1
|
Mellidou I, Kanellis AK. Revisiting the role of ascorbate oxidase in plant systems. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2740-2753. [PMID: 38366668 DOI: 10.1093/jxb/erae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
2
|
Ahmed R, Kaldis A, Voloudakis A. Silencing of a Nicotiana benthamiana ascorbate oxidase gene reveals its involvement in resistance against cucumber mosaic virus. PLANTA 2024; 259:38. [PMID: 38227024 PMCID: PMC10791908 DOI: 10.1007/s00425-023-04313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
MAIN CONCLUSION Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Reshma Ahmed
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
3
|
Liang KL, Liu JY, Bao YY, Wang ZY, Xu XB. Screening and Identification of Host Factors Interacting with the Virulence Factor P0 Encoded by Sugarcane Yellow Leaf Virus by Yeast Two-Hybrid Assay. Genes (Basel) 2023; 14:1397. [PMID: 37510302 PMCID: PMC10379860 DOI: 10.3390/genes14071397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Sugarcane yellow leaf virus (SCYLV), a member of the genus Polerovirus in the family Luteoviridae, causes severe damage and represents a great threat to sugarcane cultivation and sugar industry development. In this study, inoculation of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the SCYLV P0 gene induced typical mosaic, leaf rolling symptoms and was associated with a hypersensitive-like response (HLR) necrosis symptom, which is accompanied with a systemic burst of H2O2 and also leads to higher PVX viral genome accumulation levels. Our results demonstrate that SCYLV P0 is a pathogenicity determinant and plays important roles in disease development. To further explore its function in pathogenic processes, a yeast two-hybrid assay was performed to screen the putative P0-interacting host factors. The recombinant plasmid pGBKT7-P0 was constructed as a bait and transformed into the yeast strain Y2HGold. The ROC22 cultivar (an important parental resource of the main cultivar in China) cDNA prey library was constructed and screened by co-transformation with the P0 bait. We identified 28 potential interacting partners including those involved in the optical signal path, plant growth and development, transcriptional regulation, host defense response, and viral replication. To our knowledge, this is the first time we have reported the host proteins interacting with the P0 virulence factor encoded by sugarcane yellow leaf virus. This study not only provides valuable insights into elucidating the molecular mechanism of the pathogenicity of SCYLV, but also sheds light on revealing the probable new pathogenesis of Polerovirus in the future.
Collapse
Affiliation(s)
- Kai-Li Liang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Jing-Ying Liu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Ying-Ying Bao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhi-Yuan Wang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xiong-Biao Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Zhang M, Hong Y, Zhu J, Pan Y, Zhou H, Lv C, Guo B, Wang F, Xu R. Molecular insights into the responses of barley to yellow mosaic disease through transcriptome analysis. BMC PLANT BIOLOGY 2023; 23:267. [PMID: 37208619 DOI: 10.1186/s12870-023-04276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) represents the fourth most essential cereal crop in the world, vulnerable to barley yellow mosaic virus (BaYMV) and/or barley mild mosaic virus (BaMMV), leading to the significant yield reduction. To gain a better understanding of the mechanisms regarding barley crop tolerance to virus infection, we employed a transcriptome sequencing approach and investigated global gene expression among three barley varieties under both infected and control conditions. RESULTS High-throughput sequencing outputs revealed massive genetic responses, reflected by the barley transcriptome after BaYMV and/or BaMMV infection. Significant enrichments in peptidase complex and protein processing in endoplasmic reticulum were clustered through Gene ontology and KEGG analysis. Many genes were identified as transcription factors, antioxidants, disease resistance genes and plant hormones and differentially expressed between infected and uninfected barley varieties. Importantly, general response genes, variety-specific and infection-specific genes were also discovered. Our results provide useful information for future barley breeding to resist BaYMV and BaMMV. CONCLUSIONS Our study elucidates transcriptomic adaptations in barley response to BaYMV/BaMMV infection through high-throughput sequencing technique. The analysis outcome from GO and KEGG pathways suggests that BaYMV disease induced regulations in multiple molecular-biology processes and signalling pathways. Moreover, critical DEGs involved in defence and stress tolerance mechanisms were displayed. Further functional investigations focusing on these DEGs contributes to understanding the molecular mechanisms of plant response to BaYMV disease infection, thereby offering precious genetic resources for breeding barley varieties resistant to BaYMV disease.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhan Pan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Rattan UK, Kumar S, Kumari R, Bharti M, Hallan V. Homeobox 27, a Homeodomain Transcription Factor, Confers Tolerances to CMV by Associating with Cucumber Mosaic Virus 2b Protein. Pathogens 2022; 11:pathogens11070788. [PMID: 35890032 PMCID: PMC9323240 DOI: 10.3390/pathogens11070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play an important role in plant development; however, their role during viral infection largely remains unknown. The present study was designed to uncover the role transcription factors play in Cucumber mosaic virus (CMV) infection. During the screening of an Arabidopsis thaliana (Col-0) transcription factor library, using the CMV 2b protein as bait in the yeast two-hybrid system, the 2b protein interacted with Homeobox protein 27 (HB27). HB27 belongs to the zinc finger homeodomain family and is known to have a regulatory role in flower development, and responses to biotic and abiotic stress. The interaction between CMV 2b and HB27 proteins was further validated using in planta (bimolecular fluorescence complementation assay) and in vitro far-Western blotting (FWB) methods. In the bimolecular fluorescence complementation assay, these proteins reconstituted YFP fluorescence in the nucleus and the cytoplasmic region as small fluorescent dots. In FWB, positive interaction was detected using bait anti-MYC antibody on the target HB27-HA protein. During CMV infection, upregulation (~3-fold) of the HB27 transcript was observed at 14 days post-infection (dpi) in A. thaliana plants, and expression declined to the same as healthy plants at 21 dpi. To understand the role of the HB27 protein during CMV infection, virus accumulation was determined in HB27-overexpressing (HB27 OE) and knockout mutants. In HB27-overexpressing lines, infected plants developed mild symptoms, accumulating a lower virus titer at 21 dpi compared to wild-type plants. Additionally, knockout HB27 mutants had more severe symptoms and a higher viral accumulation than wild-type plants. These results indicate that HB27 plays an important role in the regulation of plant defense against plant virus infection.
Collapse
Affiliation(s)
- Usha Kumari Rattan
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Kumar
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
| | - Reenu Kumari
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- College of Horticulture and Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Thunag, Mandi 175048, India
| | - Monika Bharti
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
| | - Vipin Hallan
- Plant Virology Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (U.K.R.); (S.K.); (R.K.); (M.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: ; Tel.: +91-1894-233338; Fax: +91-1894-230433
| |
Collapse
|
6
|
Comparative Transcriptome Analysis of Two Cucumber Cultivars with Different Sensitivity to Cucumber Mosaic Virus Infection. Pathogens 2020; 9:pathogens9020145. [PMID: 32098056 PMCID: PMC7168641 DOI: 10.3390/pathogens9020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Cucumber mosaic virus (CMV), with extremely broad host range including both monocots and dicots around the world, belongs to most important viral crop threats. Either natural or genetically constructed sources of resistance are being intensively investigated; for this purpose, exhaustive knowledge of molecular virus-host interaction during compatible and incompatible infection is required. New technologies and computer-based “omics” on various levels contribute markedly to this topic. In this work, two cucumber cultivars with different response to CMV challenge were tested, i.e., sensitive cv. Vanda and resistant cv. Heliana. The transcriptomes were prepared from both cultivars at 18 days after CMV or mock inoculation. Subsequently, four independent comparative analyses of obtained data were performed, viz. mock- and CMV-inoculated samples within each cultivar, samples from mock-inoculated cultivars to each other and samples from virus-inoculated cultivars to each other. A detailed picture of CMV-influenced genes, as well as constitutive differences in cultivar-specific gene expression was obtained. The compatible CMV infection of cv. Vanda caused downregulation of genes involved in photosynthesis, and induction of genes connected with protein production and modification, as well as components of signaling pathways. CMV challenge caused practically no change in the transcription profile of the cv. Heliana. The main differences between constitutive transcription activity of the two cultivars relied in the expression of genes responsible for methylation, phosphorylation, cell wall organization and carbohydrate metabolism (prevailing in cv. Heliana), or chromosome condensation and glucan biosynthesis (prevailing in cv. Vanda). Involvement of several genes in the resistant cucumber phenotype was predicted; this can be after biological confirmation potentially applied in breeding programs for virus-resistant crops.
Collapse
|
7
|
Zhao J, Xu J, Chen B, Cui W, Zhou Z, Song X, Chen Z, Zheng H, Lin L, Peng J, Lu Y, Deng Z, Chen J, Yan F. Characterization of Proteins Involved in Chloroplast Targeting Disturbed by Rice Stripe Virus by Novel Protoplast⁻Chloroplast Proteomics. Int J Mol Sci 2019; 20:E253. [PMID: 30634635 PMCID: PMC6358847 DOI: 10.3390/ijms20020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viral pathogens in rice and can also cause the general chlorosis symptom in Nicotiana benthamiana plants. The chloroplast changes associated with chlorosis symptom suggest that RSV interrupts normal chloroplast functions. Although the change of proteins of the whole cell or inside the chloroplast in response to RSV infection have been revealed by proteomics, the mechanisms resulted in chloroplast-related symptoms and the crucial factors remain to be elucidated. RSV infection caused the malformation of chloroplast structure and a global reduction of chloroplast membrane protein complexes in N. benthamiana plants. Here, both the protoplast proteome and the chloroplast proteome were acquired simultaneously upon RSV infection, and the proteins in each fraction were analyzed. In the protoplasts, 1128 proteins were identified, among which 494 proteins presented significant changes during RSV; meanwhile, 659 proteins were identified from the chloroplasts, and 279 of these chloroplast proteins presented significant change. According to the label-free LC⁻MS/MS data, 66 nucleus-encoded chloroplast-related proteins (ChRPs), which only reduced in chloroplast but not in the whole protoplast, were identified, indicating that these nuclear-encoded ChRPswere not transported to chloroplasts during RSV infection. Gene ontology (GO) enrichment analysis confirmed that RSV infection changed the biological process of protein targeting to chloroplast, where 3 crucial ChRPs (K4CSN4, K4CR23, and K4BXN9) were involved in the regulation of protein targeting into chloroplast. In addition to these 3 proteins, 41 among the 63 candidate proteins were characterized to have chloroplast transit peptides. These results indicated that RSV infection changed the biological process of protein targeting into chloroplast and the location of ChRPs through crucial protein factors, which illuminated a new layer of RSV⁻host interaction that might contribute to the symptom development.
Collapse
Affiliation(s)
- Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Texas A&M University AgriLife Research Center at Dallas, Dallas, TX 75252, USA.
| | - Jingjing Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Binghua Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Weijun Cui
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhongjing Zhou
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xijiao Song
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhuo Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhiping Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|