1
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
2
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2024:10.1038/s41430-024-01527-4. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
3
|
Ma JJ, Wu WY, Liao J, Liu L, Wang Q, Xiao GS, Liu HF. Preparation of Dendrobium officinale Polysaccharide by Lactic Acid Bacterium Fermentation and Its Protective Mechanism against Alcoholic Liver Damage in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17633-17648. [PMID: 39051975 DOI: 10.1021/acs.jafc.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Dendrobium officinale polysaccharide (DP) was prepared with lactic acid bacterium fermentation to overcome the large molecular weight and complex structure of traditional DP for improving its functional activity and application range in this work. The structure was analyzed, and then the functional activity was evaluated using a mouse model of alcoholic liver damage. The monosaccharide compositions were composed of four monosaccharides: arabinose (0.13%), galactose (0.50%), glucose (24.38%), and mannose (74.98%) with a molecular weight of 2.13 kDa. The connection types of glycosidic bonds in fermented D. officinale (KFDP) were →4)-β-D-Manp(1→, →4)-β-Glcp(1→, β-D-Manp(1→, and β-D-Glcp(1→. KFDP exhibited an excellent protective effect on alcoholic-induced liver damage at a dose of 80 mg/kg compared with polysaccharide separated and purified from D. officinale without fermentation (KDP), which increased the activity of GSH, GSH-Px, and GR and decreased the content of MDA, AST, T-AOC, and ALT, as well as regulated the level of IL-6, TNF-α, and IL-1β to maintain the normal functional structure of hepatocytes and retard the apoptosis rate of hepatocytes. The results proved that fermentation degradation is beneficial to improving the biological activity of polysaccharides. The potential mechanism of KFDP in protecting alcoholic liver damage was inhibiting the expression of miRNA-150-5p and targeting to promote the expression of Pik3r1. This study provides an important basis for the development of functional foods.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Wei-Yao Wu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Geng-Sheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hui-Fan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
4
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Wang T, Xiong YG, Si TZ, Yan JP, Li XR, Liu CJ, Yang E. Effects of priming glycosyltransferase genes cps 2E and cps 4E on the exopolysaccharide biosynthesis by Lactiplantibacillus plantarum YM-4-3 strain. Int J Biol Macromol 2024; 269:131813. [PMID: 38685537 DOI: 10.1016/j.ijbiomac.2024.131813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Microbial exopolysaccharides (EPS) have various physiological functions such as antioxidant, anti-tumor, cholesterol lowering, and immune regulation. However, improving traditional fermentation conditions to increase the production of EPS from Lactiplantibacillus plantarum (L. plantarum) is limited. In this study, we aimed to better improve EPS production and physiological functions of L. plantarum YM-4-3 strain by overexpressing and knocking out the priming glycosyltransferase genes cps 2E and cps 4E for the first time. As a result, the EPS production of the overexpression strain was 30.15 %, 26.84 % and 36.29 % higher than WT, respectively. The EPS production of the knockout strain was significantly lower than that of the WT. At the same time, transcriptome data showed that the gene expression levels of each experimental strain had changed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways found that the glycolysis/gluconeogenesis pathway had the highest gene enrichment in the metabolic pathway. The monosaccharide components of the EPS of each experimental strain were different from those of the WT and the EPS of the experimental strain showed stronger activity against oxidation. In conclusion, this study contributes to the efficient production and application of L. plantarum EPS and helps to understand the mechanism of EPS regulation in L. plantarum.
Collapse
Affiliation(s)
- Tian Wang
- Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong-Gang Xiong
- Honghe Hani and Yi Autonomous Prefecture Research Institute of Inspection and Testing, Yunnan, Honghe 661100, China
| | - Tian-Zhao Si
- Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin-Ping Yan
- Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiao-Ran Li
- Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chen-Jian Liu
- Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - En Yang
- Center for Biotechnology and Bioengineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
6
|
Chen N, Hu M, Jiang T, Xiao P, Duan JA. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr Polym 2024; 333:122003. [PMID: 38494201 DOI: 10.1016/j.carbpol.2024.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3β, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Meifen Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Shi C, Deng Y, An X, Chen Y, Lv X, Liu Q. Extraction, Physicochemical Properties, and In Vitro Antioxidant Activities of Chondroitin Sulfate from Bovine Nose Cartilage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6328378. [PMID: 38800764 PMCID: PMC11126348 DOI: 10.1155/2024/6328378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/31/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Beef is an important high-nutrition livestock product, and several byproducts, such as bovine cartilage, are produced during slaughter. To effectively utilize these agricultural and pastoral byproducts, combined (trypsin-papain) enzymolysis and cetylpyridine chloride purification methods were used to obtain chondroitin sulfate (CS) from the nasal cartilage of Shaanxi Yellow cattle. The effects of pH, temperature, and time on the CS yield during enzymatic hydrolysis were investigated, and the CS extraction process was optimized using response surface methodology. The best yield of CS was 21.62% under the optimum conditions of pH 6.51, temperature of 64.53°C, and enzymolysis time of 19.86 h. The molecular weight of CS from Shaanxi cattle nasal cartilage was 89.21 kDa, glucuronic acid content was 31.76 ± 0.72%, protein content was 1.12 ± 0.03%, and sulfate group content was 23.34 ± 0.08%. The nasal cartilage CS of the Yellow cattle showed strong DPPH•, •OH, and ABTS+• radical scavenging abilities and ferrous reduction ability in the experimental concentration range. This study could contribute to "turn waste into treasure" and improve the comprehensive utilization of regional characteristic biological resources.
Collapse
Affiliation(s)
- Chan Shi
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxuan Deng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xin An
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuan Chen
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xingang Lv
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Elnahas MO, Elkhateeb WA, Daba GM. Nutritive profile, pharmaceutical potentials, and structural analysis of multifunctional bioactive fungal polysaccharides-A review. Int J Biol Macromol 2024; 266:130893. [PMID: 38493817 DOI: 10.1016/j.ijbiomac.2024.130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.
Collapse
Affiliation(s)
- Marwa O Elnahas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Lu J, Yang Y, Hong EK, Yin X, Wang X, Wang Y, Zhang D. Analyzing the structure-activity relationship of raspberry polysaccharides using interpretable artificial neural network model. Int J Biol Macromol 2024; 264:130354. [PMID: 38403223 DOI: 10.1016/j.ijbiomac.2024.130354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The structure-activity relationship has been a hot topic in the field of polysaccharide research. Six polysaccharides and three polysaccharide fragments were obtained from raspberry pulp. Based on their structural information and immune-enhancing activity data, an artificial neural network (ANN) model was used for prediction, and Gradient-weighted class activation mapping (Grad-CAM) algorithm was exploited for explanation structure-activity relationship of these raspberry polysaccharides in the present study. The structural information and immune activity data of raspberry polysaccharides were respectively used as input and output in the ANN model. The training and testing losses of ANN model was no longer decreased after trained for 200 epochs. The mean-square error (MSE) of training set and test set stabilized around 0.003 and 0.013, and the mean absolute percentage error (MAPE) of training set and test set were 0.21 % and 0.98 %, indicating the trained ANN model converged well and exhibited strong robustness. The interpretability analysis showed that molecular weight, content of arabinose, galactose or galacturonic acid, and glycosyl linkage patterns of →3)-Arap-(1→, Araf-(1→, →4)-Galp-(1 → were the main structural factors greatly affecting the immune-enhancing activity of raspberry polysaccharides. This work may provide a new perspective for the study of structure-activity relationship of polysaccharides.
Collapse
Affiliation(s)
- Jie Lu
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yongjing Yang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Eun-Kyung Hong
- Medvill Co., Ltd. Medvill Research Institute, Seoul 08512, Republic of Korea
| | - Xingxing Yin
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Xuehong Wang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yuting Wang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China
| | - Dejun Zhang
- School of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China.
| |
Collapse
|
10
|
Wiriyarattanakul A, Xie W, Toopradab B, Wiriyarattanakul S, Shi L, Rungrotmongkol T, Maitarad P. Comparative Study of Machine Learning-Based QSAR Modeling of Anti-inflammatory Compounds from Durian Extraction. ACS OMEGA 2024; 9:7817-7826. [PMID: 38405441 PMCID: PMC10882656 DOI: 10.1021/acsomega.3c07386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
Quantitative structure-activity relationship (QSAR) analysis, an in silico methodology, offers enhanced efficiency and cost effectiveness in investigating anti-inflammatory activity. In this study, a comprehensive comparative analysis employing four machine learning algorithms (random forest (RF), gradient boosting regression (GBR), support vector regression (SVR), and artificial neural networks (ANNs)) was conducted to elucidate the activities of naturally derived compounds from durian extraction. The analysis was grounded in the exploration of structural attributes encompassing steric and electrostatic properties. Notably, the nonlinear SVR model, utilizing five key features, exhibited superior performance compared to the other models. It demonstrated exceptional predictive accuracy for both the training and external test datasets, yielding R2 values of 0.907 and 0.812, respectively; in addition, their RMSE resulted in 0.123 and 0.097, respectively. The study outcomes underscore the significance of specific structural factors (denoted as shadow ratio, dipole z, methyl, ellipsoidal volume, and methoxy) in determining anti-inflammatory efficacy. Thus, the findings highlight the potential of molecular simulations and machine learning as alternative avenues for the rational design of novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Amphawan Wiriyarattanakul
- Program
in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand
| | - Wanting Xie
- Research
Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Borwornlak Toopradab
- Center
of Excellence in Structural and Computational Biology, Department
of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sopon Wiriyarattanakul
- Program
in Computer Science, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand
| | - Liyi Shi
- Research
Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Emerging
Industries Institute Shanghai University, Jiaxing, Zhejiang 314006, P. R. China
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Structural and Computational Biology, Department
of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phornphimon Maitarad
- Research
Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
11
|
Liu S, Li M, Liu W, Zhang Z, Wang X, Dong H. Structure and properties of acidic polysaccharides isolated from Massa Medicata Fermentata: Neuroprotective and antioxidant activity. Int J Biol Macromol 2024; 259:129128. [PMID: 38176512 DOI: 10.1016/j.ijbiomac.2023.129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Massa Medicata Fermentata (MMF) is a fermented food with therapeutic effects. Previous studies suggested that after stir-frying, the uronic acid content in MMF crude polysaccharides increases, and the pH value decreases, which is caused by the change in acidic polysaccharides. However, the detailed physicochemical properties and structure-activity correlation of the acidic polysaccharides in MMF have not been fully explored. In this study, two acidic polysaccharides (SMMFAP and CMMFAP) were isolated from the MMF and its stir-fried product, respectively. Their structural characteristics and bioactivities were comparatively studied, and the structure-activity correlation was examined. Our findings revealed that the SMMFAP had a higher average Mw and higher Gal and Man content than the CMMFAP. Both the SMMFAP and CMMFAP were mainly composed of Xyl, Man, and Gal residues, whereas the CMMFAP had fewer linkage types. Additionally, the CMMFAP exhibited stronger neuroprotective activity than the SMMFAP owing to its higher content of 1,6-linked-Galp, while the SMMFAP exhibited better antioxidant activity, which might be related to its higher average Mw. Our findings suggest that acidic polysaccharides may be the active substances that cause differences in effectiveness between the sheng and chao MMF. Furthermore, the research qualified the SMMFAP and CMMFAP with different potential applications.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Meng Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenwen Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Zhe Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
12
|
Wang Z, Zheng Y, Lai Z, Hu X, Wang L, Wang X, Li Z, Gao M, Yang Y, Wang Q, Li N. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int J Biol Macromol 2024; 254:127955. [PMID: 37944714 DOI: 10.1016/j.ijbiomac.2023.127955] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Polysaccharides have been widely used in pharmaceutical and food industries due to their diverse bioactivity, high safety, and few or no side effects. However, inability to quickly produce, screen, and synthesize bioactive polysaccharides is the limiting factor for their development and application. Structural features determine and influence the bioactivity of polysaccharides. Among them, monosaccharide is the basic unit of polysaccharide, which not only affects electrification, functional group, and bioactivity of polysaccharide but also is one of the simplest polysaccharide indexes to be detected. At present, effects of monosaccharide composition and proportion on anti-inflammatory, antioxidant, antitumor, immunomodulatory, antibacterial, and prebiotic activities of polysaccharides are reviewed. Further problems need to be considered during regulation and analysis of monosaccharide composition and proportion of polysaccharides. Overall, present work will provide help and reference for production, development, and structure-function investigation of polysaccharides based on their monosaccharide.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
14
|
Rico D, Cano AB, Álvarez Álvarez S, Río Briones G, Martín Diana AB. Study of the Total Antioxidant Capacity (TAC) in Native Cereal-Pulse Flours and the Influence of the Baking Process on TAC Using a Combined Bayesian and Support Vector Machine Modeling Approach. Foods 2023; 12:3208. [PMID: 37685144 PMCID: PMC10487251 DOI: 10.3390/foods12173208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
During the last few years, the increasing evidence of dietary antioxidant compounds and reducing chronic diseases and the relationship between diet and health has promoted an important innovation within the baked product sector, aiming at healthier formulations. This study aims to develop a tool based on mathematical models to predict baked goods' total antioxidant capacity (TAC). The high variability of antioxidant properties of flours based on the aspects related to the type of grain, varieties, proximal composition, and processing, among others, makes it very difficult to innovate on food product development without specific analysis. Total phenol content (TP), oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power assay (FRAP) were used as markers to determine antioxidant capacity. Three Bayesian-type models are proposed based on a double exponential parameterized curve that reflects the initial decrease and subsequent increase as a consequence of the observed processes of degradation and generation, respectively, of the antioxidant compounds. Once the values of the main parameters of each curve were determined, support vector machines (SVM) with an exponential kernel allowed us to predict the values of TAC, based on baking conditions (temperature and time), proteins, and fibers of each native grain.
Collapse
Affiliation(s)
| | | | | | | | - Ana Belén Martín Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (S.Á.Á.); (G.R.B.)
| |
Collapse
|
15
|
Zaghloul EH, Ibrahim MIA, Zaghloul HAH. Antibacterial activity of exopolysaccharide produced by bee gut-resident Enterococcus sp. BE11 against marine fish pathogens. BMC Microbiol 2023; 23:231. [PMID: 37612642 PMCID: PMC10463787 DOI: 10.1186/s12866-023-02977-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND In recent years, the demand for innovative antimicrobial agents has grown, considering the growing problem of antibiotic resistance in aquaculture. Adult Apis mellifera honeybees' gut represents an outstanding habitat to isolate novel lactic acid bacteria (LAB) able to produce prominent antimicrobial agents. METHODS In the current study, twelve LAB were isolated and purified from the gut of adult Apis mellifera. The isolates were screened for exopolysaccharide (EPS) production. The most promising isolate BE11 was identified biochemically and molecularly using 16 S rRNA gene sequence analysis as Enterococcus sp. BE11 was used for the mass production of EPS. The partially purified BE11-EPS features were disclosed by its physicochemical characterization. Moreover, the antimicrobial activity of BE11 cell free supernatant (CFS) and its EPS was investigated against some fish pathogens namely, Pseudomonas fluorescens, Streptococcus agalactiae, Aeromonas hydrophila, Vibrio sp. and Staphylococcus epidermidis using well-cut diffusion method. RESULTS The physicochemical characterization of BE11-EPS revealed that the total carbohydrate content was estimated to be ~ 87%. FTIR and NMR analysis ascertained the presence of galactose and glucose residues in the EPS backbone. Moreover, the GC-MS analysis verified the heterogeneous nature of the produced BE11-EPS made up of different monosaccharide moieties: galactose, rhamnose, glucose, arabinose sugar derivatives, and glucuronic acid. BE11 CFS and its EPS showed promising antimicrobial activity against tested pathogens as the inhibition zone diameters (cm) ranged from 1.3 to 1.7 and 1.2-1.8, respectively. CONCLUSION The bee gut-resident Enterococcus sp. BE11, CFS, and EPS were found to be promising antimicrobial agents against fish pathogens and biofilm producers affecting aquaculture. To the best of our knowledge, this is the first study to purify and make a chemical profile of an EPS produced by a member of the bee gut microbiota as a potential inhibitor for fish pathogens.
Collapse
Affiliation(s)
- Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Heba A H Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek 21511, Alexandria, Egypt.
| |
Collapse
|
16
|
Tao X, Hu X, Wu T, Zhou D, Yang D, Li X, Fu Y, Zheng F, Yue H, Dai Y. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154879. [PMID: 37229889 DOI: 10.1016/j.phymed.2023.154879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.
Collapse
Affiliation(s)
- Xingyu Tao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuan Hu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tongchuan Wu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyue Zhou
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Yang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xue Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunhua Fu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fei Zheng
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
17
|
Xu M, Qu Y, Li H, Tang S, Chen C, Wang Y, Wang H. Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Lentinan has important applications in the food and medicine fields. Fermenting Lentinula edodes with Bacillus subtilis natto increased the lentinan extraction yield by 87.13% and greatly altered the molecular structure and antioxidant activity of lentinan. The uronic acid content in the lentinan molecular structure increased from 2.08% to 4.33%. The fermentation process did not affect the monosaccharide composition of lentinan, comprised of more than 90% glucose residues. Fermentation significantly reduced the molecular weight of lentinan and altered its apparent structure. The water solubility of fermented lentinan was increased by 165.07%, and the antioxidant activity was significantly improved. Fermentation using soybean as a substrate may be beneficial for enhancing the activity of Bacillus subtilis natto and producing lentinan with different molecular weights.
Collapse
|
18
|
Luo D, Wang Z. Study on extraction optimization, structure features, and bioactivities of an Oudemansiella raphanipies polysaccharide. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Wang Z, Luo D. Extraction optimization, structure features, and bioactivities of two polysaccharides from Corydalis decumbens. PLoS One 2023; 18:e0284413. [PMID: 37053219 PMCID: PMC10101462 DOI: 10.1371/journal.pone.0284413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Two polysaccharides (CPS1 and CPW2) from Corydalis decumbens were obtained to develop insights into natural medical resources. Optimal extraction conditions of total sugars were researched using the method of response surface methodology, polysaccharides were purified using a combination of ethanol precipitation and anion-exchange chromatography, and structure features were analyzed by scanning electron microscopy, transmission electron microscopy, and Congo-red assay. The bioactivities were estimated in terms of antioxidant and anti-inflammatory effects. Total sugars were extracted with an experimental yield of 32.74% under optimum conditions. CPS1 and CPW2 were purified with yields of 12.01% and 8.23%, respectively. CPS1 was a unique polysaccharide with a molecular weight (Mw) of 360 kDa and consisted of glucose, galactose, mannose, and arabinose in a ratio of 4.9:2.0:1:1.9, and CPW2 was composed of glucose with the Mw of 550 kDa. CPS1 possessed a four-helix conformation, and CPW2 was identified as a linear molecule without branched and entangled chains. The mRNA expressions of TNF-α (71.80%), IL-1β (56.55%), IL-6 (43.98%), and COX-2 (91.88%) in LPS-stimulated RAW 264.7 cells were significantly inhibited by 75 μg/mL CPS1 (P < 0.0001), while CPW2 showed lower inhibitory effects than CPS1. Compared with CPW2, CPS1 showed stronger scavenging abilities for hydroxyl (EC50 = 520.46 μg/mL), ABTS (EC50 = 533.99 μg/mL), and superoxide (EC50 = 1512.06 μg/mL) radicals. CPS1 with four-helix conformation exhibited more outstanding bioactivities than CPW2 without entangled chains.
Collapse
Affiliation(s)
- Zhaojing Wang
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People's Republic of China
| | - Dianhui Luo
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
20
|
Zou X, Xu X, Chao Z, Jiang X, Zheng L, Jiang B. Properties of plant-derived soluble dietary fibers for fiber-enriched foods: A comparative evaluation. Int J Biol Macromol 2022; 223:1196-1207. [PMID: 36347374 DOI: 10.1016/j.ijbiomac.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Plant-derived soluble dietary fibers (SDF) have many important physiological functions and the applications of SDF vary based on their properties, which are worth further investigating for fiber-enriched food production. In this study, SDF derived from konjac, apple, chicory, flaxseed, orange, psyllium seed, soybean and oat were purified, and their structural, physicochemical and functional properties were systematically evaluated. Monosaccharide composition analysis showed that these SDF belonged to heteropolysaccharides, of which konjac, psyllium seed, apple, soybean and oat SDF were glucomannan, arabinoxylan, pectin, arabinogalactan and glucan, respectively. The molecular weight of konjac glucomannan (KGM, 5.22 × 106 Da) was the highest, and inulin, soybean arabinogalactan (SA) and oat glucan (OG) had higher water solubility. Moreover, KGM, apple pectin (AP), flaxseed SDF (FS) and psyllium seed arabinoxylan (PA) exhibited better water-holding capacity, swelling capacity, emulsifying activity and stability. Rheological studies and texture profile analysis suggested that KGM had the best viscosity and gelation ability. In addition, AP and orange SDF (OS) showed better α-amylase inhibitory activity, while OS and KGM had higher pancreatic lipase inhibitory activity. Also, KGM and FS displayed fine cholesterol absorption capacity. To summary, these functional properties illustrated the feasibility of SDF to regulate blood sugar and blood lipid levels.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Xiuli Xu
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xuan Jiang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
21
|
Wang W, Tan J, Nima L, Sang Y, Cai X, Xue H. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem X 2022; 15:100414. [PMID: 36211789 PMCID: PMC9532758 DOI: 10.1016/j.fochx.2022.100414] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fungi, as the unique natural resource, are rich in polysaccharides, proteins, fats, vitamins, and other components. Therefore, they have good medical and nutritional values. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing researches have confirmed that fungal polysaccharides have various biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progresses and future prospects of fungal polysaccharides must be systematically reviewed to promote their better understanding. This paper reviewed the extraction, purification, structure, biological activity, and underlying molecular mechanisms of fungal polysaccharides. Moreover, the structure-activity relationships of fungal polysaccharides were emphasized and discussed. This review can provide scientific basis for the research and industrial utilization of fungal polysaccharides.
Collapse
Affiliation(s)
- Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Lamu Nima
- College of Physical Education, Jimei University, No.185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| |
Collapse
|
22
|
Overexpression of phosphomannomutase increases the production and bioactivities of Ganoderma exopolysaccharides. Carbohydr Polym 2022; 294:119828. [PMID: 35868775 DOI: 10.1016/j.carbpol.2022.119828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
In this study, we explored a novel approach to enhancing the production and bioactivities of Ganoderma exopolysaccharides. The homologous phosphomannomutase gene (PMM1) was cloned and overexpressed in Ganoderma for the first time. As a result, the maximum production of exopolysaccharides by the PMM1 transformant was 1.53 g/L, which was 1.41-fold higher than of a wild-type (WT) strain in a 5-L bioreactor. The transcription levels of PMM1 and PMM2 increased 40.5- and 2.4-fold, respectively, whereas the value of the GDP-D-mannose pyrophosphorylase gene did not change significantly in this transgenic strain. Furthermore, the major exopolysaccharide fractions from PMM1 transformants contained higher amounts of mannose (56.5 % and 21.1 %) than those from a WT strain (26.7 % and 9.3 %). Moreover, the major fractions from PMM1 transformants exhibited stronger regulation effects on macrophage. In conclusion, this study is helpful for the efficient production and application of Ganoderma exopolysaccharides and facilitates an understanding of polysaccharide biosynthesis regulation.
Collapse
|
23
|
Li X, Cui W, Cui Y, Song X, Jia L, Zhang J. Stropharia rugoso-annulata acetylated polysaccharides alleviate NAFLD via Nrf2/JNK1/AMPK signaling pathways. Int J Biol Macromol 2022; 215:560-570. [PMID: 35772637 DOI: 10.1016/j.ijbiomac.2022.06.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
The acetylated Stropharia rugoso-annulata polysaccharides (ASRP) was successfully characterized, and the effects and mechanism on alleviating NAFLD were investigated in HFD-induced mice models. The characterization showed that ASRP was successfully acetylated and rich in galactose. The animal studies demonstrated that ASRP at the dose of 400 mg/kg possessed hepatoprotective effects by potential antioxidation, anti-inflammation and improving hepatocellular histopathology, with the possible mechanisms on regulating the JNK1/AP-1 and activating the Nrf2 signaling pathways. Besides, ASRP could improve the fat metabolism by activating the AMPK/SREBP-1c signaling pathways. The results provided basal theories for the development of ASRP on treating the NAFLD and its complications.
Collapse
Affiliation(s)
- Xueping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yanfei Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
24
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
25
|
Tang Z, Lin W, Chen Y, Feng S, Qin Y, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Cai Y, Yao H, Ding C. Extraction, Purification, Physicochemical Properties, and Activity of a New Polysaccharide From Cordyceps cicadae. Front Nutr 2022; 9:911310. [PMID: 35757258 PMCID: PMC9218675 DOI: 10.3389/fnut.2022.911310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The polysaccharides from C. cicadae were extracted by ultrasonically-assisted enzymatic extraction (UAEE). Response surface analysis was used to determine the optimum parameters as follows: addition of enzymes, 0.71%; extraction temperature, 60°C; extraction time, 18 min; liquid-solid ratio, 46:1 (mL/g). The extraction yield of polysaccharide was 3.66 ± 0.87%. A novel polysaccharide fraction (JCH-a1) from C. cicadae was extracted and then purified by cellulose DEAE-32 and Sephadex G-100 anion exchange chromatography. The analysis results showed that the molar ratio of galactose, glucose, and mannose in JCH-a1 cells (60.7 kDa) was 0.89:1:0.39. JCH-a1 with a triple helix contains more α-glycosides and has strong thermal stability. Moreover, JCH-a1 showed strong antioxidant activity and acted as a strong inhibitor of α-glucosidase in vitro. In addition, JCH-a1 can prolong the lifespan of C. elegans. The present study might provide a basis for further study of JCH-a1 as an antioxidant and hypoglycemic food or drug.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yusheng Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Shiling Feng
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qinfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
26
|
Moshawih S, Goh HP, Kifli N, Idris AC, Yassin H, Kotra V, Goh KW, Liew KB, Ming LC. Synergy between machine learning and natural products cheminformatics: Application to the lead discovery of anthraquinone derivatives. Chem Biol Drug Des 2022; 100:185-217. [PMID: 35490393 DOI: 10.1111/cbdd.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
Cheminformatics utilizing machine learning (ML) techniques have opened up a new horizon in drug discovery. This is owing to vast chemical space expansion with rocketing numbers of expected hits and lead compounds that match druggable macromolecular targets, in particular from natural compounds. Due to the natural products' (NP) structural complexity, uniqueness, and diversity, they could occupy a bigger space in pharmaceuticals, allowing the industry to pursue more selective leads in the nanomolar range of binding affinity. ML is an essential part of each step of the drug design pipeline, such as target prediction, compound library preparation, and lead optimization. Notably, molecular mechanic and dynamic simulations, induced docking, and free energy perturbations are essential in predicting best binding poses, binding free energy values, and molecular mechanics force fields. Those applications have leveraged from artificial intelligence (AI), which decreases the computational costs required for such costly simulations. This review aimed to describe chemical space and compound libraries related to NPs. High-throughput screening utilized for fractionating NPs and high-throughput virtual screening and their strategies, and significance, are reviewed. Particular emphasis was given to AI approaches, ML tools, algorithms, and techniques, especially in drug discovery of macrocyclic compounds and approaches in computer-aided and ML-based drug discovery. Anthraquinone derivatives were discussed as a source of new lead compounds that can be developed using ML tools for diverse medicinal uses such as cancer, infectious diseases, and metabolic disorders. Furthermore, the power of principal component analysis in understanding relevant protein conformations, and molecular modeling of protein-ligand interaction were also presented. Apart from being a concise reference for cheminformatics, this review is a useful text to understand the application of ML-based algorithms to molecular dynamics simulation and in silico absorption, distribution, metabolism, excretion, and toxicity prediction.
Collapse
Affiliation(s)
- Said Moshawih
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hui Poh Goh
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Nurolaini Kifli
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Azam Che Idris
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hayati Yassin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Vijay Kotra
- Faculty of Pharmacy, Quest International University, Perak, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
27
|
Wang F, Jiang Y, Jin S, Wang D, Wu K, Yang Q, Han R, Chen S, Liang Z, Jia Q. Structure characterization and bioactivity of neutral polysaccharides from different sources of Polygonatum Mill. Biopolymers 2022; 113:e23490. [PMID: 35460266 DOI: 10.1002/bip.23490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/15/2023]
Abstract
Polygonati rhizoma (PR), a traditional medical and edible product, is rich in polysaccharides and exhibits physiological activity, including antioxidant, hypoglycemic and hypolipidemic properties. Neutral polysaccharides have been reported to be one of the main active ingredients of Polygonatum, with many of these fractions being responsible for the biological activity. This behavior was shown to be closely connected to the chemical structure, monosaccharide composition, and glycosidic bond type. There are few reports on the chemical constituents of the neutral polysaccharides from different sources of PR. In this study, neutral polysaccharides of PR from four different regions of China (Chun'an (Zhejiang), Xixia (Henan), Danfeng (Shanxi), and Pan'an (Zhejiang)), named CAZJ, XXHN, DFSX, and PAZJ, respectively, were isolated by anion-exchange and gel-permeation chromatography. Structures of the four polysaccharides were investigated. The results showed that all of them were mainly glucose and mannose, while the monosaccharide composition and content of polysaccharides from different sources varied. The molecular weights of CAZJ, XXHN, DFSX, and PAZJ were 14.119, 22.352, 18.127, and 15.699 kDa, respectively. Infrared spectra illustrated the existence of α-glycosidic bond and β-glycosidic bond in the polysaccharides. CAZJ, XXHN, and DFSX possessed a pyranose ring structure, whereas PAZJ had a furanose ring structure. Congo red test indicated that XXHN, DFSX, and PAZJ had a triple-helix structure. X-ray diffraction showed that the polysaccharides consisted of crystalline and amorphous regions. All four polysaccharides exhibited different degrees of antioxidant and hypoglycemic activities with a dose-dependent manner in the 1.0-10.0 mg/mL concentration range. Correlation analysis revealed that the bioactivities of polysaccharides was significantly related to monosaccharide composition, uronic acid, and protein content. The results suggested that neutral polysaccharides could be used as potential natural antioxidants and hypoglycemic agents for functional and nutraceutical applications.
Collapse
Affiliation(s)
- Feifeng Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yujie Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shuifeng Jin
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou Agricultural and Rural Bureau, Hangzhou, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kangjing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qingwen Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruilian Han
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
28
|
Liu J, Zhang X, Zhang J, Yan M, Li D, Zhou S, Feng J, Liu Y. Research on Extraction, Structure Characterization and Immunostimulatory Activity of Cell Wall Polysaccharides from Sparassis latifolia. Polymers (Basel) 2022; 14:549. [PMID: 35160537 PMCID: PMC8840611 DOI: 10.3390/polym14030549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The cell wall polysaccharides were extracted from Sparassis latifolia fruit bodies by acid-alkali and superfine-grinding assisted methods, and the chemical characterization and in vitro immunity activities of these polysaccharide fractions were studied and compared. Results showed that superfine-grinding assisted extraction exhibited the highest yield of polysaccharides (SP, 20.80%) and low β-glucan content (19.35%) compared with alkaline extracts. The results revealed that the 20% ethanol precipitated fraction (20E) from SP was mainly composed of β-(1→3)-glucan and α-(1→4)-glucan. With the increase of ethanol precipitation, the fractions (30E, 40E, 50E) were identified as α-(1→4)-glucan with different molecular weights and conformations. Cell wall polysaccharides extracted through NaOH (NSP) and KOH (KSP) extraction had similar yields with 8.90% and 8.83%, respectively. Structural analysis indicated that the purified fraction from KSP (KSP-30E) was a β-(1→3)-glucan backbone branched with β-(1→6)-Glcp, while the purified fraction from NSP (NSP-30E) mainly contained β-(1→3)-glucan with a small number of α-linked-Glcp. The two fractions both exhibited rigid chain conformation in aqueous solutions. All polysaccharide fractions exerted the activity of activating Dectin-1 receptor in vitro, and the KSP-30E mainly identified as β-(1→3)-glucan with the terminal group via 1→6-linkage attached at every third residue exhibited a stronger enhancing effect than other fractions. Results suggested that KOH extraction could be efficient for the preparation of bioactive β-(1→3, 1→6)-glucan as a food ingredient.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemeng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South) Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (J.L.); (X.Z.); (J.Z.); (M.Y.); (D.L.); (S.Z.); (J.F.)
| |
Collapse
|
29
|
Popov S, Smirnov V, Kvashninova E, Khlopin V, Vityazev F, Golovchenko V. Isolation, Chemical Characterization and Antioxidant Activity of Pectic Polysaccharides of Fireweed ( Epilobium angustifolium L.). Molecules 2021; 26:molecules26237290. [PMID: 34885872 PMCID: PMC8658847 DOI: 10.3390/molecules26237290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to isolate pectins with antioxidant activity from the leaves of Epilobium angustifolium L. Two pectins, EA-4.0 and EA-0.8, with galacturonic acid contents of 88 and 91% were isolated from the leaves of E. angustifolium L. by the treatment of plant raw materials with aqueous hydrochloric acid at pH 4.0 and 0.8, respectively. EA-4.0 and EA-0.8 were found to scavenge the DPPH radical in a concentration-dependent manner at 17–133 μg/mL, whereas commercial apple pectin scavenged at 0.5–2 mg/mL. The antioxidant activity of EA-4.0 was the highest and exceeded the activity of EA-0.8 and a commercial apple pectin by 2 and 39 times (IC50—0.050, 0.109 and 1.961 mg/mL), respectively. Pectins EA-4.0 and EA-0.8 were found to possess superoxide radical scavenging activity, with IC50s equal to 0.27 and 0.97 mg/mL, respectively. Correlation analysis of the composition and activity of 32 polysaccharide fractions obtained by enzyme hydrolysis and anionic exchange chromatography revealed that the antioxidant capacity of fireweed pectins is mainly due to phenolics and is partially associated with xylogalacturonan chains. The data obtained demonstrate that pectic polysaccharides appeared to be bioactive components of fireweed leaves with high antioxidant activity, which depend on pH at their extraction.
Collapse
|
30
|
Novel Antioxidant and Hypoglycemic Water-Soluble Polysaccharides from Jasmine Tea. Foods 2021; 10:foods10102375. [PMID: 34681424 PMCID: PMC8535958 DOI: 10.3390/foods10102375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
There have been few studies dealing with chemical elucidation and pharmacological potentials of water-soluble polysaccharides from jasmine tea, limiting their use in functional foods. In this study, water-soluble polysaccharides (named as JSP) were extracted from Jasminum sambac (L.) Aiton tea and fractionated to afford two sub-fractions (JSP-1 and JSP-2). The main structural characteristics of novel JSP sub-fractions were determined by high performance gel permeation chromatography, ultra-performance liquid chromatography-tandem mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance analysis. Physiologically, the abilities of JSP-1 and JSP-2 to reduce ferric ions, scavenge DPPH and hydroxyl radicals, as well as protect islet cells were confirmed in vitro. JSP-1 exhibited better antioxidant and hypoglycemic activities than JSP-2. The molecular weights of JSP-1 and JSP-2 were 18.4 kDa and 14.1 kDa, respectively. JSP-1 was made up of glucose, galactose, rhamnose, xylose, arabinose, and galacturonic acid with molar ratios 1.14:4.69:1.00:9.92:13.79:4.09, whereas JSP-2 with a triple helical structure was composed of galactose, rhamnose, xylose, arabinose, and galacturonic acid as 3.80:1.00:8.27:11.85:5.05 of molar ratios. JSP-1 contains →1)-α-Galƒ-(3→, →1)-α-Galƒ-(2→, →1)-α-Araƒ-(5→, →1)-α-Araƒ-(3→, →1)-α-Araƒ-(3,5→, →1)-β-Xylp-(2→ and →1)-β-Xylp-(3→ residues in the backbone. These results open up new pharmacological prospects for the water-soluble polysaccharides extracted from jasmine tea.
Collapse
|
31
|
Artificial intelligence in drug design: algorithms, applications, challenges and ethics. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery paradigm of drugs is rapidly growing due to advances in machine learning (ML) and artificial intelligence (AI). This review covers myriad faces of AI and ML in drug design. There is a plethora of AI algorithms, the most common of which are summarized in this review. In addition, AI is fraught with challenges that are highlighted along with plausible solutions to them. Examples are provided to illustrate the use of AI and ML in drug discovery and in predicting drug properties such as binding affinities and interactions, solubility, toxicology, blood–brain barrier permeability and chemical properties. The review also includes examples depicting the implementation of AI and ML in tackling intractable diseases such as COVID-19, cancer and Alzheimer’s disease. Ethical considerations and future perspectives of AI are also covered in this review.
Collapse
|
32
|
Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds. Sci Rep 2021; 11:8806. [PMID: 33888843 PMCID: PMC8062522 DOI: 10.1038/s41598-021-88341-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The Support vector regression (SVR) was used to investigate quantitative structure-activity relationships (QSAR) of 75 phenolic compounds with Trolox-equivalent antioxidant capacity (TEAC). Geometric structures were optimized at the EF level of the MOPAC software program. Using Pearson correlation coefficient analysis, four molecular descriptors [n(OH), Cosmo Area (CA), Core-Core Repulsion (CCR) and Final Heat of Formation (FHF)] were selected as independent variables. The QSAR model was developed from the training set consisting of 57 compounds and then used the leave-one-out cross-validation (LOOCV) correlation coefficient to evaluate the prediction ability of the QSAR model. Used Artificial neural network (ANN) and multiple linear regression (MLR) for comparing. The RMSE (root mean square error) values of LOOCV in SVR, ANN and MLR models were 0.44, 0.46 and 0.54. The RMSE values of prediction of external 18 compounds were 0.41, 0.39 and 0.54 for SVR, ANN and MLR models, respectively. The obtained result indicated that the SVR models exhibited excellent predicting performance and competent for predicting the TEAC of phenolic compounds.
Collapse
|
33
|
Meng-Zhao, Yi-Han, Li J, Qi-An, Ye X, Xiang-Li, Zhao Z, Yang-Zhang, Jing-He, Qihuan, Deng, Wang W. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP 0.1). Int J Biol Macromol 2021; 171:112-122. [PMID: 33418037 DOI: 10.1016/j.ijbiomac.2020.12.201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the primary structure of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1) and its protective effect on H2O2-treated dendritic cells. The backbone of Ac-CPP0.1 was →3)-β-D-Galp-(1→, with some branches α-L-Araf-(1→ residues at O-6 and O-5, β-D-Galp-(1→ and 3,5,6)-β-D-Galf-(1 residues at O-4 and acetyl groups were substituted at the O-2 and O-6 positions of 3)-β-D-Galp-(1 residues. The CPP0.1 and Ac-CPP0.1 significantly increased the levels of superoxide dismutase, glutathione peroxidase and catalase on H2O2-treated dendritic cells. Meanwhile, both CPP0.1 and Ac-CPP0.1 up-regulated the expression of Nrf2 (NF-E2-related factor 2) and down-regulated the Keap1 (Kelch-like ECH-associated protein-1), but Ac-CPP0.1 had a better effect on antioxidant capacity. These results indicated that potential application of Ac-CPP0.1 as an antioxidant agent.
Collapse
Affiliation(s)
- Meng-Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi-Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing'en Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi-An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ximei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang-Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zitong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yang-Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-He
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qihuan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Deng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
34
|
Meng-Zhao, Yi-Han, Li J, Qi-An, Ye X, Xiang-Li, Zhao Z, Yang-Zhang, Jing-He, Qihuan, Deng, Wang W. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1). Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Huang G, Huang S. The structure–activity relationships of natural glucans. Phytother Res 2020; 35:2890-2901. [DOI: 10.1002/ptr.6995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry Chongqing Normal University Chongqing China
| | - Shiyu Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry Chongqing Normal University Chongqing China
| |
Collapse
|
36
|
Abstract
Cordyceps is a parasitic edible fungus with a variety of metabolically active ingredients. The main active ingredient, extracellular polysaccharide (EPS), shows favourable application prospects in prevention and treatment of certain diseases. EPS extracted from different parts of various Cordyceps species can be used in health foods or medicinal preparations because of the structural diversity and multiple bioactivities. In terms of the complexity of composition and structure, researchers have speculated on the anabolic pathways of EPSs and the genes involved in the synthesis process. Studies to increase the yield of polysaccharides are limited because the synthesis pathways and anabolic regulation mechanisms of Cordyceps exopolysaccharide remain unknown. This review summarises the current researches in the yield of Cordyceps polysaccharides. A mechanism for the biosynthesis of Cordyceps polysaccharides was proposed by referring to the polysaccharide synthesis in other species. Furthermore, we also discuss the future perspective and ongoing challenges of EPS in uses of health foods and pharmaceutics.
Collapse
Affiliation(s)
- Shengli Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xi Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
37
|
Luo D, Wang Z, Zhou R, Cao S. A polysaccharide from Umbilicaria yunnana: Structural characterization and anti-inflammation effects. Int J Biol Macromol 2020; 151:870-877. [DOI: 10.1016/j.ijbiomac.2020.02.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
|
38
|
Luo J, Sun Q, Ma Z, Song J, Wu C, Li X. Ultrasonic extraction, structural characterization, and bioactivities of nonstarch polysaccharides from red yeast rice. Biotechnol Appl Biochem 2019; 67:273-286. [PMID: 31652012 DOI: 10.1002/bab.1844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/19/2019] [Indexed: 12/16/2022]
Abstract
Red yeast rice (RYRP) has been utilized for coloring food, brewing wine, and preserving meat, which is also used as a folk medicine for centuries. In this study, a water-soluble nonstarch polysaccharide from RYRP was extracted by using ultrasonic-assisted extraction method. By using the Box-Behnken design to optimize the parameters for extracting the RYRP, the maximum extraction yield (3.37 ± 0.78%) was obtained under the optimal extraction conditions as follows: ratio of water to raw material (40 mL/g), extraction temperature (62 °C), extraction time (75 Min), and ultrasonic power (200 W). Moreover, monosaccharide composition analysis showed that RYRP was consisted of mannose, glucosamine, glucose, and galactose with a molar ratio of 0.152:0.015:1:0.149. The molecular weight distribution analysis showed that the average molecular weight of the RYRP fraction was about 3.49 × 103 Da. Furthermore, RYRP exhibited significant antioxidant activities in vitro and the gastrointestinal-protective effect in vivo using gastrointestinal disorders model mice. RYRP could be explored as a potential source in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Jia Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Structural Characterization and Antioxidant Activity of Polysaccharides from Athyrium multidentatum (Doll.) Ching in d-Galactose-Induced Aging Mice via PI3K/AKT Pathway. Molecules 2019; 24:molecules24183364. [PMID: 31527444 PMCID: PMC6766938 DOI: 10.3390/molecules24183364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to characterize the polysaccharides from Athyrium multidentatum (Doll.) Ching (AMC) rhizome and explore the protective mechanism against d-galactose-induced oxidative stress in aging mice. Methods: A series of experiments, including molecular weight, monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, and 1H nuclear magnetic resonance (1H NMR) spectroscopy were carried out to characterize AMC polysaccharides. The mechanism was investigated exploring d-galactose-induced aging mouse model. Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting assays were performed to assess the gene and protein expression in liver. Key findings: Our results showed that AMC polysaccharides were mainly composed of mannose (Man), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galactose (Gal), arabinose (Ara), and fucose (Fuc) in a molar ratio of 0.077:0.088:0.09:1:0.375:0.354:0.04 with a molecular weight of 33203 Da (Mw). AMC polysaccharides strikingly reversed d-galactose-induced changes in mice, including upregulated phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor-erythroid 2-related factor 2 (Nrf2), forkhead box O3a (FOXO3a), and hemeoxygenase-1 (HO-1) mRNA expression, raised Bcl-2/Bax ratio, downregulated caspase-3 mRNA expression, enhanced Akt, phosphorylation of Akt (p-Akt), Nrf2 and HO-1 protein expression, decreased caspase-3, and Bax protein expression. Conclusion: AMC polysaccharides attenuated d-galactose-induced oxidative stress and cell apoptosis by activating the PI3K/AKT pathway, which might in part contributed to their anti-aging activity.
Collapse
|
40
|
Wang C, Xu L, Huang L, Li X, Han W, Liu D, Cui X, Yang Y. Optimization of Maca polysaccharide extraction process and its chemo-protective effects on cyclophosphamide-induced mice. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chengxiao Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Lei Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Luqi Huang
- Chinese Medica Resources Center; China Academy of Chinese Medicinal Sciences; Beijing China
| | - XinRui Li
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - Wei Han
- School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Diqiu Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Xiuming Cui
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Ye Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| |
Collapse
|
41
|
Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Preparation, characterization of polysaccharides fractions from Inonotus obliquus and their effects on α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
43
|
Luo D, Wang Z, Li Z, Yu XQ. Structure of an entangled heteropolysaccharide from Pholidota chinensis Lindl and its antioxidant and anti-cancer properties. Int J Biol Macromol 2018; 112:921-928. [DOI: 10.1016/j.ijbiomac.2018.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
|
44
|
Wang B, Liu Q, Huang Y, Yuan Y, Ma Q, Du M, Cai T, Cai Y. Extraction of Polysaccharide from Spirulina and Evaluation of Its Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3425615. [PMID: 29849703 PMCID: PMC5925140 DOI: 10.1155/2018/3425615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Polysaccharide of Spirulina platensis (PSP) is a kind of water-soluble polysaccharide extracted from Spirulina platensis. It has been proved to have antitumor, antioxidation, antiaging, and antivirus properties. And it has a promising prospect for wide application. OBJECTIVE This study aims to identify an extraction process for high-purity polysaccharide in Spirulina (PSP) through a series of optimization methods and then evaluates its initial antiaging activities. METHODS Four kinds of extraction methods-hot-water extraction, alkali extraction, ultrasonic-assisted extraction, and freeze-thaw extraction-were compared to find the optimal one, which was further optimized by response surface methodology. PSP was obtained after the crude PSP was deproteinized and depigmented. The antiaging effects of PSP were preliminarily evaluated through in vitro cell experiments. RESULTS The alkali extraction method was determined as the optimal method, with the optimized extraction process consisting of a solid-liquid ratio of 1 : 50, a pH value of 10.25, a temperature of 89.24°C, and a time of 9.99 h. The final PSP contained 71.65% of polysaccharide and 8.54% of protein. At a concentration of 50 μg/mL, PSP exerted a significant promoting effect on the proliferation and traumatic fusion of human immortalized epidermal cells HaCaT. CONCLUSION An extraction method for high-purity PSP with a high extraction rate was established, and in vitro results suggest antioxidation and antiaging activities.
Collapse
Affiliation(s)
- Bingyue Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qian Liu
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Yinghong Huang
- Guangzhou Guoyu Pharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Yueling Yuan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qianqian Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Manling Du
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110000, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Cancer Institute of Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
Wang HX, Yi Y, Sun J, Lamikanra O, Min T. Fingerprint profiling of polysaccharides from different parts of lotus root varieties. RSC Adv 2018; 8:16574-16584. [PMID: 35540557 PMCID: PMC9080453 DOI: 10.1039/c8ra01104d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022] Open
Abstract
Thirty-nine polysaccharides isolated from different parts of 13 lotus root varieties were characterized with fingerprint and chemometrics analyses to explore their similarity and diversity. The physicochemical features of lotus root polysaccharides (LRPs) were found to be the following: LRPs contained mainly polysaccharides (5.94 kDa) and polysaccharide-protein complexes (11.57 kDa and 5.30 kDa); their carbohydrates were composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose approximately in the molar ratio of 0.19 : 0.14 : 0.08 : 0.17 : 6.49 : 1.00 : 0.16; and node LRPs possessed more binding proteins and uronic acids than both flesh and peel LRPs. Their fingerprints based on Fourier-transform infrared spectroscopy, pre-column derivatization high-performance liquid chromatography and high performance size-exclusion chromatography all exhibited relatively high similarities, contributing to the common figerprint models which could be utilized as references for the identification of LPRs. In addition, the fingerprint characteristics associated with the between-group variability of LRPs in the score plots derived from multivariate analytical models might indicate which variety or part of lotus root they were isolated from. Therefore, multi-fingerprinting techniques have the potential to be applied to the identification and quality control of LRPs. Thirty-nine polysaccharides isolated from lotus roots were characterized with fingerprint and chemometrics analyses to explore their similarity and diversity.![]()
Collapse
Affiliation(s)
- Hong-Xun Wang
- College of Biology & Pharmaceutical Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- PR China
| | - Yang Yi
- College of Food Science & Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- PR China
| | - Jie Sun
- College of Food Science & Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- PR China
| | - Olusola Lamikanra
- College of Food Science & Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- PR China
| | - Ting Min
- College of Food Science & Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- PR China
| |
Collapse
|
46
|
Wang Q, Wang F, Xu Z, Ding Z. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation. Molecules 2017; 22:E955. [PMID: 28608797 PMCID: PMC6152739 DOI: 10.3390/molecules22060955] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022] Open
Abstract
Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhenghong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|