1
|
Huang TH, Lin CM, Lin CK, Chang SF, Shi CS. The blockade of neddylation alleviates ventilator-induced lung injury by reducing stretch-induced damage to pulmonary epithelial cells. Biochem Pharmacol 2024; 229:116533. [PMID: 39265821 DOI: 10.1016/j.bcp.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Ventilator-induced lung injury is a serious complication in mechanically ventilated patients. Neddylation, the post-translational modification of neural precursor cell-expressed developmentally down-regulated 8 (NEDD8) conjugation, regulates numerous biological functions. However, its involvement and therapeutic significance in ventilator-induced lung injury remains unknown. Therefore, this study aimed to examine the kinetics and contribution of activated neddylation and the impact of neddylation inhibition in mice subjected to high tidal volume (HTV) ventilation in vivo and human pulmonary alveolar epithelial cells stimulated through cyclic stretching (CS) in vitro. The neddylation and expression of ubiquitin conjugating enzyme 3 (UBA3), a NEDD8-activating enzyme (NAE) catalytic subunit, were time-dependently upregulated in HTV-ventilated mice. Additionally, the NAE inhibitor MLN4924 considerably attenuated acute lung injury induced by HTV ventilation, manifesting as reduced inflammation and oxidative stress. Furthermore, MLN4924 effectively reduced the secretion of inflammatory cytokines from Ly6Chigh monocytes and neutrophils, subsequently decreasing endothelial permeability. Moreover, our study revealed an upregulation of the neddylation pathway, oxidative stress, and apoptosis during CS of alveolar epithelial cells. However, blockade of neddylation via MLN4924 or through UBA3 knockdown suppressed this upregulation. Overall, the inhibition of neddylation may alleviate HTV-induced acute lung injury by preventing CS-induced damage to alveolar epithelial cells. This indicates that the neddylation pathway plays a critical role in the progression of ventilator-induced lung injury. These findings may provide a new therapeutic target for treating ventilator-induced lung injury.
Collapse
Affiliation(s)
- Tzu-Hsiung Huang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chieh-Mo Lin
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chin-Kuo Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
2
|
Barbeta E, Arrieta M, Motos A, Bobi J, Yang H, Yang M, Tanzella G, Di Ginnatale P, Nogas S, Vargas CR, Cabrera R, Battaglini D, Meli A, Kiarostami K, Vázquez N, Fernández-Barat L, Rigol M, Mellado-Artigas R, Frigola G, Camprubí-Rimblas M, Ferrer P, Martinez D, Artigas A, Ferrando C, Ferrer M, Torres A. A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury. Crit Care 2023; 27:239. [PMID: 37328874 PMCID: PMC10276390 DOI: 10.1186/s13054-023-04512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). METHODS Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. RESULTS All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. CONCLUSIONS In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.
Collapse
Affiliation(s)
- Enric Barbeta
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Marta Arrieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Ana Motos
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
| | - Joaquim Bobi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015, Rotterdam, The Netherlands
- Cardiology Department, Institute Clinic Cardiovascular (ICCV), Hospital Clinic, Barcelona, Spain
| | - Hua Yang
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, China
| | - Minlan Yang
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Giacomo Tanzella
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Pierluigi Di Ginnatale
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
| | - Stefano Nogas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Carmen Rosa Vargas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Roberto Cabrera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Denise Battaglini
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, San Martino Policlinico Hospital, Genoa, Italy
| | - Andrea Meli
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesia and Intensive Care, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kasra Kiarostami
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Nil Vázquez
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Montserrat Rigol
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Cardiology Department, Institute Clinic Cardiovascular (ICCV), Hospital Clinic, Barcelona, Spain
| | - Ricard Mellado-Artigas
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Frigola
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marta Camprubí-Rimblas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Pau Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Martinez
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Antonio Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carlos Ferrando
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Miquel Ferrer
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Pneumology Service, Respiratory Institute, Hospital Clinic of Barcelona, Villarroel st. 170, 08036, Barcelona, Spain
| | - Antoni Torres
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
- Pneumology Service, Respiratory Institute, Hospital Clinic of Barcelona, Villarroel st. 170, 08036, Barcelona, Spain.
| |
Collapse
|
3
|
Lin CM, Huang TH, Chi MC, Guo SE, Lee CW, Hwang SL, Shi CS. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6C high monocytes and lung inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113632. [PMID: 35594827 DOI: 10.1016/j.ecoenv.2022.113632] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to particulate matter (PM) may contribute to lung inflammation and injury. The therapeutic effect of N-acetylcysteine (NAC), a well-known antioxidant, with regards to the prevention and treatment of fine PM (PM2.5)-induced lung injury is poorly understood. This study aimed to determine the effect of PM2.5 on the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli and the production of proinflammatory proteins by stimulating the generation of reactive oxygen species (ROS), and to investigate the therapeutic effect of NAC on PM2.5-induced lung injury. METHODS C57BL/6 mice were exposed to a single administration of PM2.5 (200 μg/100 μl/mouse) or phosphate-buffered saline (control) via intratracheal instillation. The mice were injected intratracheally via a microsprayer aerosolizer with NAC (20 or 40 mg/kg) 1 h before PM2.5 instillation and 24 h after PM2.5 instillation. Total protein, VEGF, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured. Oxidative stress was evaluated by determining levels of malondialdehyde (MDA) and nitrite in BALF. Flow cytometric analysis was used to identify and quantify neutrophils and Ly6Chigh and Ly6Clow monocyte subsets. RESULTS Neutrophil count, total protein, and VEGF content in BALF significantly increased after PM2.5 exposure and reached the highest level on day 2. Increased levels of TNF-alpha, IL-6, nitrite, and MDA in BALF were also noted. Flow cytometric analysis showed increased recruitment of neutrophils and Ly6Chigh, but not Ly6Clow monocytes, into lung alveoli. Treatment with NAC via the intratracheal spray significantly attenuated the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli in PM2.5-treated mice in a dose-dependent manner. Furthermore, NAC significantly attenuated the production of total protein, VEGF, nitrite, and MDA in the mice with PM2.5-induced lung injury in a dose-dependent manner. CONCLUSION PM2.5-induced lung injury caused by the generation of oxidative stress led to the recruitment of neutrophils and Ly6Chigh monocytes, and production of inflammatory proteins. NAC treatment alleviated PM2.5-induced lung injury by attenuating the ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation.
Collapse
Affiliation(s)
- Chieh-Mo Lin
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, Chiayi County, Taiwan
| | - Tzu-Hsiung Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Miao-Ching Chi
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Su-Er Guo
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Su-Lun Hwang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan.
| |
Collapse
|
4
|
Liu P, Gao Y, Luo P, Yu H, Guo S, Liu F, Gao J, Xu J, Wang S, Zhang C. Glucocorticoid-induced expansion of classical monocytes contributes to bone loss. Exp Mol Med 2022; 54:765-776. [PMID: 35672449 PMCID: PMC9256622 DOI: 10.1038/s12276-022-00764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Classical monocytes are commonly involved in the innate inflammatory response and are the progenitors of osteoclasts. Excess endogenous glucocorticoids (GCs) can increase the levels of classical monocytes in blood and bone marrow. The role of this cell population in high-dose exogenous GC-induced osteoporosis (GIOP) remains to be elucidated. In this study, GIOP was established in rats and mice by daily methylprednisolone injection, and monocyte subsets were analyzed by flow cytometry. We demonstrated that classical monocytes accumulate in bone marrow during GIOP. Similarly, the monocyte proportion among bone marrow nucleated cells was also increased in patients with steroid treatment history. We sorted classical monocytes and analyzed their transcriptional profile in response to GCs by RNA sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that classical monocytes isolated from GC-treated rats exhibited osteoclast differentiation potential. Deletion of classical monocytes by clodronate liposome treatment prevented GIOP via inhibition of osteoclastogenesis and restoration of CD31HiendomucinHi vessels. Regarding the molecular mechanism, classical monocytes express high levels of glucocorticoid receptors. In vitro treatment with GCs increased both the percentage and absolute number of monocytes and promoted their proliferation. In summary, classical monocytes mediated GC-induced bone loss and are a potential target for therapeutic intervention in GIOP treatment.
Collapse
Affiliation(s)
- Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Shang Guo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Fuyun Liu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| |
Collapse
|
5
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
6
|
Guo H, Qian L, Cui J. Focused evaluation of the roles of macrophages in chimeric antigen receptor (CAR) T cell therapy associated cytokine release syndrome. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0087. [PMID: 34570442 PMCID: PMC8958886 DOI: 10.20892/j.issn.2095-3941.2021.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022] Open
Abstract
Cytokine release syndrome (CRS) is a major obstacle to the widespread clinical application of chimeric antigen receptor (CAR) T cell therapies. CRS can also be induced by infections (such as SARS-CoV-2), drugs (such as therapeutic antibodies), and some autoimmune diseases. Myeloid-derived macrophages play key roles in the pathogenesis of CRS, and participate in the production and release of the core CRS cytokines, including interleukin (IL)-1, IL-6, and interferon-γ. In this review, we summarize the roles of macrophages in CRS and discuss new developments in macrophage activation and the related mechanisms of cytokine regulation in CRS.
Collapse
Affiliation(s)
- Hanfei Guo
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lei Qian
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Ocansey DKW, Pei B, Xu X, Zhang L, Olovo CV, Mao F. Cellular and molecular mediators of lymphangiogenesis in inflammatory bowel disease. J Transl Med 2021; 19:254. [PMID: 34112196 PMCID: PMC8190852 DOI: 10.1186/s12967-021-02922-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies reporting the intricate crosstalk between cellular and molecular mediators and the lymphatic endothelium in the development of inflammatory bowel diseases (IBD) suggest altered inflammatory cell drainage and lymphatic vasculature, implicating the lymphatic system as a player in the occurrence, development, and recurrence of intestinal diseases. This article aims to review recent data on the modulatory functions of cellular and molecular components of the IBD microenvironment on the lymphatic system, particularly lymphangiogenesis. It serves as a promising therapeutic target for IBD management and treatment. The interaction with gut microbiota is also explored. Main text Evidence shows that cells of the innate and adaptive immune system and certain non-immune cells participate in the complex processes of inflammatory-induced lymphangiogenesis through the secretion of a wide spectrum of molecular factors, which vary greatly among the various cells. Lymphangiogenesis enhances lymphatic fluid drainage, hence reduced infiltration of immunomodulatory cells and associated-inflammatory cytokines. Interestingly, some of the cellular mediators, including mast cells, neutrophils, basophils, monocytes, and lymphatic endothelial cells (LECs), are a source of lymphangiogenic molecules, and a target as they express specific receptors for lymphangiogenic factors. Conclusion The effective target of lymphangiogenesis is expected to provide novel therapeutic interventions for intestinal inflammatory conditions, including IBD, through both immune and non-immune cells and based on cellular and molecular mechanisms of lymphangiogenesis that facilitate inflammation resolution.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Lin CK, Huang TH, Yang CT, Shi CS. Roles of lung-recruited monocytes and pulmonary Vascular Endothelial Growth Factor (VEGF) in resolving Ventilator-Induced Lung Injury (VILI). PLoS One 2021; 16:e0248959. [PMID: 33740009 PMCID: PMC7978382 DOI: 10.1371/journal.pone.0248959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/09/2021] [Indexed: 01/31/2023] Open
Abstract
Monocytes and vascular endothelial growth factor (VEGF) have profound effects on tissue injury and repair. In ventilator-induced lung injury (VILI), monocytes, the majority of which are Ly6C+high, and VEGF are known to initiate lung injury. However, their roles in post-VILI lung repair remain unclear. In this study, we used a two-hit mouse model of VILI to identify the phenotypes of monocytes recruited to the lungs during the resolution of VILI and investigated the contributions of monocytes and VEGF to lung repair. We found that the lung-recruited monocytes were predominantly Ly6C+low from day 1 after the insult. Meanwhile, contrary to inflammatory cytokines, pulmonary VEGF decreased upon VILI but subsequently increased significantly on days 7 and 14 after the injury. There was a strong positive correlation between VEGF expression and proliferation of alveolar epithelial cells in lung sections. The expression pattern of VEGF mRNA in lung-recruited monocytes was similar to that of pulmonary VEGF proteins, and the depletion of monocytes significantly suppressed the increase of pulmonary VEGF proteins on days 7 and 14 after VILI. In conclusion, during recovery from VILI, the temporal expression patterns of pulmonary growth factors are different from those of inflammatory cytokines, and the restoration of pulmonary VEGF by monocytes, which are mostly Ly6C+low, is associated with pulmonary epithelial proliferation. Lung-recruited monocytes and pulmonary VEGF may play crucial roles in post-VILI lung repair.
Collapse
Affiliation(s)
- Chin-Kuo Lin
- Division of Pulmonary Infection and Critical Care, Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Taiwan
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Hsiung Huang
- Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Puzi City, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Puzi City, Taiwan
| |
Collapse
|
9
|
Sala V, Della Sala A, Ghigo A, Hirsch E. Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress 2021; 5:40-51. [PMID: 33821232 PMCID: PMC8012884 DOI: 10.15698/cst2021.04.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| |
Collapse
|
10
|
Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol 2021; 33:e12931. [PMID: 33506602 PMCID: PMC8166215 DOI: 10.1111/jne.12931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Increased brain microvascular permeability and disruption of blood-brain barrier (BBB) function are among hallmarks of several acute neurodegenerative disorders, including stroke. Numerous studies suggest the involvement of bradykinin (BK), neurotensin (NT) and substance P (SP) in BBB impairment and oedema formation after stroke; however, there is paucity of data in regard to the direct effects of these peptides on the brain microvascular endothelial cells (BMECs) and BBB. The present study aimed to evaluate the direct effects of BK, NT and SP on the permeability of BBB in an in vitro model based on human induced pluripotent stem cell (iPSC)-derived BMECs. Our data indicate that all three peptides increase BBB permeability in a concentration-dependent manner in an in vitro model formed from two different iPSC lines (CTR90F and CTR65M) and widely used hCMEC/D3 human BMECs. The combination of BK, NT and SP at a sub-effective concentration also resulted in increased BBB permeability in the iPSC-derived model indicating potentiation of their action. Furthermore, we observed abrogation of BK, NT and SP effects with pretreatment of pharmacological blockers targeting their specific receptors. Additional mechanistic studies indicate that the short-term effects of these peptides are not mediated through alteration of tight-junction proteins claudin-5 and occludin, but likely involve redistribution of F-actin and secretion of vascular endothelial growth factor. This is the first experimental study to document the increased permeability of the BBB in response to direct action of NT in an in vitro model. In addition, our study confirms the expected but not well-documented, direct effect of SP on BBB permeability and adds to the well-recognised actions of BK on BBB. Lastly, we demonstrate that peptidase neurolysin can neutralise the effects of these peptides on BBB, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
11
|
Zhang C, Hu S, Zosky GR, Wei X, Shu S, Wang D, Chai X. Paracoxib Alleviates Ventilator-Induced Lung Injury Through Functional Modulation of Lung-Recruited CD11bloLy6Chi Monocytes. Shock 2021; 55:236-243. [PMID: 32590697 DOI: 10.1097/shk.0000000000001591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Lung-recruited Ly6Chi monocytes had been shown to be involved in ventilator-induced lung injury (VILI). Our present study aimed to investigate whether the cyclooxygenase-2 (COX-2) inhibition modulates the function of lung-recruited Ly6Chi monocytes in a mouse model of VILI. METHODS Mice were exposed to lipopolysaccharide (LPS; 20 ng) intraperitoneally prior to injurious mechanical ventilation (Vt = 30 mL/kg, PEEP = 0 cmH2O). A subgroup of mice was treated with intravenous parecoxib (30 mg/kg), a COX-2 inhibitor, 1 h prior to ventilation. Control mice received saline and were not ventilated. At the end of the experiment, blood gas analysis was performed and lung tissue was collected for histological assessment. Flow cytometry was employed to quantify the different populations of lung monocytes/macrophages and their function. Isolated Ly6Chi cells were used to measure the intracellular concentrations of reactive oxygen species (ROS) and nitric oxide (NO) by fluorescent probes, and cytokine production by cytometric bead array. RESULTS Exposure to LPS and injurious ventilation was associated with severe lung histological damage, oxygenation impairment, and pulmonary edema; all of which were largely attenuated following the treatment of parecoxib. Furthermore, flow cytometry analysis revealed that parecoxib caused a reduction in the number of the lung-recruited CD11bloLy6Chi monocytes while there was no effect on tissue-resident CD64+ alveolar macrophages. In addition, the production of oxidative stress products (ROS, NO), MHC-II expression, and inflammatory cytokines in response to LPS and VILI in CD11bloLy6Chi monocytes was ameliorated by parecoxib. CONCLUSION Parecoxib-induced alleviation of oxidative stress and inflammation in lung-recruited Ly6Chi monocytes may partly explain the beneficial action of COX-2 inhibition in VILI.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Xin Wei
- Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuhua Shu
- Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoqing Chai
- Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Zhang W, Dai H, Lin F, Zhao C, Wang X, Zhang S, Ge W, Pei S, Pan L. Ly-6C high inflammatory-monocyte recruitment is regulated by p38 MAPK/MCP-1 activation and promotes ventilator-induced lung injury. Int Immunopharmacol 2019; 78:106015. [PMID: 31780369 DOI: 10.1016/j.intimp.2019.106015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Lymphocyte antigen 6Chigh (Ly-6Chigh) inflammatory monocytes, as novel mononuclear cells in the innate immune system, participate in infectious diseases. In this study, we investigated the potential role of these monocytes in ventilator-induced lung injury (VILI) and the possible mechanism involved in their migration to lung tissue. Our results showed that mechanical ventilation with high tidal volume (HTV) increased the accumulation of Ly-6Chigh inflammatory monocytes in lung tissues and that blocking C‑C chemokine receptor 2 (CCR2) could significantly reduce Ly-6Chigh inflammatory-monocyte migration and attenuate the degree of inflammation of lung tissues. In addition, inhibition of p38 mitogen-activated protein kinase (p38 MAPK) activity could decrease the secretion of monocyte chemoattractant protein 1 (MCP-1), which in turn decreased the migration of Ly-6Chigh inflammatory monocytes into lung tissue. We also demonstrated that high ventilation caused Ly-6Chigh inflammatory monocytes in the bone marrow to migrate into and aggregate in the lungs, creating inflammation, and that the mechanism was quite different from that of infectious diseases. Ly-6Chigh inflammatory monocytes might play a pro-inflammatory role in VILI, and blocking their infiltration into lung tissue might become a new target for the treatment of this injury.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Chen Zhao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Xiaoxia Wang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - SuiSui Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China; Perioperative Medical Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China.
| |
Collapse
|
13
|
Kim TH, Hong SB, Lim CM, Koh Y, Jang EY, Huh JW. The Role of Exosomes in Bronchoalveloar Lavage from Patients with Acute Respiratory Distress Syndrome. J Clin Med 2019; 8:jcm8081148. [PMID: 31374972 PMCID: PMC6722638 DOI: 10.3390/jcm8081148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition caused by pulmonary and extrapulmonary insults. Exosomes are considered a major cell-to-cell communicator and immune modulator. However, their role in ARDS remains unclear. In this study, we investigated whether exosomes could be a potential biomarker of ARDS. Methods: We isolated exosomes from bronchoalveolar lavage (BAL) of patients with ARDS. The correlation between the level of exosomes with clinical data, including etiology, oxygenation, and 28-day mortality was analyzed. Enzyme-linked immune sorbent assays and western blotting were carried out to characterize BAL exosomes. Immune modulating response of exosomes was investigated by in vitro examination. Results: From 158 patients, we isolated mean 1568.9 µg/mL BAL exosomes, which presented a negative correlation with the PaO2/FiO2 ratio. The level of exosomes did not correlate with 28-day mortality but was elevated in the infectious etiology of ARDS. The exosomes have cargo proteins associated with apoptosis, necroptosis, and autophagy. An in vitro stimulation study revealed that BAL exosomes could induce the production of proinflammatory cytokines and chemokines, but those from patients with ARDS suppressed the production of vascular endothelial growth factor. Conclusions: In ARDS, exosomes are released in alveolar space, and the level is correlated with the etiology of ARDS. BAL exosomes could play an immune-modulating role by controlling the production of cytokines.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chae-Mann Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Young Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
14
|
Cyclooxygenase-2 Activity Regulates Recruitment of VEGF-Secreting Ly6C high Monocytes in Ventilator-Induced Lung Injury. Int J Mol Sci 2019; 20:ijms20071771. [PMID: 30974834 PMCID: PMC6479356 DOI: 10.3390/ijms20071771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Mechanical ventilation is usually required for saving lives in critically ill patients; however, it can cause ventilator-induced lung injury (VILI). As VEGF-secreting Ly6Chigh monocytes are involved in VILI pathogenesis, we investigated whether cyclooxygenase-2 (COX-2) activity regulates the recruitment of VEGF-secreting Ly6Chigh monocytes during VILI. The clinically relevant two-hit mouse model of VILI, which involves the intravenous injection of lipopolysaccharide prior to high tidal volume (HTV)-mechanical ventilation, was used in this study. To investigate the role of COX-2 in the recruitment of VEGF-secreting Ly6Chigh monocytes during VILI, celecoxib, which is a clinical COX-2 inhibitor, was administered 1 h prior to HTV-mechanical ventilation. Pulmonary vascular permeability and leakage, inflammatory leukocyte infiltration, and lung oxygenation levels were measured to assess the severity of VILI. HTV-mechanical ventilation significantly increased the recruitment of COX-2-expressing Ly6Chigh, but not Ly6Clow, monocytes. Celecoxib significantly diminished the recruitment of Ly6Chigh monocytes, attenuated the levels of VEGF and total protein in bronchoalveolar lavage fluid, and restored pulmonary oxygenation during VILI. Our findings demonstrate that COX-2 activity is important in the recruitment of VEGF-secreting Ly6Chigh monocytes, which are involved in VILI pathogenesis, and indicate that the suppression of COX-2 activity might be a useful strategy in mitigating VILI.
Collapse
|