1
|
Barua SR, Das T, Rakib TM, Nath BK, Gupta SD, Sarker S, Chowdhury S, Raidal SR, Das S. Complete genome constellation of a dominant Bovine rotavirus genotype circulating in Bangladesh reveals NSP4 intragenic recombination with human strains. Virology 2024; 598:110195. [PMID: 39089050 DOI: 10.1016/j.virol.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.
Collapse
Affiliation(s)
- Shama Ranjan Barua
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh; Department of Livestock Services, Ministry of Fisheries and Livestock, Bangladesh
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD-4814, Australia
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia.
| |
Collapse
|
2
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Lang D, Chitimia-Dobler L, Bestehorn-Willmann M, Lindau A, Drehmann M, Stroppel G, Hengge H, Mackenstedt U, Kaier K, Dobler G, Borde J. The Emergence and Dynamics of Tick-Borne Encephalitis Virus in a New Endemic Region in Southern Germany. Microorganisms 2022; 10:2125. [PMID: 36363717 PMCID: PMC9693875 DOI: 10.3390/microorganisms10112125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/11/2024] Open
Abstract
Tick-borne encephalitis (TBE) is the most important viral tick-borne infection in Europe and Asia. It is emerging in new areas. The mechanisms of emergence are fairly unknown or speculative. In the Ravensburg district in southern Germany, TBE emerged, mainly over the last five years. Here, we analyzed the underlying epidemiology in humans. The resulting identified natural foci of the causal TBE virus (TBEV) were genetically characterized. We sampled 13 potential infection sites at these foci and detected TBEV in ticks (Ixodes ricinus) at eight sites. Phylogenetic analysis spurred the introduction of at least four distinct TBEV lineages of the European subtype into the Ravensburg district over the last few years. In two instances, a continuous spread of these virus strains over up to 10 km was observed.
Collapse
Affiliation(s)
- Daniel Lang
- National Reference Laboratory for TBEV, Bundeswehr Institute for Microbiology, 80937 Munich, Germany
| | - Lidia Chitimia-Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute for Microbiology, 80937 Munich, Germany
| | - Malena Bestehorn-Willmann
- National Reference Laboratory for TBEV, Bundeswehr Institute for Microbiology, 80937 Munich, Germany
| | - Alexander Lindau
- Department of Parasitology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Marco Drehmann
- Department of Parasitology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gabriele Stroppel
- Public Health Office, District Ravensburg, 88212 Ravensburg, Germany
| | - Helga Hengge
- Public Health Office, District Ravensburg, 88212 Ravensburg, Germany
| | - Ute Mackenstedt
- Department of Parasitology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Klaus Kaier
- Institute of Medical Biometry and Statistics (IMBI), University Medical Center Freiburg im Breisgau, 79106 Freiburg im Breisgau, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute for Microbiology, 80937 Munich, Germany
- Department of Parasitology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Johannes Borde
- Praxis Prof. Borde & Kollegen, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany
- Division of Infectious Diseases, Department of Internal Medicine, University Medical Center Freiburg im Breisgau, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
5
|
LOUPING-ILL VIRUS SEROSURVEY OF WILLOW PTARMIGAN (LAGOPUS LAGOPUS LAGOPUS) IN NORWAY. J Wildl Dis 2021; 57:282-291. [PMID: 33822153 DOI: 10.7589/jwd-d-20-00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022]
Abstract
In Norway, the Willow Ptarmigan (Lagopus lagopus lagopus) is experiencing population declines and is nationally Red Listed as Near Threatened. Although disease has not generally been regarded as an important factor behind population fluctuations for Willow Ptarmigan in Norway, disease occurrence has been poorly investigated. Both louping-ill virus (LIV) and the closely related tick-borne encephalitis virus are found along the southern part of the Norwegian coast. We assessed whether and where Norwegian Willow Ptarmigan populations have been infected with LIV. We expected to find infected individuals in populations in the southernmost part of the country. We did not expect to find infected individuals in populations further north and at higher altitudes because of the absence of the main vector, the sheep tick (Ixodes ricinus). We collected serum samples on Nobuto filter paper and used a hemagglutination inhibition assay for antibodies against LIV. We collected data at both local and country-wide levels. For local sampling, we collected and analyzed 87 hunter-collected samples from one of the southernmost Willow Ptarmigan populations in Norway. Of these birds, only three positives (3.4%) were found. For the country-wide sampling, we collected serum samples from 163 Willow Ptarmigan carcasses submitted from selected locations all over the country. Of these birds, 32% (53) were seropositive for LIV or a cross-reacting virus. Surprisingly, we found seropositive individuals from locations across the whole country, including outside the known distribution of the sheep tick. These results suggest that either LIV or a cross-reacting virus infects ptarmigan in large parts of Norway, including at high altitudes and latitudes.
Collapse
|
6
|
Hasle G, Leinaas HP, Heier L, Garcia AL, Røed KH. Mitochondrial DNA in Ixodus ricinus (Acari: Ixodidae) on birds reflects ticks' transportation routes to Lista, Norway. Ticks Tick Borne Dis 2020; 12:101553. [PMID: 33130437 DOI: 10.1016/j.ttbdis.2020.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Ticks are important pathogen vectors, and large mammals and birds have the greatest potential for dispersing them. To study tick dispersal by migrating birds, we have analysed genetic variations in mitochondrial DNA control region from Ixodes ricinus from northward migrating blackbird, Turdus merula, and (European) robin, Erithacus rubecula, at the Lista Bird Observatory in southwestern Norway. We compared their genetic structure with that of resident tick populations from areas covering their expected last stop (i.e. Great Britain and Jutland, Denmark) before taking off for southern Norway, and the resident tick population at Lista. The statistical analysis showed that the I. ricinus found on blackbirds differed significantly from those found on robins, which is consistent with the birds' differential migration routes. I. ricinus from robins did not differ genetically from those flagged at Jutland, suggesting that the former mainly originate in continental Europe. Bayesian analysis indicated that most of the blackbirds caught early in the spring (i.e. before or on the 1st of April) carried ticks of a mixed origin from both Great Britain and continental Europe, while blackbirds caught later in the season carried an increasing amount of ticks acquired locally.
Collapse
Affiliation(s)
- Gunnar Hasle
- Reiseklinikken, St Olavs Plass 3, Oslo, 0165, Norway.
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, P.O.Box 1066, Blindern, Oslo, 0316, Norway.
| | - Lise Heier
- Reiseklinikken, St Olavs Plass 3, Oslo, 0165, Norway.
| | - Aïda López Garcia
- NOF-BirdLife Norway, Lista Bird Observatory, Fyrveien 6, Borhaug, 4563, Norway.
| | - Knut Håkon Røed
- School of Veterinary Science, NMBU-Norwegian University of Life Sciences, P.O. Box 369 Sentrum, Oslo, 0102, Norway.
| |
Collapse
|
7
|
Bondaryuk AN, Sidorova EA, Adelshin RV, Andaev EI, Balakhonov SV. Reporting of New tick-borne encephalitis virus strains isolated in Eastern Siberia (Russia) in 1960-2011 and explaining them in an evolutionary context using Bayesian phylogenetic inference. Ticks Tick Borne Dis 2020; 11:101496. [PMID: 32723652 DOI: 10.1016/j.ttbdis.2020.101496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is one of the main tick-borne viral pathogens of humans. Infection may induce signs of meningitis, encephalitis, paralysis and high fever. TBEV is well studied by molecular phylogenetic methods. The present-day implementation of Bayesian phylogenetic models allows population dynamics to be tracked, providing changes in population size that were not directly observed. However, the description of the past population dynamics of TBEV is rare in the literature. In our investigation, we provide data on the dynamics of viral genetic diversity of TBEV in Zabaikalsky Krai (Eastern Siberia, Russia) revealed by the Bayesian coalescent inference in a BEAST program. As a data set, we used the envelope (E) protein partial gene sequences (1308 nt) of 38 TBEV strains (including six "886-84-like" or Baikalian subtype strains (TBEV-B)), isolated in Zabaikalsky Krai (Eastern Siberia, Russia) in 1960-1963 and 1995-2011. To increase estimations reliability, we compared 9 model combinations by Path sampling and Stepping-stone sampling methods. It has been shown that the genetic diversity decline in the population history of TBEV in the 1950s coincides with the date of the beginning of wide dichlorodiphenyltrichloroethane forest dusting in Siberia. We assumed that the TBEV population on the territory of Siberia went through a genetic bottleneck. Also, we provide data estimating the divergence time of TBEV-B strains and indicate the specific evolution rate of an ancestor lineage of the Baikalian subtype, illustrated on a phylogenetic tree, and reconstructed under a relaxed clock model.
Collapse
Affiliation(s)
- Artem N Bondaryuk
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser 78, 664047, Irkutsk, Russia.
| | - Elena A Sidorova
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser 78, 664047, Irkutsk, Russia.
| | - Renat V Adelshin
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser 78, 664047, Irkutsk, Russia; Irkutsk State University, Irkutsk, Russia.
| | - Evgeny I Andaev
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser 78, 664047, Irkutsk, Russia.
| | - Sergey V Balakhonov
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser 78, 664047, Irkutsk, Russia.
| |
Collapse
|
8
|
Genomic Analyses of Human Sapoviruses Detected over a 40-Year Period Reveal Disparate Patterns of Evolution among Genotypes and Genome Regions. Viruses 2020; 12:v12050516. [PMID: 32392864 PMCID: PMC7290424 DOI: 10.3390/v12050516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Human sapovirus is a causative agent of acute gastroenteritis in all age groups. The use of full-length viral genomes has proven beneficial to investigate evolutionary dynamics and transmission chains. In this study, we developed a full-length genome sequencing platform for human sapovirus and sequenced the oldest available strains (collected in the 1970s) to analyse diversification of sapoviruses. Sequence analyses from five major genotypes (GI.1, GI.2, GII.1, GII.3, and GIV.1) showed limited intra-genotypic diversification for over 20–40 years. The accumulation of amino acid mutations in VP1 was detected for GI.2 and GIV.1 viruses, while having a similar rate of nucleotide evolution to the other genotypes. Differences in the phylogenetic clustering were detected between RdRp and VP1 sequences of our archival strains as well as other reported putative recombinants. However, the lack of the parental strains and differences in diversification among genomic regions suggest that discrepancies in the phylogenetic clustering of sapoviruses could be explained, not only by recombination, but also by disparate nucleotide substitution patterns between RdRp and VP1 sequences. Together, this study shows that, contrary to noroviruses, sapoviruses present limited diversification by means of intra-genotype variation and recombination.
Collapse
|
9
|
Martin DP, Varsani A, Roumagnac P, Botha G, Maslamoney S, Schwab T, Kelz Z, Kumar V, Murrell B. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol 2020; 7:veaa087. [PMID: 33936774 PMCID: PMC8062008 DOI: 10.1093/ve/veaa087] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For the past 20 years, the recombination detection program (RDP) project has focused on the development of a fast, flexible, and easy to use Windows-based recombination analysis tool. Whereas previous versions of this tool have relied on considerable user-mediated verification of detected recombination events, the latest iteration, RDP5, is automated enough that it can be integrated within analysis pipelines and run without any user input. The main innovation enabling this degree of automation is the implementation of statistical tests to identify recombination signals that could be attributable to evolutionary processes other than recombination. The additional analysis time required for these tests has been offset by algorithmic improvements throughout the program such that, relative to RDP4, RDP5 will still run up to five times faster and be capable of analyzing alignments containing twice as many sequences (up to 5000) that are five times longer (up to 50 million sites). For users wanting to remove signals of recombination from their datasets before using them for downstream phylogenetics-based molecular evolution analyses, RDP5 can disassemble detected recombinant sequences into their constituent parts and output a variety of different recombination-free datasets in an array of different alignment formats. For users that are interested in exploring the recombination history of their datasets, all the manual verification, data management and data visualization components of RDP5 have been extensively updated to minimize the amount of time needed by users to individually verify and refine the program's interpretation of each of the individual recombination events that it detects.
Collapse
Affiliation(s)
- Darren P Martin
- Department of Integrative Biomedical Sciences, Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road Observatory, Cape Town 7549, South Africa
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa
| | - Philippe Roumagnac
- BGPI, Univ Montpellier, CIRAD, INRAE, L'Institut Agro, Montpellier, France
| | - Gerrit Botha
- Department of Integrative Biomedical Sciences, Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road Observatory, Cape Town 7549, South Africa
| | - Suresh Maslamoney
- Department of Integrative Biomedical Sciences, Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road Observatory, Cape Town 7549, South Africa
| | - Tiana Schwab
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, witzerland
| | - Zena Kelz
- Department of Integrative Biomedical Sciences, Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road Observatory, Cape Town 7549, South Africa
| | - Venkatesh Kumar
- Department of Integrative Biomedical Sciences, Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road Observatory, Cape Town 7549, South Africa.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
11
|
Tkachev SE, Babkin IV, Chicherina GS, Kozlova IV, Verkhozina MM, Demina TV, Lisak OV, Doroshchenko EK, Dzhioev YP, Suntsova OV, Belokopytova PS, Tikunov AY, Savinova YS, Paramonov AI, Glupov VV, Zlobin VI, Tikunova NV. Genetic diversity and geographical distribution of the Siberian subtype of the tick-borne encephalitis virus. Ticks Tick Borne Dis 2019; 11:101327. [PMID: 31767494 DOI: 10.1016/j.ttbdis.2019.101327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022]
Abstract
The tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is currently subdivided into three main subtypes-the European (TBEV-Eu), the Far-Eastern (TBEV-FE), and the Siberian (TBEV-Sib). The TBEV-Sib is the most common subtype and found in all regions where TBEV was detected, except for Central and Western Europe. Currently, four genetic lineages have been described within TBEV-Sib. In this study, detailed analysis of TBEV-Sib genetic diversity, geographic distribution, phylogeography and divergence time of different TBEV-Sib genetic lineages based on E gene fragments, complete genome sequences, and all currently available data in the GenBank database was performed. As a result, a novel Bosnia lineage within the TBEV-Sib was identified. It was demonstrated that the Zausaev lineage is the most widely distributed among the TBEV-Sib lineages, and was detected in all studied regions except the Far East. The Vasilchenko lineage was found from Western Siberia to the Far East. The Baltic lineage is presented from Europe to Western Siberia. The Obskaya lineage was found only in Western Siberia. TBEV strains from a newly described Bosnia lineage were detected in Bosnia, the Crimean peninsula, Kyrgyzstan and Kazakhstan. The greatest divergence of the TBEV-Sib genetic variants was observed in Western Siberia. Within the TBEV-Sib, the Obskaya lineage diverged from the common ancestor the earliest, after that the Bosnia lineage was separated, then the Baltic lineage, and the Zausaev and Vasilchenko lineages diverged most recently.
Collapse
Affiliation(s)
- S E Tkachev
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Acad. Lavrentyev's pr., 8, Novosibirsk, 630090, Russia.
| | - I V Babkin
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Acad. Lavrentyev's pr., 8, Novosibirsk, 630090, Russia
| | - G S Chicherina
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, Novosibirsk, 630091, Russia
| | - I V Kozlova
- Scientific Centre for Family Health and Human Reproduction Problems, Timiryazev Str., 16, Irkutsk, 664003, Russia
| | - M M Verkhozina
- Center for Hygiene and Epidemiology in the Irkutsk Region, Trilisser Str., 51, Irkutsk, 664047, Russia
| | - T V Demina
- Irkutsk State Agrarian University by A.A. Ezhevsky, Molodezhny Settlement, Irkutsk District, Irkutsk, 664038, Russia
| | - O V Lisak
- Scientific Centre for Family Health and Human Reproduction Problems, Timiryazev Str., 16, Irkutsk, 664003, Russia
| | - E K Doroshchenko
- Scientific Centre for Family Health and Human Reproduction Problems, Timiryazev Str., 16, Irkutsk, 664003, Russia
| | - Yu P Dzhioev
- Research Institute of Biomedical Technology of Irkutsk State Medical University, Krasnogo Vosstaniya Str., 1/3, Irkutsk, 664003, Russia
| | - O V Suntsova
- Scientific Centre for Family Health and Human Reproduction Problems, Timiryazev Str., 16, Irkutsk, 664003, Russia
| | - P S Belokopytova
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Acad. Lavrentyev's pr., 8, Novosibirsk, 630090, Russia
| | - A Yu Tikunov
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Acad. Lavrentyev's pr., 8, Novosibirsk, 630090, Russia
| | - Yu S Savinova
- Scientific Centre for Family Health and Human Reproduction Problems, Timiryazev Str., 16, Irkutsk, 664003, Russia
| | - A I Paramonov
- Scientific Centre for Family Health and Human Reproduction Problems, Timiryazev Str., 16, Irkutsk, 664003, Russia
| | - V V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str., 11, Novosibirsk, 630091, Russia
| | - V I Zlobin
- Research Institute of Biomedical Technology of Irkutsk State Medical University, Krasnogo Vosstaniya Str., 1/3, Irkutsk, 664003, Russia
| | - N V Tikunova
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Acad. Lavrentyev's pr., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
12
|
Ternovoi VA, Gladysheva AV, Ponomareva EP, Mikryukova TP, Protopopova EV, Shvalov AN, Konovalova SN, Chausov EV, Loktev VB. Variability in the 3' untranslated regions of the genomes of the different tick-borne encephalitis virus subtypes. Virus Genes 2019; 55:448-457. [PMID: 31111398 DOI: 10.1007/s11262-019-01672-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022]
Abstract
Tick-borne encephalitis viruses (TBEVs) are usually divided into three major subtypes: European (TBEV-Eu), Siberian (TBEV-Sib) and Far Eastern (TBEV-FE). The TBEV-Eu strains have the longest genomes, and TBEV-FE strains have the smallest genomes. Changes in the variable region of the untranslated region (V3' UTR) play a major role in determining the viral genome length. Analyses of the 3' UTRs of the different subtypes of TBEV have revealed significant changes in the secondary structures of the V3' UTR of TBEV. More complex secondary structures of the V3' UTR regions are typical for TBEV-Eu. The Siberian strain Tomsk-PT122 was isolated from birds and has an unusual 3' UTR. Several short fragment (24-26 nucleotides) insertions derived from the viral E (2) and NS4a (1) genes have been found in the V3' UTR of Tomsk-PT122. Additionally, the length of the V3' UTR increases from 21 to 37 nucleotides during passages of the C11-13 strain of TBEV-Sib into PEK, 293 and Neuro-2a cells. The elongation of the V3' UTRs of Tomsk-PT122 and C11-13 is the first direct evidence of an intragenomic 3' UTR modification (insertion) for TBEV. Thus, the obtained results suggest that changing the length of the V3' UTR in the genome is typical for different TBEV subtypes and can play an essential role in effective TBEV replication in different host cells.
Collapse
Affiliation(s)
- Vladimir A Ternovoi
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Anastasia V Gladysheva
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Eugenia P Ponomareva
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Tamara P Mikryukova
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Elena V Protopopova
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Alexander N Shvalov
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Svetlana N Konovalova
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Eugene V Chausov
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia
| | - Valery B Loktev
- Department of Molecular Virology for Flaviviruses and Viral Hepatitis, State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, 630559, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia.
| |
Collapse
|
13
|
A case series of fatal meningoencephalitis in Mongolia: epidemiological and molecular characteristics of tick-borne encephalitis virus. Western Pac Surveill Response J 2019; 10:25-31. [PMID: 31110839 PMCID: PMC6507128 DOI: 10.5365/wpsar.2018.9.1.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Mongolia, the incidence and fatality rates of tick-borne encephalitis (TBE) have been increasing. We aimed to identify the epidemiological and molecular characteristics of tick-borne encephalitis virus (TBEV) associated with fatal meningoencephalitis in Mongolia. We conducted a descriptive study of 14 fatal cases of TBE that occurred between 2008 and 2017 in Mongolia. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect viral RNA in brain tissue. RT-PCR products from six patients who died from TBE between 2013 and 2017 were directly sequenced and analysed phylogenetically. Ticks collected from Selenge and Bulgan provinces were also tested for TBEV by RT-PCR. Between 2008 and 2017, there were 14 fatal TBE cases in hospitals in Mongolia. The 14 patients who died reported receiving tick bites in Bulgan or Selenge province; 71.4% of deaths resulted from tick bites in Bulgan province. The TBE case fatality rate was 28.6% for patients in Bulgan province and 2.7% for those in Selenge province. All of the fatalities were men; the median age was 45 ± 12.6 years. Tick bites occurred between April and June in forested areas. In 2013, a 388 base pair fragment of the envelope (E) gene was obtained from a hospitalized patient. The closest relatives of this virus are Far-Eastern TBEV isolates. The case fatality rate differed between two provinces where tick bites occurred. A higher number of TBE cases and the virulent Far-Eastern subtype occurred in patients in Bulgan province. This province should increase vaccination coverage, training, education and investigations.
Collapse
|
14
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|