to the wild-type parent. All MaChs genes impacted conidial yield, but differentially affected stress tolerances. Inactivation of MaChsIII, MaChsV, MaChsVII resulted in cell wall fragility, and ΔMaChsV and ΔMaChsVII mutants showed high sensitivity to Congo red and calcofluor white, suggesting that the three genes are required for cell wall integrity. In addition, ΔMaChsIII and ΔMaChsVII mutants showed the highest sensitivities to heat and UV-B stress. Three of seven chitin synthase genes, MaChsIII, MaChsV, MaChsVII, were found to contribute to fungal virulence. Compared with the wild-type strain, ΔMaChsIII and ΔMaChsV mutants were reduced in virulence by topical inoculation, while the ΔMaChsVII mutant showed more severe virulence defects. Inactivation of MaChsIII, MaChsV, or MaChsVII impaired appressorium formation, affected growth of in insecta produced hyphal bodies, and altered the surface properties of conidia and hyphal bodies, resulting in defects in the ability of the mutant strains to evade insect immune responses. These data provide important links between the physiology of the cell wall and the ability of the fungus to parasitize insects and reveal differential functional consequences of the chitin synthase family in M. acridum growth, stress tolerances, cell wall integrity and virulence. The fungal cell wall is a dynamic and flexible organelle that modulates the interaction of the pathogen with its host and acts as a critical recognition and evasion interface with host defenses. Chitin is a hallmark constituent of the fungal cell wall and all fungi contain multiple chitin synthase (Chs) genes. However, systematic characterization of chitin synthase genes has not yet been reported in entomopathogenic fungi. By using the insect pathogen Metarhizium acridum as a model, we performed a systematic genetic analysis of the seven member Chs family (ChsI-VII) in the insect pathogenic fungus. Construction of strains bearing targeted single gene mutations revealed differential contributions of specific Chs genes to growth, cell wall integrity, and stress responses. In addition, we revealed that three chitin synthase genes MaChsIII, MaChsV and MaChsVII were shown to be important for fungal appressorium formation and evasion of insect cellular and/or humoral defenses, promoting the fungal dimorphic transition to the production of hyphal bodies that occurs within hosts, and ultimately to virulence. These data provide new insights into the roles of Chs genes and chitin as critical components affecting fungal membrane structure and function.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Hui Jiang
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Yanru Du
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Kai Jin
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| |
Collapse
|
10
|
Wang S, Liu X, Xia Z, Xie G, Tang B, Wang S. Transcriptome analysis of the molecular mechanism underlying immunity- and reproduction trade-off in Locusta migratoria infected by Micrococcus luteus. PLoS One 2019; 14:e0211605. [PMID: 31412031 PMCID: PMC6693777 DOI: 10.1371/journal.pone.0211605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/01/2019] [Indexed: 01/12/2023] Open
Abstract
Immune response and reproductive success are two vital energy-consuming processes in living organisms. However, it is still unclear which process is prioritized when both are required. Therefore, the present study was designed to examine this question arising for one of the world’s most destructive agricultural pests, the migratory locust, Locusta migratoria. Transcripts from the ovaries and fat bodies of newly emerged locusts were analyzed, using RNA-seq based transcriptome and qualitative real-time PCR, at 4 h and 6 d after being infected with the gram-positive bacteria Micrococcus luteus. Changes in the main biological pathways involved in reproduction and immunization were analyzed using bioinformatics. After 4 h of infection, 348 and 133 transcripts were up- and down-regulated, respectively, whereas 5699 and 44 transcripts were up- and down-regulated, respectively, at 6 d after infection. Moreover, KEGG analysis indicated that vital pathways related with immunity and reproduction, such as Insulin resistance, FoxO signaling, Lysosome, mTOR signaling, and Toll-like receptor signaling pathways were up-regulated. Among the differentially expressed genes, 22 and 17 were related to immunity and reproduction, respectively. The expression levels of PPO1 and antimicrobial peptide defensin 3 were increased (log2FC = 5.93 and 6.75, respectively), whereas those of VgA and VgB were reduced (log2FC = -17.82 and -18.13, respectively). These results indicated that locust allocate energy and resources to maintain their own survival by increasing immune response when dealing with both immune and reproductive processes. The present study provides the first report of expression levels for genes related with reproduction and immunity in locusts, thereby providing a reference for future studies, as well as theoretical guidance for investigations of locust control.
Collapse
Affiliation(s)
- Shaohua Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojun Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhiyong Xia
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoqiang Xie
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
11
|
Mosaheb MUWFZ, Khan NA, Siddiqui R. Cockroaches, locusts, and envenomating arthropods: a promising source of antimicrobials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:873-877. [PMID: 30524685 PMCID: PMC6272074 DOI: 10.22038/ijbms.2018.30442.7339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To present a brief overview of various natural sources of antimicrobials with the aim of highlighting invertebrates living in polluted environments as additional sources of antimicrobials. MATERIALS AND METHODS A PubMed search using antibacterials, antimicrobials, invertebrates, and natural products as keywords was carried out. In addition, we consulted conference proceedings, original unpublished research undertaken in our laboratories, and discussions in specific forums. RESULTS Representative of a stupefying 95% of the fauna, invertebrates are fascinating organisms which have evolved strategies to survive germ-infested environments, yet they have largely been ignored. Since invertebrates such as cockroaches inhabit hazardous environments which are rampant with pathogens, they must have developed defense mechanisms to circumvent infections. This is corroborated by the presence of antimicrobial molecules in the nervous systems and hemolymph of cockroaches. Antimicrobial compounds have also been unraveled from the nervous, adipose, and salivary glandular tissues of locusts. Interestingly, the venoms of arthropods including ants, scorpions, and spiders harbor toxins, but also possess multiple antimicrobials. CONCLUSION These findings have rekindled the hopes for newer and enhanced therapeutic agents derived from a plentiful and diverse resource to combat fatal infectious diseases. Such antimicrobials from unusual sources can potentially be translated into clinical practice, however intensive research is needed over the next several years to realize these expectations.
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| |
Collapse
|
12
|
Pan G, Bao J, Ma Z, Song Y, Han B, Ran M, Li C, Zhou Z. Invertebrate host responses to microsporidia infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:104-113. [PMID: 29428490 DOI: 10.1016/j.dci.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
Microsporidia are a group of fungi-like intracellular and unicellular parasites, which infect nearly all animals. As "master parasites", over 1400 microsporidian species have been described to date. Microsporidia infections in economical invertebrates (e.g., silkworm, shrimp) cause huge financial losses, while other microsporidia infections in daphnia, nematode, locust, honeybee and mosquito play important roles in the regulation of their population size. Research investigating invertebrate host responses following microsporidia infections has yielded numerous interesting results, especially pertaining to the innate immune response to these pathogens. In this review, we comparatively summarize the invertebrate host responses to various microsporidia infections. We discuss numerous critical events in host responses including ubiquitin-mediated resistance, production of reactive oxygen species, melanization and innate immune pathways, and the increased basic metabolism and the accumulation of juvenile hormone in infected hosts. Recent studies progressing our understanding of microsporidia infection are also highlighted. Collectively, these advances shed more light on general rules of invertebrate host immune responses and pathogenesis mechanisms of microsporidia, and concurrently offer valuable clues for further research on the crosstalk between hosts and intracellular pathogens.
Collapse
Affiliation(s)
- Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
13
|
The IMD pathway regulates lysozyme-like proteins (LLPs) in the silkmoth Antheraea mylitta. J Invertebr Pathol 2018; 154:102-108. [DOI: 10.1016/j.jip.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/30/2022]
|