1
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven Increase in IL-1β in Myeloid Cells is Mediated by Differential Dopamine Receptor Expression and Exacerbated by HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598137. [PMID: 38915663 PMCID: PMC11195146 DOI: 10.1101/2024.06.09.598137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
|
2
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Zhi D, Zhang M, Lin J, Liu P, Wang Y, Duan M. Wedelolactone improves the renal injury induced by lipopolysaccharide in HK-2 cells by upregulation of protein tyrosine phosphatase non-receptor type 2. J Int Med Res 2021; 49:3000605211012665. [PMID: 33983070 PMCID: PMC8127797 DOI: 10.1177/03000605211012665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To explore the effects of wedelolactone (WEL) on sepsis-induced renal injury in the human renal proximal tubular epithelial cell line HK-2. Methods HK-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) to trigger renal injury in vitro. HK-2 cells were pretreated with or without WEL (0.1, 1 and 10 µM) before LPS stimulation. Protein and mRNA analyses were performed using enzyme-linked immunosorbent assays, Western blot analysis and quantitative reverse transcription–polymerase chain reaction. The MTT assay and flow cytometry were used to measure cell viability and the rate of cell apoptosis. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) knockdown was induced by the transection of HK-2 cells with short hairpin RNA. Results Cell viability was significantly increased in a dose-dependent manner by WEL in LPS-induced HK-2 cells. WEL also decreased the levels of four inflammatory cytokines and cell apoptosis in LPS-induced HK-2 cells. The level of PTPN2 was increased after WEL treatment. PTPN2 knockdown partly abolished the inhibitory effects of WEL on cell apoptosis, the levels of inflammatory cytokines and on p38 mitogen-activated protein kinase/nuclear factor-kappaB signalling in LPS-induced HK-2 cells. Conclusion WEL improved renal injury by suppressing inflammation and cell apoptosis through upregulating PTPN2 in HK-2 cells. PTPN2 might be used as a potential therapeutic target for LPS-induced sepsis.
Collapse
Affiliation(s)
- Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yajun Wang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhang D, Jiang Y, Song D, Zhu Z, Zhou C, Dai L, Xu X. Tyrosine-protein phosphatase non-receptor type 2 inhibits alveolar bone resorption in diabetic periodontitis via dephosphorylating CSF1 receptor. J Cell Mol Med 2019; 23:6690-6699. [PMID: 31373168 PMCID: PMC6787442 DOI: 10.1111/jcmm.14545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2 (PTPN2) is an important protection factor for diabetes and periodontitis, but the underlying mechanism remains elusive. This study aimed to identify the substrate of PTPN2 in mediating beneficial effects of 25-Hydroxyvitamin D3 (25(OH)2D3 ) on diabetic periodontitis. 25(OH)2D3 photo-affinity probe was synthesized with the minimalist linker and its efficacy to inhibit alveolar bone loss, and inflammation was evaluated in diabetic periodontitis mice. The probe was used to pull down the lysates of primary gingival fibroblasts. We identified PTPN2 as a direct target of 25(OH)2D3 , which effectively inhibited inflammation and bone resorption in diabetic periodontitis mice. In addition, we found that colony-stimulating factor 1 receptor (CSF1R) rather than JAK/STAT was the substrate of PTPN2 to regulate bone resorption. PTPN2 direct interacted with CSF1R and dephosphorylated Tyr807 residue. In conclusion, PTPN2 dephosphorylates CSF1R at Y807 site and inhibits alveolar bone resorption in diabetic periodontitis mice. PTPN2 and CSF1R are potential targets for the therapy of diabetic periodontitis or other bone loss-related diseases.
Collapse
Affiliation(s)
- Dongjiao Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Implantology, School of Stomatology, Shandong University, Jinan, China
| | - Yanfei Jiang
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Dawei Song
- The Seventh People's Hospital of Shenzhen, Shenzhen, China
| | - Zhenkun Zhu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Implantology, School of Stomatology, Shandong University, Jinan, China
| | - Cong Zhou
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Implantology, School of Stomatology, Shandong University, Jinan, China
| | - Li Dai
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Implantology, School of Stomatology, Shandong University, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Implantology, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
5
|
Ellegård S, Veenstra C, Pérez-Tenorio G, Fagerström V, Gårsjö J, Gert K, Sundquist M, Malmström A, Wingren S, Elander NO, Hallbeck AL, Stål O. ERBB2 and PTPN2 gene copy numbers as prognostic factors in HER2-positive metastatic breast cancer treated with trastuzumab. Oncol Lett 2019; 17:3371-3381. [PMID: 30867772 PMCID: PMC6396168 DOI: 10.3892/ol.2019.9998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Trastuzumab has markedly improved the treatment and long-term prognosis of patients with HER2-positive breast cancer. A frequent clinical challenge in patients with relapsing and/or metastatic disease is de novo or acquired trastuzumab resistance, and to date no predictive biomarkers for palliative trastuzumab have been established. In the present study, the prognostic values of factors involved in the HER2-associated PI3K/Akt signalling pathway were explored. The first 46 consecutive patients treated at the Department of Oncology, Linköping University Hospital between 2000 and 2007 with trastuzumab for HER2-positive metastatic breast cancer were retrospectively included. The gene copy number variation and protein expression of several components of the PI3K/Akt pathway were assessed in the tumour tissue and biopsy samples using droplet digital polymerase chain reaction and immunohistochemistry. Patients with tumours displaying a high-grade ERBB2 (HER2) amplification level of ≥6 copies had a significantly improved overall survival hazard ratio [(HR)=0.4; 95%, confidence interval (CI): 0.2–0.9] and progression-free survival (HR=0.3; 95% CI: 0.1–0.7) compared with patients with tumours harbouring fewer ERBB2 copies. High-grade ERBB2 amplification was significantly associated with the development of central nervous system metastases during palliative treatment. Copy gain (≥3 copies) of the gene encoding the tyrosine phosphatase PTPN2 was associated with a shorter overall survival (HR=2.0; 95% CI: 1.0–4.0) and shorter progression-free survival (HR=2.1; 95% CI: 1.0–4.1). In conclusion, high ERBB2 amplification level is a potential positive prognostic factor in trastuzumab-treated HER2-positive metastatic breast cancer, whereas PTPN2 gain is a potential negative prognostic factor. Further studies are warranted on the role of PTPN2 in HER2 signalling.
Collapse
Affiliation(s)
- Sander Ellegård
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Cynthia Veenstra
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Victor Fagerström
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden.,Department of Surgery, Kalmar Hospital, SE-392 44 Kalmar, Sweden
| | - Jon Gårsjö
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Krista Gert
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Marie Sundquist
- Department of Surgery, Kalmar Hospital, SE-392 44 Kalmar, Sweden
| | - Annika Malmström
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Sten Wingren
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Nils O Elander
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Anna-Lotta Hallbeck
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|