1
|
Glotzbach A, Rohlf K, Gonscharow A, Lüke S, Demirci Ö, Begher-Tibbe B, Overbeck N, Reinders J, Cadenas C, Hengstler JG, Edlund K, Marchan R. EDI3 knockdown in ER-HER2+ breast cancer cells reduces tumor burden and improves survival in two mouse models of experimental metastasis. Breast Cancer Res 2024; 26:87. [PMID: 38816770 PMCID: PMC11138102 DOI: 10.1186/s13058-024-01849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.
Collapse
Affiliation(s)
- Annika Glotzbach
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Katharina Rohlf
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Anastasia Gonscharow
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Simon Lüke
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Özlem Demirci
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
- Department of Biology, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Nina Overbeck
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| |
Collapse
|
2
|
Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7483911. [PMID: 36147639 PMCID: PMC9489359 DOI: 10.1155/2022/7483911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Background Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function, and the lack of diagnostic biomarkers makes community-based screening problematic. Methods Three gene expression profiles related with sarcopenia were downloaded and merged by searching the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and eigengenes of a module in the merged dataset were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA), and common genes (CGs) were defined as the intersection of DEGs and eigengenes of a module. CGs were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen the CGs for identifying the diagnostic biomarkers of sarcopenia. Based on the diagnostic biomarkers, we established a novel nomogram model of sarcopenia. At last, we validated the diagnostic biomarkers and evaluated the diagnostic performance of the nomogram model by the area under curve (AUC) value. Results We screened out 107 DEGs and 788 eigengenes in the turquoise module, and 72 genes were selected as CGs of sarcopenia by intersection. GO analysis showed that CGs were mainly involved in metal ion detoxification and mitochondrial structure, and KEGG analysis revealed that CGs were mainly enriched in the mineral absorption, glucagon signaling pathway, FoxO signaling pathway, insulin signaling pathway, AMPK signaling pathway, and estrogen signaling pathway. Then, six diagnostic biomarkers (ARHGAP36, FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG) were identified by LASSO analysis. Finally, the validation AUC values indicated that the six diagnostic biomarkers had high diagnostic accuracy for sarcopenia. Conclusion We identified six diagnostic biomarkers with high diagnostic performance, providing new insights into the incidence and progression of sarcopenia in future research.
Collapse
|
3
|
Cox DC, Guan X, Xia Z, Cooper TA. Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting. Hum Mol Genet 2020; 29:1729-1744. [PMID: 32412585 PMCID: PMC7322576 DOI: 10.1093/hmg/ddaa095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
mRNA processing is highly regulated during development through changes in RNA-binding protein (RBP) activities. CUG-BP, Elav-like family member 1 (CELF1, also called CUGBP1) is an RBP, the expression of which decreases in skeletal muscle soon after birth. CELF1 regulates multiple nuclear and cytoplasmic RNA processing events. In the nucleus, CELF1 regulates networks of postnatal alternative splicing (AS) transitions, while in the cytoplasm, CELF1 regulates mRNA stability and translation. Stabilization and misregulation of CELF1 has been implicated in human diseases including myotonic dystrophy type 1, Alzheimer's disease and multiple cancers. To understand the contribution of nuclear and cytoplasmic CELF1 activity to normal and pathogenic skeletal muscle biology, we generated transgenic mice for doxycycline-inducible and skeletal muscle-specific expression of active CELF1 mutants engineered to be localized predominantly to either the nucleus or the cytoplasm. Adult mice expressing nuclear, but not cytoplasmic, CELF1 are characterized by strong histopathological defects, muscle loss within 10 days and changes in AS. In contrast, mice expressing cytoplasmic CELF1 display changes in protein levels of targets known to be regulated at the level of translation by CELF1, with minimal changes in AS. These changes are in the absence of overt histopathological changes or muscle loss. RNA-sequencing revealed extensive gene expression and AS changes in mice overexpressing nuclear and naturally localized CELF1 protein, with affected genes involved in cytoskeleton dynamics, membrane dynamics, RNA processing and zinc ion binding. These results support a stronger role for nuclear CELF1 functions as compared to cytoplasmic CELF1 functions in skeletal muscle wasting.
Collapse
Affiliation(s)
- Diana C Cox
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiangnan Guan
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239 USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX, 77030 USA
| |
Collapse
|