1
|
Ganbold C, Jamiyansuren J, Munkhzorig E, Dashtseren I, Jav S. SNP-SNP positive interaction between MMP2 and MMP12 increases the risk of COPD. PLoS One 2024; 19:e0301807. [PMID: 38771844 PMCID: PMC11108124 DOI: 10.1371/journal.pone.0301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
Determining SNP-SNP interaction of the disease has become important for further investigation of pathogenesis and experimental research. Although many studies have been published on the effect of MMPs gene polymorphisms on chronic obstructive pulmonary disease (COPD), there is a lack of information on SNP-SNP and SNP-environment interactions. This study aimed to investigate the interaction between the polymorphisms of MMP1, MMP2, MMP9 and MMP12 genes and its combined effect with smoking on the risk of developing COPD. Totally 181 COPD patients and 292 healthy individuals were involved. Blood samples from the participants were tested for genotyping and data were collected through questionnaires. Genotyping was performed with nested allele-specific polymerase chain reaction (AS-PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). SNP-SNP and SNP-environment interactions were investigated using multifactor dimensionality reduction and logistic regression analysis. The result showed that participants with high nicotine dependence and heavy smokers had a higher risk of COPD than non-smokers. Also, G/G genotype (cOR = 5.83; 95% CI, 1.19-28.4, p = 0.029) of MMP2 rs243864 and T/T genotype (cOR = 1.79; 95% CI, 1.16-2.76, p = 0.008) of MMP12 rs652438 independently contributes to the susceptibility of COPD. For SNP-SNP interaction, the positive interaction between rs243864 G/G genotype of MMP2 and rs652438 T/T genotype of MMP12 was found, and the combination of risk genotypes has a high risk of COPD (OR = 12.92; 95% CI, 1.46-114.4, p = 0.021). Moreover, the combination of T/T genotype of MMP12 rs652438 and smoking-related factors increases the risk of COPD approximately 4.5 to 6-fold. The results suggests that there is a combination of MMP2, MMP12, and smoking-related factors may increase the risk of developing COPD.
Collapse
Affiliation(s)
- Chimedlkhamsuren Ganbold
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar City, Mongolia
| | - Jambaldorj Jamiyansuren
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar City, Mongolia
| | - Enkhbileg Munkhzorig
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar City, Mongolia
| | - Ichinnorov Dashtseren
- Department of Pulmonology and Allergology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar City, Mongolia
| | - Sarantuya Jav
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar City, Mongolia
- Institute of Biomedical Science, Mongolian National University of Medical Sciences, Ulaanbaatar City, Mongolia
| |
Collapse
|
2
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
3
|
Sarray S, Lamine LB, Dallel M, Jairajpuri D, Turki A, Sellami N, Ezzidi I, Abdelhadi M, Brock R, Ghorbel M, Mahjoub T. Association of MMP-2 genes variants with diabetic retinopathy in Tunisian population with type 2 diabetes. J Diabetes Complications 2022; 36:108182. [PMID: 35339376 DOI: 10.1016/j.jdiacomp.2022.108182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
AIMS Few studies investigated the association of genetic difference in metalloproteinase-2 (MMP-2) gene with diabetic retinopathy but with mixed outcome. To investigate the association between a set of MMP-2 genetic variants and the risk of diabetic retinopathy in an Arab Tunisian population with type 2 diabetes. SUBJECTS AND METHODS A retrospective case-control study comprising a total of 779 type 2 diabetes patients with or without diabetic retinopathy was conducted. Genotyping was prepared by TaqMan® SNP genotyping qRT-PCR. The variants used were rs243865 (C/T), rs243864 (T/G), rs243866 (G/T) and rs2285053 (C/T). RESULTS The minor allele frequency (MAF) of the rs243864 MMP-2 variant was significantly higher among diabetic retinopathy patients. Setting homozygous wild type genotype carrier as reference, the rs243864T/G allele was associated with increased risk of diabetic retinopathy under the dominant, recessive, and additive models which persisted when key covariates were controlled for, while a reduced risk of diabetic retinopathy progression was seen after adjustment between non-proliferative and proliferative diabetic patients. Furthermore, the heterozygous genotype GT of the rs243866 variant is positively associated with the risk of proliferative diabetic retinopathy in the additive model. A limited linkage disequilibrium (LD) was revealed between the four-matrix metalloproteinase-2 variants. Four-loci haplotype analysis identified, GCTC, TTTC, and GCTT haplotypes to be positively associated with the risk of diabetic retinopathy. CONCLUSION Our findings demonstrate that the MMP-2 variant rs243864 and 243866 are related to the susceptibility to diabetic retinopathy and the progression of the disease in an Arab Tunisian population with type 2 diabetes.
Collapse
Affiliation(s)
- Sameh Sarray
- Arabian Gulf University, Department of Medical Biochemistry, Manama, Bahrain; Faculty of Sciences, University Tunis EL Manar, 2092 Manar II, Tunisia.
| | - Laila Ben Lamine
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| | - Mariam Dallel
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| | - Deeba Jairajpuri
- Arabian Gulf University, Department of Medical Biochemistry, Manama, Bahrain
| | - Amira Turki
- Faculty of Applied Medical Sciences, Northern Border University, Ara'ar, Saudi Arabia
| | - Nejla Sellami
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| | - Intissar Ezzidi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia; Faculty of Sciences, University of Gafsa, Tunisia
| | | | - Roland Brock
- Arabian Gulf University, Department of Medical Biochemistry, Manama, Bahrain; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, University Medical Center, Nijmegen, the Netherlands
| | - Mohamed Ghorbel
- Department of Ophthalmology, CHU Farhat Hached, Sousse, Tunisia
| | - Touhami Mahjoub
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University Monastir, Tunisia
| |
Collapse
|
4
|
Association of Matrix Metalloproteinase-2 (MMP-2) and MMP-9 Promoter Polymorphisms, Their Serum Levels, and Activities with Coronary Artery Calcification (CAC) in an Iranian Population. Cardiovasc Toxicol 2021; 22:118-129. [PMID: 34731407 DOI: 10.1007/s12012-021-09707-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
The serum levels and activity of matrix metalloproteinases (MMPs) are associated with the risk of coronary artery calcification (CAC). We sought to investigate the association between MMP-2 -1575G>A (rs243866) and MMP-9 -1562 C>T (rs3918242) SNPs with MMP-2 and MMP-9 serum levels and activity in individuals with CAC. One hundred and fifty-five cases with CAC and 155 healthy individuals as control group from West of Iran were included and frequency of genotypes and alleles of rs243866 and rs3918242 in MMP-2 and MMP-9 genes were determined using PCR-RFLP. We also investigated the serum levels of MMP-2 and MMP-9 and their activity using ELISA and gelatin zymography, respectively. Additionally, serum biochemical parameters including FBS (fasting blood sugar), urea, creatinine, cholesterol, triglyceride, HDL (high-density lipoprotein), LDL (low-density lipoprotein), calcium, and phosphorus as well as blood pressure (systolic blood pressure (SBP) and diastolic blood pressure (DBP)) were measured. Our results showed that both serum levels of MMP-2 and MMP-9 (P < 0.001) and their activity (P < 0.001) were higher in individuals with CAC when compared to the control group. Carrying A and T alleles in MMP-2 -1575G>A (rs243866) and MMP-9 -1562 C>T (rs3918242) SNPs, respectively, may predispose the individuals to CAC by acting as the risk factors. Serum levels and activity of MMP-2 and MMP-9 were found to be higher in CAC cases when compared to the healthy controls. Carriers of A allele in rs243866 SNP and T allele in rs3918242 SNP were shown to have higher MMP-2 and MMP-9 serum levels and activity that may result in increased ECM degradation and support the initiation and development of calcification.
Collapse
|
5
|
Suciu-Petrescu M, Truta A, Suciu MD, Trifa AP, Petrescu D, Roșianu HȘ, Sabin O, Popa DE, Macarie AE, Vesa ȘC, Buzoianu AD. Clinical impact of echocardiography parameters and molecular biomarkers in heart failure: Correlation of ACE2 and MCP-1 polymorphisms with echocardiography parameters: A comparative study. Exp Ther Med 2021; 22:686. [PMID: 33986851 DOI: 10.3892/etm.2021.10118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is still the leading cause of hospitalization in patients over 65 years of age and is defined as a multifactorial pathology which involves environmental factors and also genetic predispositions. The aim of the present study was to evaluate a possible correlation between single nucleotide polymorphisms (SNPs) of angiotensin converting enzyme 2 (ACE2) and monocyte chemoattractant protein-1 (MCP-1) genes and cardiac remodeling in Caucasian patients diagnosed with heart failure. Our comparative translational research study included 116 patients diagnosed with heart failure and was carried out in Cluj-Napoca, Romania between September 2017 and March 2019. Three SNPs, namely rs4646156, rs4646174 and rs1024611, were genotyped using a Taqman real-time PCR technique. Our results showed that carriers of the AA genotype for ACE2 rs4646156 had a significant dilatation of the left ventricle (LV) with signs of LV hypertrophy (LVH), while TT carriers had a significant left atrial dilatation. For ACE2 rs4646174, homozygotes for the C allele presented a dilated LV with signs of LVH with statistical significance and had a tendency towards a lower ejection fraction. MCP-1 rs1024611 AA variant carriers had a significant LVH in the dominant model. In conclusion, our study showed a strong association between echocardiographic parameters of cardiac remodeling and SNPs rs4646156, rs4646174 of ACE2 and rs1024611 of MCP-1.
Collapse
Affiliation(s)
- Mălina Suciu-Petrescu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Cardiology, 'Regina Maria' Hospital, 400117 Cluj-Napoca, Romania
| | - Anamaria Truta
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Mihai Domnutiu Suciu
- Department of Urology, Clinical Institute of Urology and Kidney Transplant, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400066 Cluj-Napoca, Romania
| | - Adrian Pavel Trifa
- Department of Medical Genetics, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Denisa Petrescu
- Department of Endocrinology, Emergency Clinical County Hospital Cluj, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Horia Ștefan Roșianu
- Department of Cardiology, 'Niculae Stăncioiu' Heart Institute, 400001 Cluj-Napoca, Romania
| | - Octavia Sabin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Daciana Elena Popa
- Department of Cardiology, 'Niculae Stăncioiu' Heart Institute, 400001 Cluj-Napoca, Romania
| | - Antonia Eugenia Macarie
- Department of Geriatrics-Gerontology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
| | - Ștefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Prado AF, Batista RIM, Tanus-Santos JE, Gerlach RF. Matrix Metalloproteinases and Arterial Hypertension: Role of Oxidative Stress and Nitric Oxide in Vascular Functional and Structural Alterations. Biomolecules 2021; 11:biom11040585. [PMID: 33923477 PMCID: PMC8074048 DOI: 10.3390/biom11040585] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Various pathophysiological mechanisms have been implicated in hypertension, but those resulting in vascular dysfunction and remodeling are critical and may help to identify critical pharmacological targets. This mini-review article focuses on central mechanisms contributing to the vascular dysfunction and remodeling of hypertension, increased oxidative stress and impaired nitric oxide (NO) bioavailability, which enhance vascular matrix metalloproteinase (MMP) activity. The relationship between NO, MMP and oxidative stress culminating in the vascular alterations of hypertension is examined. While the alterations of hypertension are not fully attributable to these pathophysiological mechanisms, there is strong evidence that such mechanisms play critical roles in increasing vascular MMP expression and activity, thus resulting in abnormal degradation of extracellular matrix components, receptors, peptides, and intracellular proteins involved in the regulation of vascular function and structure. Imbalanced vascular MMP activity promotes vasoconstriction and impairs vasodilation, stimulating vascular smooth muscle cells (VSMC) to switch from contractile to synthetic phenotypes, thus facilitating cell growth or migration, which is associated with the deposition of extracellular matrix components. Finally, the protective effects of MMP inhibitors, antioxidants and drugs that enhance vascular NO activity are briefly discussed. Newly emerging therapies that address these essential mechanisms may offer significant advantages to prevent vascular remodeling in hypertensive patients.
Collapse
Affiliation(s)
- Alejandro F. Prado
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA 66075-110, Brazil;
| | - Rose I. M. Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; (R.I.M.B.); (J.E.T.-S.)
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; (R.I.M.B.); (J.E.T.-S.)
| | - Raquel F. Gerlach
- Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
- Correspondence: ; Tel.: +55-16-33154065
| |
Collapse
|
7
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
8
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Relationship of polymorphisms in the tissue inhibitor of metalloproteinase (TIMP)-1 and -2 genes with chronic heart failure. Sci Rep 2018; 8:9446. [PMID: 29930267 PMCID: PMC6013444 DOI: 10.1038/s41598-018-27857-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
Dysregulated expression of tissue inhibitors of matrix metalloproteinases (TIMPs) is associated with systolic dysfunction and worsening heart failure (HF). However, no study has assessed the relationship between TIMP polymorphisms and chronic HF. In this study, 300 HF outpatients with reduced left ventricular ejection fraction and 304 healthy blood donors were genotyped for the 372 T > C polymorphism (Phe124Phe; rs4898) in the TIMP-1 gene and the −418 G > C polymorphism (rs8179090) in the TIMP-2 gene to investigate whether these polymorphisms are associated with HF susceptibility and prognosis. The genotype and allele frequencies of the 372 T > C polymorphism in HF patients were not significantly different from those observed among healthy subjects, and the C allele of the −418 G > C polymorphism was very rare in our population (frequency < 1%). After a median follow-up duration of 5.5 years, 121 patients (40.3%) died (67 of them from HF). Survival analysis did not show statistically significant differences in all-cause death and HF-related death between patients with and without the T allele (P > 0.05 for all comparisons). Thus, our findings do not support the hypothesis that the 372 T > C (Phe124Phe) polymorphism in the TIMP-1 gene and the −418 G > C polymorphism in the TIMP-2 gene are associated with HF susceptibility and prognosis in Southern Brazilians.
Collapse
|
10
|
Spinale FG, Sapp AA. Cardiovascular Risk and Matrix Metalloproteinase Polymorphisms: Not Just a Simple Substitution. ACTA ACUST UNITED AC 2017; 10:e001958. [PMID: 29212903 DOI: 10.1161/circgenetics.117.001958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francis G Spinale
- From the Cardiovascular Translational Research Center, University of South Carolina School of Medicine and WJB Dorn Veteran Affairs Medical Center, Columbia (F.G.S., A.A.S.).
| | - Ashley A Sapp
- From the Cardiovascular Translational Research Center, University of South Carolina School of Medicine and WJB Dorn Veteran Affairs Medical Center, Columbia (F.G.S., A.A.S.)
| |
Collapse
|
11
|
Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:75-100. [PMID: 28413032 DOI: 10.1016/bs.pmbts.2017.02.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the leading cause of death, accounting for 600,000 deaths each year in the United States. In addition, heart failure accounts for 37% of health care spending. Matrix metalloproteinases (MMPs) increase after myocardial infarction (MI) and correlate with left ventricular dysfunction in heart failure patients. MMPs regulate the remodeling process by facilitating extracellular matrix turnover and inflammatory signaling. Due to the critical role MMPs play during cardiac remodeling, there is a need to better understand the pathophysiological mechanism of MMPs, including the biological function of the downstream products of MMP proteolysis. Future studies developing new therapeutic targets that inhibit specific MMP actions to limit the development of heart failure post-MI are warranted. This chapter focuses on the role of MMPs post-MI, the efficiency of MMPs as biomarkers for MI or heart failure, and the future of MMPs and their cleavage products as targets for prevention of post-MI heart failure.
Collapse
|
12
|
Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020211. [PMID: 28230811 PMCID: PMC5334765 DOI: 10.3390/ijerph14020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
Abstract
Left ventricular remodeling is an essential risk factor contributing to the pathogenesis of chronic heart failure (CHF). Basigin (BSG) promotes cardiovascular inflammation and myocardial remodeling processes by induction of extracellular matrix metalloproteinases and inflammatory cytokines. BSG rs8259 polymorphism was associated with BSG expression and risk of acute coronary syndrome. Therefore, we investigated whether rs8259 polymorphism contributes to risk and prognosis of CHF in Chinese patients. In total 922 adult patients with CHF and 1107 matched healthy controls were enrolled. BSG rs8259 polymorphism was genotyped using PCR-restriction fragment length polymorphism. Whole blood BSG mRNA expression data from Genotype-Tissue Expression project was accessed. Evaluation of follow-up data was performed in only 15.2% (140) of the patients with CHF. BSG rs8259 TT genotype was associated with a decreased risk of CHF (OR = 0.83, 95% CI = 0.72–0.96, p = 0.010), especially in patients with hypertension (OR = 0.80, 95% CI = 0.68–0.95, p = 0.011) and coronary heart disease (OR = 0.81, 95% CI = 0.69–0.96, p = 0.013) after adjustment for multiple cardiovascular risk factors. Rs8259 T allele was associated with decreased BSG mRNA in whole blood from 338 healthy normal donors (p = 1.31 × 10−6). However, rs8259 polymorphism failed to exhibit an association with cardiovascular mortality (p = 0.283). BSG rs8259 polymorphism may contribute to decreased risk of CHF in a Chinese Han population.
Collapse
|
13
|
Relationship of long-term prognosis to MMP and TIMP polymorphisms in patients after ST elevation myocardial infarction. J Appl Genet 2017; 58:331-341. [DOI: 10.1007/s13353-016-0388-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023]
|