1
|
Vendruscolo I, Berton GH, Biffi MT, Bressiani PA, Oliveira AKG, Berti AP, Concato-Lopes VM, Pavanelli WR, Simon AP, Oldoni TLC, Santos FAR, Dalmolin IAL, Canteri MHG, Düsman E. Antiproliferative effect of hydroalcoholic brown propolis extract on tumor and non-tumor cells. BRAZ J BIOL 2025; 84:e287297. [PMID: 39813473 DOI: 10.1590/1519-6984.287297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/18/2024] [Indexed: 01/18/2025] Open
Abstract
Studies show that propolis has antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant, antitumor, and immunomodulatory properties, and may protect against diseases such as diabetes, cardiovascular disease, and cancer. We aimed to extract compounds of brown propolis with hydroalcoholic solvents and evaluate their cytotoxic activity on tumor and non-tumor cells by MTT test. We tested the solute:solvent ratio (ethanol:water) and extraction time in a Shaker incubator (710 rpm) before conducting a central composite rotational design (CCRD) to optimize time and solvent mixture. We found that a temperature of 80 °C and a solvent concentration of 90:10 were the best extraction conditions for phenolic compounds, especially pinocembrin and cinnamic acid. The extract showed antioxidant capacity, acid characteristics, low humidity, and the presence of ash, lipids, and soluble solids. The cytotoxicity test with normal kidney cells of Macaca mullata (LLC-MK2) and human lung tumor cells (A549) showed no statistical difference from the negative control. For liver tumor cells (HuH7.5), different concentrations showed cytotoxic/antiproliferative activity. Thus, the data indicate that this product deserves prominence in the search for new applications.
Collapse
Affiliation(s)
- I Vendruscolo
- Universidade Tecnológica Federal do Paraná - UTFPR, Francisco Beltrão, PR, Brasil
| | - G H Berton
- Universidade Tecnológica Federal do Paraná - UTFPR, Francisco Beltrão, PR, Brasil
| | - M T Biffi
- Universidade Tecnológica Federal do Paraná - UTFPR, Francisco Beltrão, PR, Brasil
| | - P A Bressiani
- Universidade Estadual do Oeste do Paraná - UNIOESTE, Programa de Pós-graduação em Engenharia Química, Toledo, PR, Brasil
| | - A K G Oliveira
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Engenharia Ambiental: Análise e Tecnologia Ambiental, Francisco Beltrão, PR, Brasil
| | - A P Berti
- Universidade Estadual de Mato Grosso do Sul - UEMS, Dourados, MS, Brasil
| | | | - W R Pavanelli
- Universidade Estadual de Londrina - UEL, Departamento de Patologia Geral, Londrina, PR, Brasil
| | - A P Simon
- Universidade Tecnológica Federal do Paraná - UTFPR, Pato Branco, PR, Brasil
| | - T L C Oldoni
- Universidade Tecnológica Federal do Paraná - UTFPR, Pato Branco, PR, Brasil
| | - F A R Santos
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - I A L Dalmolin
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento de Engenharias, Francisco Beltrão, PR, Brasil
| | - M H G Canteri
- Universidade Tecnológica Federal do Paraná - UTFPR, Departmeno de Química e Ciências Biológicas, Francisco Beltrão, PR, Brasil
| | - E Düsman
- Universidade Tecnológica Federal do Paraná - UTFPR, Departmeno de Química e Ciências Biológicas, Francisco Beltrão, PR, Brasil
| |
Collapse
|
2
|
Vieira TM, Barco JG, de Souza SL, Santos ALO, Daoud I, Rahali S, Amdouni N, Bastos JK, Martins CHG, Ben Said R, Crotti AEM. In Vitro and In Silico Studies of the Antimicrobial Activity of Prenylated Phenylpropanoids of Green Propolis and Their Derivatives against Oral Bacteria. Antibiotics (Basel) 2024; 13:787. [PMID: 39200088 PMCID: PMC11352038 DOI: 10.3390/antibiotics13080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Artepillin C, drupanin, and plicatin B are prenylated phenylpropanoids that naturally occur in Brazilian green propolis. In this study, these compounds and eleven of their derivatives were synthesized and evaluated for their in vitro antimicrobial activity against a representative panel of oral bacteria in terms of their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Plicatin B (2) and its hydrogenated derivative 8 (2',3',7,8-tetrahydro-plicatin B) were the most active compounds. Plicatin B (2) displayed strong activity against all the bacteria tested, with an MIC of 31.2 μg/mL against Streptococcus mutans, S. sanguinis, and S. mitis. On the other hand, compound 8 displayed strong activity against S. mutans, S. salivarius, S. sobrinus, Lactobacillus paracasei (MIC = 62.5 μg/mL), and S. mitis (MIC = 31.2 μg/mL), as well as moderate activity against Enterococcus faecalis and S. sanguinis (MIC = 125 μg/mL). Compounds 2 and 8 displayed bactericidal effects (MBC: MIC ≤ 4) against all the tested bacteria. In silico studies showed that the complexes formed by compounds 2 and 8 with the S. mitis, S. sanguinis, and S. mutans targets (3LE0, 4N82, and 3AIC, respectively) had energy score values similar to those of the native S. mitis, S. sanguinis, and S. mutans ligands due to the formation of strong hydrogen bonds. Moreover, all the estimated physicochemical parameters satisfied the drug-likeness criteria without violating the Lipinski, Veber, and Egan rules, so these compounds are not expected to cause problems with oral bioavailability and pharmacokinetics. Compounds 2 and 8 also had suitable ADMET parameters, as the online server pkCSM calculates. These results make compounds 2 and 8 good candidates as antibacterial agents against oral bacteria.
Collapse
Affiliation(s)
- Tatiana M. Vieira
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (T.M.V.); (J.G.B.)
| | - Julia G. Barco
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (T.M.V.); (J.G.B.)
| | - Sara L. de Souza
- Department of Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405320, MG, Brazil; (S.L.d.S.); (A.L.O.S.); (C.H.G.M.)
| | - Anna L. O. Santos
- Department of Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405320, MG, Brazil; (S.L.d.S.); (A.L.O.S.); (C.H.G.M.)
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, Biskra 07000, Algeria;
- Laboratory of Natural and Bio-Active Substances, Faculty of Science, Tlemcen University, Tlemcen P.O. Box 119, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science, Qassim University, Qassim 51452, Saudi Arabia;
| | - Noureddine Amdouni
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
| | - Jairo K. Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil;
| | - Carlos H. G. Martins
- Department of Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405320, MG, Brazil; (S.L.d.S.); (A.L.O.S.); (C.H.G.M.)
| | - Ridha Ben Said
- Department of Chemistry, College of Science, Qassim University, Qassim 51452, Saudi Arabia;
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
| | - Antônio E. M. Crotti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (T.M.V.); (J.G.B.)
| |
Collapse
|
3
|
Gomes KO, Messias da Silva LCF, dos Santos RD, Prado BA, da Silva Montes P, Silva Rodrigues LF, de Araújo MO, Bilac CA, Freire DO, Gris EF, Rodrigues da Silva IC, de Sá Barreto LCL, Orsi DC. Chemical characterization and antibacterial activities of Brazilian propolis extracts from Apis mellifera bees and stingless bees (Meliponini). PLoS One 2024; 19:e0307289. [PMID: 39012879 PMCID: PMC11251613 DOI: 10.1371/journal.pone.0307289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
The aim of this study was to evaluate the physicochemical composition and antibacterial activity of Brazilian propolis extracts from different types, concentrations, and extraction solvents and from different regions in Brazil. A total of 21 samples were analyzed, comprising 14 samples from Apis mellifera (12 green, 1 brown, and 1 red) and 7 samples from stingless bees (3 mandaçaia, 2 jataí, 1 hebora, and 1 tubuna). The analyses performed were dry extract, total phenolic content (TPC) and antioxidant activity (DPPH and ABTS). The antibacterial activity was performed by Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC). The results showed that very low levels of phenolic compounds and antioxidant activity decreased the antimicrobial activity of the propolis extracts from tubuna and jataí. However, there was no correlation between the increase in propolis concentration in the extract, and the increase in antimicrobial activity. The highest TPC and antioxidant activity was obtained for green propolis extract made with 70% raw propolis that presented similar antibacterial activity to the samples formulated with 30% or less raw propolis. The aqueous propolis extract showed lower antimicrobial activity compared to the alcoholic extracts, indicating that ethanol is a better solvent for extracting the active compounds from propolis. It was observed that the MIC (0.06 to 0.2 mg/mL) and MBC (0.2 to 0.5 mg/mL) values for Gram-negative bacteria were higher compared to Gram-positive bacteria (MIC 0.001-0.2 mg/mL, and the MBC 0.02-0.5 mg/mL). The propolis extracts that exhibited the highest antimicrobial activities were from stingless bees hebora from the Distrito Federal (DF) and mandaçaia from Santa Catarina, showing comparable efficacy to samples 5, 6, and 7, which were the green propolis from the DF. Hence, these products can be considered an excellent source of bioactive compounds with the potential for utilization in both the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Karolina Oliveira Gomes
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Rebeca Dias dos Santos
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Bruno Alcântara Prado
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Letícia Fernandes Silva Rodrigues
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Marta Oliveira de Araújo
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Carla Azevedo Bilac
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Eliana Fortes Gris
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Izabel Cristina Rodrigues da Silva
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Daniela Castilho Orsi
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
4
|
Santini AT, Pinto RAO, Lazarini JG, de Morais DV, de Piloto Fernandes AMA, Franchin M, de Carvalho PLN, Pressete CG, Rosalen PL, de Alencar SM, de Oliveira Carvalho P, Ionta M, Ikegaki M. Bioactives of Melipona rufiventris Propolis: Exploring its Antimicrobial, Anti-Inflammatory, and Antioxidant Activities. Chem Biodivers 2024; 21:e202302084. [PMID: 38629893 DOI: 10.1002/cbdv.202302084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
This study explores the potential of propolis, a resinous substance produced by bees, from Melipona rufiventris species. With its composition encompassing resin, wax, pollen, and soil, propolis holds historical significance in traditional medicine within tropical regions. This research is driven by the scarcity of information surrounding M. rufiventris propolis, prompting an investigation into its chemical constituents, in vivo toxicity, and antimicrobial, antioxidant, and anti-inflammatory properties. This exploration could potentially uncover novel applications for this natural product, bolstering both meliponiculture practices and the preservation of native bee populations. The propolis was sampled in Cabo Verde-MG and underwent ethanolic extraction to yield an extract (EEP) for analysis. Chemical assessments (Folin-Ciocalteau, and UHPLC-HRMS) revealed the presence of polyphenols, including flavonoids. The EEP demonstrated higher antimicrobial activity against Gram-positive bacteria and exhibited efficacy against multiresistant strains isolated from complex wounds. Synergistic interactions with commercial antibiotics were also observed. Furthermore, anti-inflammatory evaluations showcased the EEP's potential in reducing NF-kB activation and TNF-α release at non-toxic concentrations. Despite these promising biological activities, the EEP exhibited no antiproliferative effects and demonstrated safety in both the MTS assay and the G. mellonella model. Collectively, these findings highlight the M. rufiventris propolis extract as a valuable reservoir of bioactive compounds with multifaceted potential.
Collapse
Affiliation(s)
| | | | - Josy Goldoni Lazarini
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP, SP-13418-900, Piracicaba, Brazil
| | - Daniel Vieira de Morais
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP, SP-13418-900, Piracicaba, Brazil
| | | | - Marcelo Franchin
- Federal University of Alfenas, CEP, MG-37130-001, Alfenas, Brazil
| | | | | | - Pedro Luiz Rosalen
- Federal University of Alfenas, CEP, MG-37130-001, Alfenas, Brazil
- Piracicaba Dental School, University of Campinas, CEP, SP-13414-903, Piracicaba, Brazil
| | | | | | - Marisa Ionta
- Federal University of Alfenas, CEP, MG-37130-001, Alfenas, Brazil
| | - Masaharu Ikegaki
- Federal University of Alfenas, CEP, MG-37130-001, Alfenas, Brazil
| |
Collapse
|
5
|
Macedo TT, Malavazi LM, Vargas GQ, Gonçalves FJDS, Gomes APDAP, Bueno MR, Aguiar da Silva LD, Figueiredo LC, Bueno-Silva B. Combination of Neovestitol and Vestitol Modifies the Profile of Periodontitis-Related Subgingival Multispecies Biofilm. Biomedicines 2024; 12:1189. [PMID: 38927396 PMCID: PMC11200960 DOI: 10.3390/biomedicines12061189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to evaluate the effect of the combination of neovestitol-vestitol (CNV) compounds obtained from Brazilian red propolis on the microbiological profile of a mature multispecies subgingival biofilm. The biofilm with 32 bacterial species associated with periodontitis was formed for seven days using a Calgary device. Treatment with CNV (1600, 800, 400, and 200 μg/mL), amoxicillin (54 μg/mL), and vehicle control was performed for 24 h on the last day of biofilm formation. Biofilm metabolic activity and DNA-DNA hybridization (checkerboard) assays were performed. The groups treated with CNV 1600 and amoxicillin reduced 25 and 13 species, respectively, compared to the control vehicle treatment (p ≤ 0.05); both reduced P. gingivalis, while only CNV reduced T. forsythia. When the data from the two treatments (CNV and AMOXI) were compared, a statistically significant difference was observed in 13 species, particularly members of Socransky's orange complex. Our results showed that CNV at 1600 μg/mL showed the best results regarding the metabolic activity of mature biofilms and obtained a reduction in species associated with the disease, such as T. forsythia, showing a better reduction than amoxicillin. Therefore, CNV seems to be a promising alternative to eradicate biofilms and reduce their pathogenicity.
Collapse
Affiliation(s)
- Tatiane Tiemi Macedo
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Larissa Matias Malavazi
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| | - Gustavo Quilles Vargas
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| | | | - Aline Paim de Abreu Paulo Gomes
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | | | - Lucas Daylor Aguiar da Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Luciene Cristina Figueiredo
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| |
Collapse
|
6
|
Suhaini NAM, Pauzi MF, Juhari SN, Bakar NAA, Moon JY. Evaluation of the antinociceptive activities of natural propolis extract derived from stingless bee Trigona thoracica in mice. Korean J Pain 2024; 37:141-150. [PMID: 38557655 PMCID: PMC10985486 DOI: 10.3344/kjp.23318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background : Stingless bee propolis is a popular traditional folk medicine and has been employed since ancient times. This study aimed to evaluate the antinociceptive activities of the chemical constituents of aqueous propolis extract (APE) collected by Trigona thoracica in a nociceptive model in mice. Methods : The identification of chemical constituents of APE was performed using high-performance liquid chromatography (HPLC). Ninety-six male Swiss mice were administered APE (400 mg/kg, 1,000 mg/kg, and 2,000 mg/kg) before developing nociceptive pain models. Then, the antinociceptive properties of each APE dose were evaluated in acetic acid-induced abdominal constriction, hot plate test, and formalin-induced paw licking test. Administration of normal saline, acetylsalicylic acid (ASA, 100 mg/kg, orally), and morphine (5 mg/kg, intraperitoneally) were used for the experiments. Results : HPLC revealed that the APE from Trigona thoracica contained p-coumaric acid (R2 = 0.999) and caffeic acid (R2 = 0.998). Although all APE dosages showed inhibition of acetic acid-induced abdominal constriction, only 2,000 mg/kg was comparable to the result of ASA (68.7% vs. 73.3%, respectively). In the hot plate test, only 2,000 mg/kg of APE increased the latency time significantly compared to the control. In the formalin test, the durations of paw licking were significantly reduced at early and late phases in all APE groups with a decrease from 45.1% to 53.3%. Conclusions : APE from Trigona thoracica, containing p-coumaric acid and caffeic acid, exhibited antinociceptive effects, which supports its potential use in targeting the prevention or reversal of central and peripheral sensitization that may produce clinical pain conditions.
Collapse
Affiliation(s)
| | - Mohd Faeiz Pauzi
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
- Department of Anaesthesiology and Intensive Care, Hospital Pengajar Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
| | | | | | - Jee Youn Moon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Dos Santos Alves MJ, de Sousa MHO, de Moura NF, Cesca K, Verruck S, Monteiro AR, Valencia GA. Starch nanoparticles containing phenolic compounds from green propolis: Characterization and evaluation of antioxidant, antimicrobial and digestibility properties. Int J Biol Macromol 2024; 255:128079. [PMID: 37977471 DOI: 10.1016/j.ijbiomac.2023.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the production of nanoparticles through nanoprecipitation using cassava and potato starches as carriers to stabilize phenolic compounds (PC) from green propolis extract (PE). Additionally, the antioxidant and antimicrobial activities of PC stabilized with starch nanoparticles (SNPs), as well as their release under gastrointestinal conditions were investigated. PE exhibited antioxidant and antibacterial properties, especially PE3 (PE produced using sonication by 20 min and stirring at 30 °C for 24 h) had the highest concentrations of p-coumaric acid, rutin, kaempferol and quercetin. SNPs displayed bimodal distribution with particle size lower than 340 nm. The stabilization of PC increased surface charge and hydrophobicity in SNPs. Moreover, SNPs containing PC from PE exhibited antibacterial activity against Listeria monocytogenes, at a concentration of 750 mg/mL. Low release of PC was observed from the nanoparticles when exposed under simulated gastrointestinal conditions. These nanomaterials could be used as natural ingredients with antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
| | | | - Neusa Fernandes de Moura
- School of Food and Chemistry, Federal University of Rio Grande, Santo Antonio da Patrulha, RS, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
8
|
de Melo Garcia PH, Ribeiro NL, de Oliveira JS, de Lima Júnior DM, de Almeida VVS, da Silva EG, da Costa TM, Guerra RR. Red propolis extract as a natural ionophore for confined sheep: performance and morphological and histopathological changes. Trop Anim Health Prod 2023; 55:391. [PMID: 37919613 DOI: 10.1007/s11250-023-03799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
This study aimed to evaluate the effect of increasing levels of red propolis extract (RPE) in the diet of confined sheep on performance and histomorphometric parameters of rumen and intestine and histopathological parameters of liver and kidney. Thirty-five male sheep (17.08 ± 2.36 kg) were used, distributed in a completely randomized design, with five treatments (0, 7, 14, 21, and 28 mL day-1 RPE) and seven replications, submitted to 68 days of experiment. At the end of the experimental period, the animals were euthanized, and samples of rumen, intestine, liver, and kidney were collected to histomorphometry and histopathology analyzes. Higher RPE inclusions (21 and 28 mL day-1) maintained dry matter intake and increased total weight (5.78 x 6.14 and 6.95 kg, respectively) gain up to 20.24%. In the rumen, the inclusion of RPE led to an increase in the thickness of the epithelium and the highest level also increased the thickness of the keratinized portion of this epithelium (21.71 x 32.15 μm). The level of 21 mL day-1 provided larger ruminal papillae (1620.68 x 1641.70 μm) and greater ruminal absorption area (561791.43 x 698288.50 μm2). In intestine 21 and 28 mL-1 of RPE provided greater mucosal thickness (468.54 x 556.20 and 534.64 μm), higher goblet cell index (23.32 x 25.82 and 25.64) and higher hepatic glycogen index (1.47 x 1.64 and 1.62), supporting higher nutrients absortion and glicogenolise and intestinal health, corroborating the weight gain indices. The inclusion of RPE did not cause renal histopathological lesions. Therefore, levels of 21 and 28 mL day-1 of RPE can be used in sheep diets, promoting greater final weight gain, causing positive histomorphological changes in the rumen, intestine and liver, without causing kidney or liver damage.
Collapse
|
9
|
Saliba ASMC, Quirino DJG, Favaro-Trindade CS, Sartori AGDO, Massarioli AP, Lazarini JG, de Souza Silva AP, Alencar SMD. Effects of simulated gastrointestinal digestion/epithelial transport on phenolics and bioactivities of particles of brewer's spent yeasts loaded with Brazilian red propolis. Food Res Int 2023; 173:113345. [PMID: 37803652 DOI: 10.1016/j.foodres.2023.113345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Red propolis from northeast Brazil contains mainly isoflavonoids as bioactive compounds, and its consumption may counteract unregulated and exacerbated formation of reactive oxygen species and inflammatory cytokines/chemokines. Moreover, the production of particles using sustainable carriers have been studied to increase the use of propolis as a functional food ingredient. Hence, the objective of this work was to investigate the effects of simulated gastrointestinal digestion followed by a cell-based epithelial transport on phenolic profile, anti-inflammatory and antioxidant activities of particles of brewer's spent yeasts (BSY) loaded with ethanolic extract of Brazilian red propolis (EEP). As a result, the EEP phenolic diversity decreased throughout the simulated gastrointestinal system, and was modulated by the particle production, as detected by high-performance liquid chromatography - electrospray ionization - quadrupole-time-of-flight-mass spectrometry (HPLC-ESI-QTOF-MS). Concomitantly, the antioxidant activity, as assessed by the ability to scavenge peroxyl and superoxide radicals, hydrogen peroxide, and hypochlorous acid, generally decreased at a higher extent for the particles of EEP with BSY (EEP-BSY) throughout the experiments. Nonetheless, after epithelial transport through the Caco-2 cell monolayer, the basolateral fraction of both EEP-BSY and EEP decreased the activation of pro-inflammatory transcription factor NF-κB by 83% and 65%, respectively, as well as the release of TNF-α (up to 51% and 38%, respectively), and CXCL2/MIP-2 (up to 33% and 25%, respectively). Therefore, BSY may be an interesting carrier for EEP bioencapsulation, since it preserves its anti-inflammatory activity. Further studies should be encouraged to investigate the feasibility of adding it in formulations of functional foods, considering its effect on sensory attributes.
Collapse
Affiliation(s)
| | | | | | | | - Adna Prado Massarioli
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, CEP: 13418-900, Brazil
| | - Josy Goldoni Lazarini
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, CEP: 13418-900, Brazil
| | - Anna Paula de Souza Silva
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, CEP: 13418-900, Brazil
| | - Severino Matias de Alencar
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CEP: 13416-000, Piracicaba, Brazil; Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, CEP: 13418-900, Brazil.
| |
Collapse
|
10
|
Shahab-Navaei F, Asoodeh A. Synthesis of optimized propolis solid lipid nanoparticles with desirable antimicrobial, antioxidant, and anti-cancer properties. Sci Rep 2023; 13:18290. [PMID: 37880491 PMCID: PMC10600131 DOI: 10.1038/s41598-023-45768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
This study aimed to produce stable propolis nanoparticles with a size below 100 nm, suitable for various applications in industries such as pharmaceuticals, medicine, cosmetics, food, and packaging. To achieve this, propolis solid lipid nanoparticles (PSLNs) were synthesized using the hot homogenization method, and the optimized nanoparticles were analyzed using Design Expert software. The properties of the synthesized PSLN were characterized using UV-visible spectroscopy, FTIR, XRD, PSA, TEM, and zeta potential analysis. The results indicated that PSLNs with a size range of 57 ± 15 nm remained stable in an aqueous medium at pH 7.4. HPLC analysis showed that the active ingredient of phenols and flavonoids in the extract remained stable after the formation of PSLNs. Antioxidant and antibacterial properties of the extract and nanoparticles were also evaluated. The results demonstrated that the biological properties of the extract were effectively preserved in PSLNs, Additionally, the PSLN synthesized exhibited remarkable anticancer properties against the A549 cell line and with IC50 of 0.01 mg/ml after 72 h-treatment. In conclusion, the optimized PSLNs can be utilized as antioxidant and antibacterial additives and have the potential to be used as a drug or drug carrier for the treatment of lung cancer.
Collapse
Affiliation(s)
- Fatemeh Shahab-Navaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
11
|
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu MC, Ghosh S, Jung C, Burgett M, Hongsibsong S. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023; 12:3909. [PMID: 37959028 PMCID: PMC10648409 DOI: 10.3390/foods12213909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract.
Collapse
Affiliation(s)
- Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., Singapore 368819, Singapore;
| | - Pichet Praphawilai
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand;
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida 5001, Venezuela;
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
de Almeida-Junior S, Ferraz MVF, de Oliveira AR, Maniglia FP, Bastos JK, Furtado RA. Advances in the phytochemical screening and biological potential of propolis. Fundam Clin Pharmacol 2023; 37:886-899. [PMID: 37038052 DOI: 10.1111/fcp.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Propolis is a natural resinous product collected from different parts of plants by bees and mixed with their salivary secretions. The occurrence of more than 180 different chemotypes has flavonoids, phenolic acids, esters, and phenolic aldehydes, as well as balsamic resins, beeswax, pollen, and essential and aromatic oils, among others. Its biological potential documented throughout the world justifies the need, from time to time, to organize reviews on the subject, with the intention of gathering and informing about the update on propolis. In this review (CRD42020212971), phytochemical advances, in vitro, in vivo, and clinical biological assays of pharmacological interest are showcased. The focus of this work is to present propolis clinical safety assays, antitumor, analgesic, antioxidant, anti-inflammatory, and antimicrobial activities. This literature review highlights propolis' promising biological activity, as it also suggests that studies associating propolis with nanotechnology should be further explored for enhanced bioprocessing applications.
Collapse
Affiliation(s)
- Silvio de Almeida-Junior
- Biosciences and Health Laboratory, State University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
| | - Matheus Vitor Ferreira Ferraz
- Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Recife, Brazil
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alex Roberto de Oliveira
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Andrade Furtado
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| |
Collapse
|
13
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
14
|
Dynamic gastrointestinal digestion/intestinal permeability of encapsulated and nonencapsulated Brazilian red propolis: Active compounds stability and bioactivity. Food Chem 2023; 411:135469. [PMID: 36681021 DOI: 10.1016/j.foodchem.2023.135469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The objectives were to investigate the effect of dynamic gastrointestinal digestion/Caco-2 cell transport on active compounds stability and antioxidant/anti-inflammatory activities of the ethanolic extract of Brazilian red propolis (EEBRP), whether encapsulated or not; and the in vivo acute toxicity of the EEBRP after digestion. Eight isoflavonoids, one flavanone, and one chalcone were identified by HPLC-ESI-QTOF-MS, and quantified by HPLC-PDA. Bioaccessibility was higher for the encapsulated EEBRP (21.4%-57.6%) than for the nonencapsulated (19.3%-30.2%). Conversely, the Caco-2 cell transport was higher for the nonencapsulated EEBRP. Similarly, the nonencapsulated EEBRP showed higher ability to scavenge reactive oxygen species, which was especially attributed to calycosin, and to decrease NF-κB activation, and the levels of TNF-α and CXCL2/MIP-2 after Caco-2 cell transport. Hence, there is an indication that EEBRP is a promising alternative dietary source of bioavailable isoflavonoids. Further studies on encapsulation should be encouraged to improve bioactivity, and expand its food applications.
Collapse
|
15
|
Cunha GAD, Carlstrom PF, Franchin M, Alencar SM, Ikegaki M, Rosalen PL. A Systematic Review of the Potential Effects of Propolis Extracts on Experimentally-induced Diabetes. PLANTA MEDICA 2023; 89:236-244. [PMID: 36170859 DOI: 10.1055/a-1910-3505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oxidative stress (OS) is involved in the development of diabetes mellitus (DM) and its complications. Thus, OS reduction may be an important strategy for DM therapy. Propolis is bee resins with high antioxidant activity and is used in the treatment of different diseases, including DM. Therefore, in this systematic review, we evaluated the impact of propolis administration in diabetic animals. We used the PRISMA strategy to collect preclinical studies published in English up to November 2021 in three databases (PubMed/Medline, Scopus, and Web of Science). We used the SYRCLE tool to analyze the risk of methodological bias. Our primary search returned 198 studies, of which 14 were considered eligible to be included in this review. The administration of propolis induced a hypoglycemic effect in the treated animals, which is probably due to the reduction of OS. The animals showed restoration of endogenous antioxidant defenses and reduced levels of markers for OS. The administration of propolis resulted in improvement in the lipid profile of treated animals. Our risk of bias assessment showed a methodological quality score of less than 30% due to a lack of randomization, blinding, and proper allocation of animals. Heterogeneity in treatments, lack of results, and use of non-standard extracts are limitations in our data analysis. Despite these limitations, propolis induced a significant hypoglycemic effect in diabetic animals when compared to untreated controls. This effect was associated with a reduction in OS, a process mediated by ROS neutralization and restoration of endogenous antioxidant defenses.
Collapse
Affiliation(s)
| | - Paulo Fernando Carlstrom
- Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas, MG, Brazil
- Biosciences and Biotechnology Applied to Pharmacy Graduate Program, São Paulo State University, Araraquara, SP, Brazil
| | - Marcelo Franchin
- Faculty of Dentistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Masaharu Ikegaki
- Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas, MG, Brazil
- Faculty of Pharmaceutical Science, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Pedro Luiz Rosalen
- Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
16
|
Simulated gastrointestinal digestion/Caco-2 cell transport: Effects on biological activities and toxicity of a Brazilian propolis. Food Chem 2023; 403:134330. [DOI: 10.1016/j.foodchem.2022.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
|
17
|
Santiago KB, Conti BJ, Cardoso EDO, Conte FL, Tasca KI, Romagnoli GG, Golim MDA, Cruz MT, Sforcin JM. Propolis anti-inflammatory effects on MAGE-1 and retinoic acid-treated dendritic cells and on Th1 and T regulatory cells. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220044. [PMID: 36721426 PMCID: PMC9851646 DOI: 10.1590/1678-9199-jvatitd-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background Propolis exhibits huge potential in the pharmaceutical industry. In the present study, its effects were investigated on dendritic cells (DCs) stimulated with a tumor antigen (MAGE-1) and retinoic acid (RA) and on T lymphocytes to observe a possible differential activation of T lymphocytes, driving preferentially to Th1 or Treg cells. Methods Cell viability, lymphocyte proliferation, gene expression (T-bet and FoxP3), and cytokine production by DCs (TNF-α, IL-10, IL-6 and IL-1β) and lymphocytes (IFN-γ and TGF-β) were analyzed. Results MAGE-1 and RA alone or in combination with propolis inhibited TNF-α production and induced a higher lymphoproliferation compared to control, while MAGE-1 + propolis induced IL-6 production. Propolis in combination with RA induced FoxP3 expression. MAGE-1 induced IFN-γ production while propolis inhibited it, returning to basal levels. RA inhibited TGF-β production, what was counteracted by propolis. Conclusion Propolis affected immunological parameters inhibiting pro-inflammatory cytokines and favoring the regulatory profile, opening perspectives for the control of inflammatory conditions.
Collapse
Affiliation(s)
| | - Bruno José Conti
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Karen Ingrid Tasca
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | | | | | - Maria Tereza Cruz
- Faculty of Pharmacy, Center for Neurosciences and Cellular Biology,
University of Coimbra, Coimbra, Portugal
| | - José Maurício Sforcin
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil.,Correspondence:
| |
Collapse
|
18
|
Daza-Leon C, Gomez AP, Álvarez-Mira D, Carvajal-Diaz L, Ramirez-Nieto G, Sanchez A, Vargas JI, Betancourt L. Characterization and evaluation of Colombian propolis on the intestinal integrity of broilers. Poult Sci 2022; 101:102159. [PMID: 36279608 PMCID: PMC9597123 DOI: 10.1016/j.psj.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nutritional additives such as propolis seek to improve intestinal health as an alternative to the global ban on in-feed antibiotics used as growth promoters (AGP). The objective of this study was to evaluate the effect of propolis supplementation in diet of broilers. Four hundred and fifty straight-run Ross 308 AP broilers were fed with a basal diet (BD) throughout the whole experimental period. Birds were randomly distributed into 5 groups at d 14: negative control without antibiotics nor propolis (AGP-), positive control 500 ppm of Zinc Bacitracin as growth promoter (AGP+), and 3 groups supplemented with 150, 300, and 450 ppm of propolis. Every group included 6 replicates of 15 birds each. Propolis concentration was increased from d 22 to 42, in experimental groups to 300, 600, and 900 ppm of propolis, and 10% of raw soybean was included as a challenge in all groups during the same period. Analysis of productive parameters, intestinal morphometry, and relative quantification of genes associated with epithelial integrity by qPCR were performed at 21 and 42 d. The groups with the greatest weights were those that consumed diets including 150 (21 d) and 900 ppm (42 d) of propolis compared with all treatments. The lowest score of ISI was found at 300 (21 d) and 600 ppm (42 d). A lower degree of injury in digestive system was seen with the inclusion of 300 ppm (21 d) and 900 ppm (42 d). Up-regulation of zonula occludens-1 (ZO-1) was observed in jejunum of broilers supplemented with 150 and 300 ppm at 21 d. Up-regulation of ZO-1 and TGF-β was also evidenced in ileum at all propolis inclusion levels at 42-day-old compared to AGP+ and AGP-. The beneficial effects were evidenced at inclusion levels of 150 ppm in the starter and 900 ppm in the finisher. According to the results, the Colombian propolis inclusion can improve productive performance, physiological parameters, and gene expression associated with intestinal integrity.
Collapse
Affiliation(s)
- Camila Daza-Leon
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Arlen P Gomez
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| | - Diana Álvarez-Mira
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Loren Carvajal-Diaz
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia; Compañía Campo Colombia SAS, Bogotá, DC, Colombia
| | - Gloria Ramirez-Nieto
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | | | | | - Liliana Betancourt
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
19
|
Araújo C, Oliveira RD, Pinto-Ribeiro F, Almeida-Aguiar C. An Insight on the Biomedical Potential of Portuguese Propolis from Gerês. Foods 2022; 11:3431. [PMID: 36360044 PMCID: PMC9656172 DOI: 10.3390/foods11213431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA), a progressive degenerative disease of weight-bearing joints, is the second leading cause of disability in the world. Despite all the advances and research over the last years, none of the proposed strategies has been effective in generating functional and long-lasting tissue. Due to the high prevalence of OA and the urgent need for an effective and successful treatment, interest in natural products as anti-inflammatory agents, such as propolis and its components, has emerged. In this work, we estimate the biomedical potential of Portuguese propolis, evaluating the in vitro antioxidant and anti-inflammatory effects of single hydroalcoholic extracts prepared with propolis from Gerês sampled over a five-year period (2011-2015) (G.EE70 and G.EE35). The in vivo and in vitro anti-inflammatory potential of the hydroalcoholic extract of mixtures of the same samples (mG.EE70 and mG.EE35) was evaluated for the first time too. DPPH• radical scavenging and superoxide anion scavenging assays showed the strong antioxidant potential of both hydroalcoholic extracts, either prepared from single propolis samples or from the mixtures of the same samples. Results also revealed an anti-inflammatory effect of mG.EE35, both in vitro by inhibiting BSA denaturation and in vivo in the OA-induced model by improving mechanical hyperalgesia as well as the gait pattern parameters. Results further support the use of propolis blends as a better and more efficient approach to take full advantage of the bioactive potential of propolis.
Collapse
Affiliation(s)
- Carina Araújo
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | - Rafaela Dias Oliveira
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4806-909 Guimarães, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4806-909 Guimarães, Portugal
| | - Cristina Almeida-Aguiar
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Fernandes PM, Rosalen PL, Fernandes DT, Dias-Neto E, Alencar SM, Bueno-Silva B, Alves FDA, Lopes MA. Brazilian organic propolis for prevention and treatment of radiation-related oral acute toxicities in head and neck cancer patients: A double-blind randomized clinical trial. Front Pharmacol 2022; 13:973255. [PMID: 36278178 PMCID: PMC9585325 DOI: 10.3389/fphar.2022.973255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oral mucositis (OM) is one of the most important acute toxicities from radiotherapy (RT) in head and neck cancer patients and can impair oncologic treatment. Dysphagia, dysgeusia, pain, and oral candidiasis are other common toxicities. Brazilian Organic Propolis (BOP) is a recently described propolis variant and BOP types 4 and 6 have shown important antioxidant, anti-inflammatory, and antifungal properties.Purpose: To investigate the use of BOP as a preventive and/or complementary therapeutic option for radiotherapy-induced oral mucositis, dysphagia, dysgeusia, pain, and oral candidiasis. Additionally, proinflammatory cytokines were assessed to investigate their anti-inflammatory role.Methods: Sixty patients were included in this randomized, double-blind, controlled clinical trial. Patients were randomized to receive either aqueous suspension of a BOP or placebo throughout RT. Also, all patients underwent low-level laser therapy as routine oral care. OM, dysphagia, and dysgeusia were assessed weekly according to WHO and NCI scales. Pain-related to OM was assessed according to a Visual Analog Scale and the presence or absence of oral candidiasis was checked by intraoral examination. Protein levels of TNF-α and IL-1β from oral mucosa were assessed by ELISA.Results: Patients in the propolis group had a lower mean score of OM, dysphagia, dysgeusia, and most patients reported moderate pain. Fewer patients developed oral candidiasis in the propolis group, and the number of episodes was lower among patients that used BOP (p < 0.05). In addition, the BOP group presented significantly lower levels of IL-1β since the beginning of treatment when compared with placebo patients (p < 0.05) and a lower level of TNF-α at the end of treatment (p < 0.001).Conclusion: Topic use of BOP reduced TNF-α and IL-1β levels, oral candidiasis episodes, and seems to be a useful complementary option for the prevention and treatment of the main acute oral toxicities of RT.Clinical Trial Registration:http://www.ensaiosclinicos.gov.br/rg/RBR-9f8c78/, identifier RBR-9f8c78
Collapse
Affiliation(s)
- Patrícia Maria Fernandes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Diego Tetzner Fernandes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, Research International Center (CIPE), A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - Severino Matias Alencar
- Department of Agri-food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Fábio de Abreu Alves
- Stomatology Department, A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- *Correspondence: Márcio Ajudarte Lopes,
| |
Collapse
|
21
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
22
|
Sartori AGDO, Cesar ASM, Woitowicz FCG, Saliba ASMC, Ikegaki M, Rosalen PL, Coutinho LL, Alencar SMD. Plant genetic diversity by DNA barcoding to investigate propolis origin. PHYTOCHEMISTRY 2022; 200:113226. [PMID: 35605810 DOI: 10.1016/j.phytochem.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Identify the botanical origins of a certain type of propolis may be challenging and time demanding, since it involves bee's behavior observation, plant resins collection and chemical analysis. Thus, this study aimed to determine the plant genetic materials in propolis from southern Brazil using the DNA barcoding to investigate their botanical origins, as well as to compare it with the phytochemical composition determined by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and with the pollinic profile. As principal results, non-native Populus carolinensis Moench (Salicaceae) was almost the only DNA source in some propolis samples, which coincided with the presence of flavonoids typical from poplar exudates. Conversely, other propolis samples had DNA material coming mainly from native plant species, most of them characterized to the species level, although no specific chemical markers from those plants could be identified by UHPLC-HRMS. However, pollen from several plants identified by the DNA barcoding were extracted from some propolis samples. Despite the identification of typical diterpenes, DNA material from Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), which have been indicated as a major resin source for propolis from preservation areas in southern Brazil, was found in very small abundancies, likely because bees do not drag tissue material containing DNA when collecting resin from this native species. In conclusion, DNA barcoding analysis successfully provided information about the provenance of propolis, although, depending on the plant resin sources, this information is likely to come from pollen.
Collapse
Affiliation(s)
| | - Aline Silva Mello Cesar
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| | | | | | - Masaharu Ikegaki
- Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | | | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| | | |
Collapse
|
23
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
24
|
Hausen MDA, Melero AMG, Asami J, Ferreira LM, Gomes da Silva GB, Bissoli MCDA, Marcato VR, Nani BD, Rosalen PL, Alencar SMD, Botaro VR, Komatsu D, Senna A, Duek EADR. In vivo therapeutic evaluation of a cellulose acetate hydrogel cross linked with ethylenediaminetetraacetic-dianhydride containing propolis ethanolic-extract for treating burns. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An increasing interest in regenerative medicine has been an approach with natural products used for assorted skin treatments. Propolis from Apis mellifera species of bees have shown high acceptance due to antimicrobial and anti-inflammatory properties. However, just a few propolis types presents stronger effects in controlling inflammation. The current work describes an organic propolis recently isolated, named as OP6, that presented strong anti-inflammatory influences in vivo when associated with EDTA cross-linked hydrogel, used as a curative device in second-degree burns in a murine model. We developed a cellulose acetate hydrogel cross-linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) as a polymeric matrix for a bandage based on an ethanolic extract of propolis at 15%, 30%, and 60% (w/v) for treating second-degree burns. In vivo studies were carried out in Wistar rats divided into three groups: negative control (only lesion), positive control (lesion with HAC-EDTA film), and treatment group (lesion with the HAC-EDTA + OP6 at 15%, 30%, and 60%). Each group was randomized and equally subdivided into two subgroups according to the period of bandage wearing (7 and 14 days). Previous work of this research group selected the propolis OP6 sample source as the best candidate for the in vivo study. HAC-EDTA + OP6 15%, 30%, and 60% films demonstrated a concentration-dependent release rate, with the highest amount of propolis released after tests (484.3 mg) by HAC-EDTA enriched with the highest concentrated extract of propolis. HAC-EDTA + OP6 films were efficient in preventing infections, promoting lesion retraction, and tissue regeneration. The HAC-EDTA + OP6 30% treatment was more efficient, revealing a reduced inflammatory process and stimulating skin regeneration. The designed HAC-EDTA + propolis films were shown as promising tools for second-degree burns treatment, accelerating healing process to a full recovery tissue repair after 14 days.
Collapse
Affiliation(s)
- Moema de Alencar Hausen
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
| | - Anna Maria Gouvea Melero
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (DFQM/UFSCAR), Sorocaba, São Paulo, Brazil
| | - Jessica Asami
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
- Faculty of Mechanical Engineering, State University of Campinas (FEM/UNICAMP), São Paulo, Brazil
| | - Lucas Martins Ferreira
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
| | - Guilherme Borges Gomes da Silva
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
| | - Mariana Cesar de Azeredo Bissoli
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
| | - Vanessa Rigoni Marcato
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
| | - Bruno Dias Nani
- Piracicaba Dental School, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo, Brazil
| | - Severino Matias de Alencar
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Vagner Roberto Botaro
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (DFQM/UFSCAR), Sorocaba, São Paulo, Brazil
- Post-Graduation Program in Materials Science (PPGCM), Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
| | - Daniel Komatsu
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
| | - André Senna
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (DFQM/UFSCAR), Sorocaba, São Paulo, Brazil
| | - Eliana Aparecida de Rezende Duek
- Biomaterial’s Laboratory, Medicine and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC/SP), Sorocaba, São Paulo, Brazil
- Faculty of Mechanical Engineering, State University of Campinas (FEM/UNICAMP), São Paulo, Brazil
- Post-Graduation Program in Materials Science (PPGCM), Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
| |
Collapse
|
25
|
Nani BD, Rosalen PL, Lazarini JG, de Cássia Orlandi Sardi J, Romário-Silva D, de Araújo LP, dos Reis MSB, Breseghello I, Cunha TM, de Alencar SM, da Silveira NJF, Franchin M. A Study on the Anti-NF-кB, Anti-Candida, and Antioxidant Activities of Two Natural Plant Hormones: Gibberellin A4 and A7. Pharmaceutics 2022; 14:pharmaceutics14071347. [PMID: 35890244 PMCID: PMC9324930 DOI: 10.3390/pharmaceutics14071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction: Gibberellins (GA) are terpenoids that serve as important plant hormones by acting as growth and response modulators against injuries and parasitism. In this study, we investigated the in vitro anti-NF-κB, anti-Candida, and antioxidant activity of gibberellin A4 (GA4) and A7 (GA7) compounds, and further determined their toxicity in vivo. Methods: GA4 and GA7 in vitro toxicity was determined by MTT method, and nontoxic concentrations were then tested to evaluate the GA4 and GA7 anti-NF-κB activity in LPS-activated RAW-luc macrophage cell culture (luminescence assay). GA4 in silico anti-NF-κB activity was evaluated by molecular docking with the software “AutoDock Vina”, “MGLTools”, “Pymol”, and “LigPlot+”, based on data obtained from “The Uniprot database”, “Protein Data Bank”, and “PubChem database”. The GA4 and GA7 in vitro anti-Candida effects against Candida albicans (MYA 2876) were determined (MIC and MFC). GA7 was also evaluated regarding the viability of C. albicans preformed biofilm (microplate assay). In vitro antioxidant activity of GA4 and GA7 was evaluated against peroxyl radicals, superoxide anions, hypochlorous acid, and reactive nitrogen species. GA4 and GA7 in vivo toxicity was determined on the invertebrate Galleria mellonella larvae model. Results: Our data show that GA4 at 30 µM is nontoxic and capable of reducing 32% of the NF-κB activation on RAW-luc macrophages in vitro. In vitro results were confirmed via molecular docking assay (in silico), since GA4 presented binding affinity to NF-κB p65 and p50 subunits. GA7 did not present anti-NF-κB effects, but exhibited anti-Candida activity with low MIC (94 mM) and MFC (188 mM) values. GA7 also presented antibiofilm properties at 940 mM concentration. GA4 did not present anti-Candida effects. Moreover, GA4 and GA7 showed antioxidant activity against peroxyl radicals, but did not show scavenging activity against the other tested radicals. Both compounds did not affect the survival of G. mellonella larvae, even at extremely high doses (10 g/Kg). Conclusion: Our study provides preclinical evidence indicating that GA4 and GA7 have a favorable low toxicity profile. The study also points to GA4 and GA7 interference with the NF-κB via, anti-Candida activity, and a peroxyl radical scavenger, which we argue are relevant biological effects.
Collapse
Affiliation(s)
- Bruno Dias Nani
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil; (B.D.N.); (P.L.R.); (J.G.L.)
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil; (B.D.N.); (P.L.R.); (J.G.L.)
- Graduate Program in Biological Sciences, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, MG, Brazil
| | - Josy Goldoni Lazarini
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil; (B.D.N.); (P.L.R.); (J.G.L.)
| | - Janaína de Cássia Orlandi Sardi
- Program on Integrated Dental Sciences, Faculty of Dentistry, University of Cuiabá, Cuiabá 78065-900, MT, Brazil; (J.d.C.O.S.); (D.R.-S.)
| | - Diego Romário-Silva
- Program on Integrated Dental Sciences, Faculty of Dentistry, University of Cuiabá, Cuiabá 78065-900, MT, Brazil; (J.d.C.O.S.); (D.R.-S.)
| | - Leonardo Pereira de Araújo
- School of Pharmaceutical Sciences, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, MG, Brazil;
| | - Mateus Silva Beker dos Reis
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, MG, Brazil; (M.S.B.d.R.); (I.B.)
| | - Isadora Breseghello
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, MG, Brazil; (M.S.B.d.R.); (I.B.)
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food, and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
- Correspondence: (S.M.d.A.); (M.F.); Tel.: +55-19-3447-8693 (S.M.d.A.); +55-19-98217-3334 (M.F.)
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation-MolMod-CS, Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil;
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil; (B.D.N.); (P.L.R.); (J.G.L.)
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, MG, Brazil; (M.S.B.d.R.); (I.B.)
- Correspondence: (S.M.d.A.); (M.F.); Tel.: +55-19-3447-8693 (S.M.d.A.); +55-19-98217-3334 (M.F.)
| |
Collapse
|
26
|
Surek M, Cobre ADF, Fachi MM, Santos TG, Pontarolo R, Crisma AR, Felipe KB, Souza WMD. Propolis authentication of stingless bees by mid-infrared spectroscopy and chemometric analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Bueno-Silva B, Bueno MR, Kawamoto D, Casarin RC, Pingueiro JMS, Alencar SM, Rosalen PL, Mayer MPA. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals (Basel) 2022; 15:ph15050553. [PMID: 35631379 PMCID: PMC9145271 DOI: 10.3390/ph15050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The isoflavone (3S)-vestitol, obtained from red propolis, has exhibited anti-inflammatory, antimicrobial, and anti-caries activity; however, few manuscripts deal with its anti-inflammatory mechanisms in macrophages. The objective is to elucidate the anti-inflammatory mechanisms of (3S)-vestitol on those cells. Peritoneal macrophages of C57BL6 mice, stimulated with lipopolysaccharide, were treated with 0.37 to 0.59 µM of (3S)-vestitol for 48 h. Then, nitric oxide (NO) quantities, macrophages viability, the release of 20 cytokines and the transcription of several genes related to cytokine production and inflammatory response were evaluated. The Tukey–Kramer variance analysis test statistically analyzed the data. (3S)-vestitol 0.55 µM (V55) lowered NO release by 60% without altering cell viability and diminished IL-1β, IL-1α, G-CSF, IL-10 and GM-CSF levels. V55 reduced expression of Icam-1, Wnt5a and Mmp7 (associated to inflammation and tissue destruction in periodontitis) and Scd1, Scd2, Egf1 (correlated to atherosclerosis). V55 increased expression of Socs3 and Dab2 genes (inhibitors of cytokine signaling and NF-κB pathway), Apoe (associated to atherosclerosis control), Igf1 (encoder a protein with analogous effects to insulin) and Fgf10 (fibroblasts growth factor). (3S)-vestitol anti-inflammatory mechanisms involve cytokines and NF-κB pathway inhibition. Moreover, (3S)-vestitol may be a candidate for future in vivo investigations about the treatment/prevention of persistent inflammatory diseases such as atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil;
- Correspondence:
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| | - Renato C. Casarin
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | | | - Severino Matias Alencar
- College of Agriculture “Luiz de Queiroz” (ESALQ/USP), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, SP, Brazil; (R.C.C.); (P.L.R.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (M.R.B.); (D.K.); (M.P.A.M.)
| |
Collapse
|
28
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
29
|
Bouchelaghem S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J Biol Sci 2022; 29:1936-1946. [PMID: 35531223 PMCID: PMC9072893 DOI: 10.1016/j.sjbs.2021.11.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023] Open
Abstract
Propolis is a plant-based sticky substance that is produced by honeybees. It has been used traditionally by ancient civilizations as a folk medicine, and is known to have many pharmaceutical properties including antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and antitumour effects. Worldwide, researchers are still studying the complex composition of propolis to unveil its biological potential, and especially its antimicrobial activity against a variety of multidrug-resistant microorganisms. This review explores scientific reports published during the last decade on the characterization of different types of propolis, and evaluates their antimicrobial activities against Staphylococcus aureus and Candida albicans. Propolis can be divided into different types depending on their chemical composition and physical properties associated with geographic origin and plant sources. Flavonoids, phenols, diterpenes, and aliphatic compounds are the main chemicals that characterize the different types of propolis (Poplar, Brazilian, and Mediterranean), and are responsible for their antimicrobial activity. The extracts of most types of propolis showed greater antibacterial activity against Gram-positive bacteria: particularly on S. aureus, as well as on C. albicans, as compared to Gram-negative pathogens. Propolis acts either by directly interacting with the microbial cells or by stimulating the immune system of the host cells. Some studies have suggested that structural damage to the microorganisms is a possible mechanism by which propolis exhibits its antimicrobial activity. However, the mechanism of action of propolis is still unclear, due to the synergistic interaction of the ingredients of propolis, and this natural substance has multi-target activity in the cell. The broad-spectrum biological potentials of propolis present it as an ideal candidate for the development of new, potent, and cost-effective antimicrobial agents.
Collapse
Affiliation(s)
- Sarra Bouchelaghem
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, Ifjúság str. 6, 7624 Pécs, Hungary
| |
Collapse
|
30
|
Rivera-Yañez CR, Ruiz-Hurtado PA, Mendoza-Ramos MI, Reyes-Reali J, García-Romo GS, Pozo-Molina G, Reséndiz-Albor AA, Nieto-Yañez O, Méndez-Cruz AR, Méndez-Catalá CF, Rivera-Yañez N. Flavonoids Present in Propolis in the Battle against Photoaging and Psoriasis. Antioxidants (Basel) 2021; 10:antiox10122014. [PMID: 34943117 PMCID: PMC8698766 DOI: 10.3390/antiox10122014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is the main external organ. It protects against different types of potentially harmful agents, such as pathogens, or physical factors, such as radiation. Skin disorders are very diverse, and some of them lack adequate and accessible treatment. The photoaging of the skin is a problem of great relevance since it is related to the development of cancer, while psoriasis is a chronic inflammatory disease that causes scaly skin lesions and deterioration of the lifestyle of people affected. These diseases affect the patient's health and quality of life, so alternatives have been sought that improve the treatment for these diseases. This review focuses on describing the properties and benefits of flavonoids from propolis against these diseases. The information collected shows that the antioxidant and anti-inflammatory properties of flavonoids play a crucial role in the control and regulation of the cellular and biochemical alterations caused by these diseases; moreover, flavones, flavonols, flavanones, flavan-3-ols, and isoflavones contained in different worldwide propolis samples are the types of flavonoids usually evaluated in both diseases. Therefore, the research carried out in the area of dermatology with bioactive compounds of different origins is of great relevance to developing preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico;
| | - Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero 07738, Mexico;
| | - María Isabel Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Gina Stella García-Romo
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón y Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
| | - Adolfo René Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| | - Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.I.M.-R.); (J.R.-R.); (G.S.G.-R.); (G.P.-M.); (O.N.-Y.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico
- Correspondence: (C.F.M.-C.); (N.R.-Y.); Tel.: +52-5522-476-721 (N.R.-Y.)
| |
Collapse
|
31
|
An insight into the botanical origins of propolis from permanent preservation and reforestation areas of southern Brazil. Sci Rep 2021; 11:22043. [PMID: 34764418 PMCID: PMC8586149 DOI: 10.1038/s41598-021-01709-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
Brown propolis from permanent preservation and reforestation areas of southern Brazil have attracted international commercial interest and have a unique composition, although little is known about their botanical origins, which are the plant resins used by bee foragers to produce propolis. Hence, the volatile profiles of organic and non-organic brown propolis and resins of suspected botanical origins—Araucaria angustifolia, Pinus elliott and Pinus taeda—were determined using static headspace gas chromatography coupled to mass spectrometry (SHS-GCMS) and compared. Nighty nine volatiles were tentatively identified, and monoterpenes and sesquiterpenes were the most abundant classes. Principal component analysis (PCA) showed similarity between organic propolis and A. angustifolia volatile profiles (p < 0.05). Hierarchical clustering analysis showed singularities among propolis, even between propolis produced 1 km away from each other. Heatmaps were used to identify peaks present in similar relative intensities in both propolis and conifer resins. Hence, the approach using volatile profiles shed light to propolis botanical origins, which is important for authentication and traceability purposes.
Collapse
|
32
|
Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules 2021; 26:molecules26216400. [PMID: 34770809 PMCID: PMC8587645 DOI: 10.3390/molecules26216400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
The residue from commercial propolis extraction may have significant antioxidant power in food technology. However, among the challenges for using the propolis co-product as an inhibitor of lipid oxidation (LO) in baked goods is maintaining its bioactive compounds. Therefore, this study aimed to determine the propolis co-product extracts’ capability to reduce LO in starch biscuit formulated with canola oil and stored for 45 days at 25 °C. Two co-product extracts were prepared: microencapsulated propolis co-product (MECP) (with maltodextrin) and lyophilized propolis co-product (LFCP), which were subjected to analysis of their total phenolic content and antioxidant activity (AA). Relevant antioxidant activity was observed using the methods of analysis employed. The spray-drying microencapsulation process showed an efficiency of 63%. The LO in the biscuits was determined by the thiobarbituric acid reactive substances (TBARS) test and fatty acid composition by gas chromatography analysis. Palmitic, stearic, oleic, linoelaidic, linoleic, and α-linolenic acids were found in biscuits at constant concentrations throughout the storage period. In addition, there was a reduction in malondialdehyde values with the addition of both propolis co-product extracts. Therefore, the propolis co-product extracts could be utilized as a natural antioxidant to reduce lipid oxidation in fatty starch biscuit.
Collapse
|
33
|
Viqhi AV, Manggau MA, Sartini S, Wahyudin E, Rahman L, Yulianti R, Permana AD, Awal SA. Development of Propolis (Apis trigona)-loaded Nanoemulgel for Improved Skin Penetration of Caffeic Acid: The Effect of Variation of Oleic Acid Concentration. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: Propolis contains caffeic acid compounds, which are proven to have pharmacological effects as an anti-inflammatory. However, its effectiveness is hampered by the poor solubility of caffeic acid. Here, we report developing the nanoemulgel approach containing propolis extract as an active ingredient and oleic acid as a permeation enhancer for transdermal delivery of caffeic acid.
AIM: This study aims to determine the effect of oleic acid concentration on increasing caffeic acid permeation in the skin and obtain a nanoemulgel formula with desired physical characteristics and stability.
MATERIALS AND METHODS: Propolis was macerated with 70% ethanol; the total phenolic content was measured by ultraviolet–visible spectrophotometer, and the levels of caffeic acid in the extracts and nanoemulgel preparations were finally determined using ultra-fast liquid chromatography. Formulas were made using various concentrations of oleic acid, namely, 1.25%w/w (Formula F1); 2.5%w/w (Formula F2); 5%w/w (Formula F3), respectively; and 1.25%w/w without propolis extract (Formula F4) as a comparison.
RESULTS: The results obtained from analysis of variance statistical exhibited that the difference in oleic acid concentrations in four formulas significantly affected (p < 0.05) particle size, polydispersity index, spreadability, adhesion, freeze-thaw, permeation, and retention test. However, there was no significant difference (p > 0.05) on pH and viscosity before and after 4 weeks of storage and zeta potential test. The highest amount of permeation and retention was found in F3 and F2, respectively, and all formulas tended to follow zero-order drug release kinetics. Furthermore, the results showed that the number of percent’s permeated in a row was 3.74% (F1); 5.58% (F2); 11.67% (F3), and F2 was the formula with the most optimal retention amount with a percentage of 43.13% at 24 h.
CONCLUSION: This study shows a promising delivery system for increasing the effectiveness of natural lipophilic compounds to treat inflammation in the skin.
Collapse
|
34
|
Comparison of Ethanolic and Aqueous Populus balsamifera L. Bud Extracts by Different Extraction Methods: Chemical Composition, Antioxidant and Antibacterial Activities. Pharmaceuticals (Basel) 2021; 14:ph14101018. [PMID: 34681242 PMCID: PMC8541512 DOI: 10.3390/ph14101018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
The balsam poplar (Populus balsamifera L.) buds that grow in Lithuania are a polyphenol-rich plant material with a chemical composition close to that of propolis. In order to potentially adapt the extracts of this plant's raw material for therapeutic purposes, it is important to carry out detailed studies on the chemical composition and biological activity of balsam poplar buds. An important step is to evaluate the yield of polyphenols by different extraction methods and using different solvents. According to our research, extracts of balsam poplar buds collected in Lithuania are dominated by p-coumaric (496.9-13,291.2 µg/g), cinnamic acid (32.9-11,788.5 µg/g), pinobanksin (34.9-1775.5 µg/g) and salicin (215.3-1190.7 µg/g). The antioxidant activity of poplar buds was evaluated by the ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric-reducing antioxidant power) methods, all extracts showed antioxidant activity and the obtained results correlated with the obtained amounts of total phenolic compounds in the extracts (ABTS r = 0.974; DPPH r = 0.986; FRAP r = 0.955, p < 0.01). Studies of antimicrobial activity have shown that ethanolic extracts have an antimicrobal activity effect against Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. The extracts showed a better antimicrobal activity against gram-positive bacteria.
Collapse
|
35
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
36
|
The effect of Brazilian propolis type-3 against oral microbiota and volatile sulfur compounds in subjects with morning breath malodor. Clin Oral Investig 2021; 26:1531-1541. [PMID: 34392403 DOI: 10.1007/s00784-021-04125-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate propolis type-3 mouthrinse effects on the concentration of volatile sulfur compounds (VSCs) and on tongue dorsum microbial profile. MATERIALS AND METHODS A three-step double-blind, crossover, randomized study with 10 individuals divided into three groups: I-placebo (P); II-ethanolic extract of propolis type-3 3% (EEP); and III-chlorhexidine 0.12% (CHX) and instructed to rinse twice daily for 5 days. Each experimental period was followed by a 21-day washout interval. Morning mouth breath was assessed by VSC concentrations and microbiological samples were obtained from tongue dorsum at baseline and the end of period of rinses and analyzed using checkerboard DNA-DNA hybridization technique for 39 bacterial species. RESULTS CHX and EEP presented the lowest VSC concentration when compared with placebo (p < 0.05). Even in the absence of mechanical plaque control, CHX and EEP treatments reduced VSC levels and there were no statistical differences for VSC measurement between CHX and EEP. There was a significant reduction in mean counts of 10 species including some VSC producers (Prevotella intermedia, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) by EEP. Total counts of organisms, gram-negative and gram-positive bacterial species showed a decrease for EEP and CHX (p < 0.05). In addition, no statistical difference was observed between EEP and CHX (p > 0.05). A positive correlation was observed between decrease of bacterial counts and decrease of VCSs concentration for the EEP and CHX. CONCLUSIONS The use of a 3% propolis type-3 mouthrinse is an effective way to prevent morning bad breath. Thus, propolis may be a promising agent for the treatment of halitosis. CLINICAL RELEVANCE Propolis type-3 may be used as adjuvant treatment for morning breath malodor.
Collapse
|
37
|
Essential Oils Extracted from Organic Propolis Residues: An Exploratory Analysis of Their Antibacterial and Antioxidant Properties and Volatile Profile. Molecules 2021; 26:molecules26154694. [PMID: 34361848 PMCID: PMC8347542 DOI: 10.3390/molecules26154694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 μmol TE/mg, FRAP = 463.97 μmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and β-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.
Collapse
|
38
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Reyes-Reali J, Mendoza-Ramos MI, Méndez-Cruz AR, Nieto-Yañez O. Effects of Propolis on Infectious Diseases of Medical Relevance. BIOLOGY 2021; 10:428. [PMID: 34065939 PMCID: PMC8151468 DOI: 10.3390/biology10050428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Infectious diseases are a significant problem affecting the public health and economic stability of societies all over the world. Treatment is available for most of these diseases; however, many pathogens have developed resistance to drugs, necessitating the development of new therapies with chemical agents, which can have serious side effects and high toxicity. In addition, the severity and aggressiveness of emerging and re-emerging diseases, such as pandemics caused by viral agents, have led to the priority of investigating new therapies to complement the treatment of different infectious diseases. Alternative and complementary medicine is widely used throughout the world due to its low cost and easy access and has been shown to provide a wide repertoire of options for the treatment of various conditions. In this work, we address the relevance of the effects of propolis on the causal pathogens of the main infectious diseases with medical relevance; the existing compiled information shows that propolis has effects on Gram-positive and Gram-negative bacteria, fungi, protozoan parasites and helminths, and viruses; however, challenges remain, such as the assessment of their effects in clinical studies for adequate and safe use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
| | - Glustein Pozo-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Claudia F. Méndez-Catalá
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico;
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Julia Reyes-Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - María I. Mendoza-Ramos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Adolfo R. Méndez-Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, Mexico; (N.R.-Y.); (G.P.-M.); (J.R.-R.); (M.I.M.-R.); (A.R.M.-C.)
| |
Collapse
|
40
|
Bordim J, Lise CC, Marques C, Oldoni TC, Varela P, Mitterer‐Daltoé ML. Potential use of naturally colored antioxidants in the food industry—A study of consumers' perception and acceptance. J SENS STUD 2021. [DOI: 10.1111/joss.12657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jéssica Bordim
- Department of Chemistry Federal Technological University of Paraná (UTFPR) Pato Branco Paraná Brazil
| | - Carla Cristina Lise
- Department of Chemistry Federal Technological University of Paraná (UTFPR) Pato Branco Paraná Brazil
| | - Caroline Marques
- Department of Chemistry Federal Technological University of Paraná (UTFPR) Pato Branco Paraná Brazil
| | - Tatiane Cadorin Oldoni
- Department of Chemistry Federal Technological University of Paraná (UTFPR) Pato Branco Paraná Brazil
| | - Paula Varela
- Sensory & Consumer Sciences Nofima Ås Norway
- Department of Chemistry, Biotechnology and Food Science (KBM) The Norwegian University of Life Science Ås Norway
| | | |
Collapse
|
41
|
Silveira MAD, De Jong D, Berretta AA, Galvão EBDS, Ribeiro JC, Cerqueira-Silva T, Amorim TC, Conceição LFMRD, Gomes MMD, Teixeira MB, Souza SPD, Santos MHCAD, San Martin RLA, Silva MDO, Lírio M, Moreno L, Sampaio JCM, Mendonça R, Ultchak SS, Amorim FS, Ramos JGR, Batista PBP, Guarda SNFD, Mendes AVA, Passos RDH. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed Pharmacother 2021; 138:111526. [PMID: 34311528 PMCID: PMC7980186 DOI: 10.1016/j.biopha.2021.111526] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes challenging immune and inflammatory phenomena. Though various therapeutic possibilities have been tested against coronavirus disease 2019 (COVID-19), the most adequate treatment has not yet been established. Propolis is a natural product with considerable evidence of immunoregulatory and anti-inflammatory activities, and experimental data point to potential against viral targets. We hypothesized that propolis can reduce the negative effects of COVID-19. Methods In a randomized, controlled, open-label, single-center trial, hospitalized adult COVID-19 patients were treated with a standardized green propolis extract (EPP-AF®️) as an adjunct therapy. Patients were allocated to receive standard care plus an oral dose of 400 mg or 800 mg/day of green propolis for seven days, or standard care alone. Standard care included all necessary interventions, as determined by the attending physician. The primary end point was the time to clinical improvement, defined as the length of hospital stay or oxygen therapy dependency duration. Secondary outcomes included acute kidney injury and need for intensive care or vasoactive drugs. Patients were followed for 28 days after admission. Results We enrolled 124 patients; 40 were assigned to EPP-AF®️ 400 mg/day, 42 to EPP-AF®️ 800 mg/day, and 42 to the control group. The length of hospital stay post-intervention was shorter in both propolis groups than in the control group; lower dose, median 7 days versus 12 days (95% confidence interval [CI] −6.23 to −0.07; p = 0.049) and higher dose, median 6 days versus 12 days (95% CI −7.00 to −1.09; p = 0.009). Propolis did not significantly affect the need for oxygen supplementation. In the high dose propolis group, there was a lower rate of acute kidney injury than in the controls (4.8 vs 23.8%), (odds ratio [OR] 0.18; 95% CI 0.03–0.84; p = 0.048). No patient had propolis treatment discontinued due to adverse events. Conclusions Addition of propolis to the standard care procedures resulted in clinical benefits for the hospitalized COVID-19 patients, especially evidenced by a reduction in the length of hospital stay. Consequently, we conclude that propolis can reduce the impact of COVID-19.
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo (USP), Ribeirão Preto, SP 14049-900, Brazil
| | - Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP 14020-670, Brazil
| | - Erica Batista Dos Santos Galvão
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Juliana Caldas Ribeiro
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Universidade de Salvador - UNIFACS, Avenida Luís Viana, 3100-3146 Pituaçu, Imbuí, Salvador 41720-200, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil
| | - Thiago Cerqueira-Silva
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador 40296-710, BA, Brazil; School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador 40110-909, BA, Brazil
| | - Thais Chaves Amorim
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | | | - Marcel Miranda Dantas Gomes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Maurício Brito Teixeira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil; Universidade do Estado da Bahia (UNEB), Rua Silveira Martin 2555, Cabula, Salvador 41150-000, BA , Brazil
| | - Sergio Pinto de Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil
| | | | - Raissa Lanna Araújo San Martin
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Márcio de Oliveira Silva
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Monique Lírio
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Lis Moreno
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Julio Cezar Miranda Sampaio
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Renata Mendonça
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Silviana Salles Ultchak
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Fabio Santos Amorim
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - João Gabriel Rosa Ramos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Paulo Benigno Pena Batista
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Suzete Nascimento Farias da Guarda
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador 40110-909, BA, Brazil
| | - Ana Verena Almeida Mendes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Rogerio da Hora Passos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | | |
Collapse
|
42
|
Cruz AIC, Costa MDC, Mafra JF, Ferreira MA, Miranda FM, Costa JA, Watanabe YN, Ribeiro PR, Araújo FM, Evangelista-Barreto NS. A sodium alginate bilayer coating incorporated with green propolis extract as a powerful tool to extend Colossoma macropomum fillet shelf-life. Food Chem 2021; 355:129610. [PMID: 33773460 DOI: 10.1016/j.foodchem.2021.129610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023]
Abstract
Fish deterioration imposes great economic losses and serious human health hazards. The objective of this work was to evaluate the effect of a sodium alginate bilayer coating incorporated to the green propolis extract in shelf-life, physical-chemical properties, microbiological properties and sensory acceptance of Colossoma macropomum fillets. Additionally, the chemical composition, along with the antioxidant and antibacterial activities of Brazilian green propolis extract (GPE) were investigated. GPE showed promising antioxidant and antibacterial activities. Twenty-seven metabolites were identified by gas chromatography (GC-MS), which mainly comprised terpenoids (52.14%). Cyclolaudenol was the major constituent of the GPE and it is described for the first time in green propolis extracts. C. macropomum fillets treated with the sodium alginate bilayer coating showed high sensory acceptance, reduced microbial deterioration and extended shelf-life (up to 11 days) during cold storage. Taken together, these results show that GPE can be a great alternative of a natural preservative for fish coating.
Collapse
Affiliation(s)
- Alexsandra Iarlen Cabral Cruz
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Milena da Cruz Costa
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Jessica Ferreira Mafra
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Mariza Alves Ferreira
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Fabricio Mendes Miranda
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Laboratório de Química, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - João Albany Costa
- Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Yuji Nascimento Watanabe
- Centro de Formação de Professores-CFP, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| | - Paulo Roberto Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil.
| | - Floricéa Magalhães Araújo
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia - UFBA, Salvador, Bahia, Brazil.
| | - Norma Suely Evangelista-Barreto
- Centro de Ciências Agrárias Ambientais e Biológicas-CCAAB, Núcleo de Estudos em Pesca e Aquicultura-NEPA, Universidade Federal do Recôncavo da Bahia - UFRB, Cruz das Almas, Bahia, Brazil.
| |
Collapse
|
43
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients 2020; 13:E78. [PMID: 33383693 PMCID: PMC7823938 DOI: 10.3390/nu13010078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
The use of alternative medicine products has increased tremendously in recent decades and it is estimated that approximately 80% of patients globally depend on them for some part of their primary health care. Propolis is a beekeeping product widely used in alternative medicine. It is a natural resinous product that bees collect from various plants and mix with beeswax and salivary enzymes and comprises a complex mixture of compounds. Various biomedical properties of propolis have been studied and reported in infectious and non-infectious diseases. However, the pharmacological activity and chemical composition of propolis is highly variable depending on its geographical origin, so it is important to describe and study the biomedical properties of propolis from different geographic regions. A number of chronic diseases, such as diabetes, obesity, and cancer, are the leading causes of global mortality, generating significant economic losses in many countries. In this review, we focus on compiling relevant information about propolis research related to diabetes, obesity, and cancer. The study of propolis could generate both new and accessible alternatives for the treatment of various diseases and will help to effectively evaluate the safety of its use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Claudia F. Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Adolfo R. Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico
| |
Collapse
|
44
|
Alvarenga L, Cardozo LFMF, Borges NA, Chermut TR, Ribeiro M, Leite M, Shiels PG, Stenvinkel P, Mafra D. To bee or not to bee? The bee extract propolis as a bioactive compound in the burden of lifestyle diseases. Nutrition 2020; 83:111094. [PMID: 33418489 DOI: 10.1016/j.nut.2020.111094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Propolis is a polyphenolic plant resin collected by bees to protect hives against pathogens and temperature drop. It exhibits antibacterial, antioxidant, and antiinflammatory properties. Propolis has been reported to possess antidiabetic properties and display beneficial effects against cardiovascular disease, gut dysbiosis, and chronic kidney disease. It has an excellent clinical safety profile, with no known toxic effects described so far. In this review, we discuss the salutogenic effects of propolis, with particular reference to modulating notable features of chronic kidney disease, notably those involving cardiovascular risks.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
| | - Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil; Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Tuany R Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Maurilo Leite
- Division of Nephrology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, ICS, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
45
|
El-Garawani I, El-Seedi H, Khalifa S, El Azab IH, Abouhendia M, Mahmoud S. Enhanced Antioxidant and Cytotoxic Potentials of Lipopolysaccharides-Injected Musca domestica Larvae. Pharmaceutics 2020; 12:E1111. [PMID: 33227988 PMCID: PMC7699146 DOI: 10.3390/pharmaceutics12111111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023] Open
Abstract
The usage of insects as a sustainable and functional natural products resource is a new promise in complementary and alternative medicine. The present study aimed to investigate the ability of Musca domestica (housefly) larval hemolymph (insect blood) to display the enhanced in vitro antioxidant and cytotoxic effects. The oxidative stress (OS) was elicited by inducing lipopolysaccharides (LPS) treatment as an exogenous stressor. Determination of superoxide dismutase 1 (SOD1), glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC), and mRNA and protein expressions of SOD1, was investigated as confirmatory markers of oxidative stress induction. Cytotoxicity on cancerous MCF-7 and normal Vero cells were also evaluated using an MTT assay at 24 h post-injection. The injection of LPS induced a significant (p < 0.05) increase in SOD, GSH and TAC, whereas, the MDA was diminished. Hemolymph was collected from normal and treated larvae after 6, 12 and 24 h. The M. domestica superoxide dismutase (MdSOD1) transcripts were significantly (p < 0.05) upregulated 6 and 12 h post-treatment, while a significant downregulation was observed after 24 h. Western blot analysis showed that MdSOD1 was expressed in the hemolymph of the treated larvae with an increase of 1.2 folds at 6 and 12 h and 1.6 folds at 24 h relative to the control group. LPS-treated larval hemolymphs exhibited significant cytotoxicity with respect to the untreated ones against MCF-7 while Vero cells showed no cytotoxicity for both hemolymphs. The DPPH free radical scavenging activity was examined and a significant antioxidant potential potency was observed at 6 h (50% maximal inhibitory concentration (IC50): 63.3 ± 3.51 µg/mL) when compared to the control M. domestica larval hemolymph (IC50: 611.7 ± 10.41 µg/mL). Taken together, M. domestica larval hemolymph exhibited enhanced antioxidant and consequently increased cytotoxic capacities under stressed conditions.
Collapse
Affiliation(s)
- Islam El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (M.A.); (S.M.)
| | - Hesham El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden;
- Chemistry Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Shaden Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden;
| | - Islam H. El Azab
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- On Leave from Chemistry Department, Faculty of Science, Aswan University, Aswan, P.O. Box 81528, Aswan 81528, Egypt
| | - Marwa Abouhendia
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (M.A.); (S.M.)
| | - Shaymaa Mahmoud
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (M.A.); (S.M.)
| |
Collapse
|
46
|
Tiveron AP, Rosalen PL, Ferreira AG, Thomasi SS, Massarioli AP, Ikegaki M, Franchin M, Sartori AGDO, Alencar SMD. Lignans as new chemical markers of a certified Brazilian organic propolis. Nat Prod Res 2020; 36:2135-2139. [PMID: 33155485 DOI: 10.1080/14786419.2020.1839459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Commercially certified organic propolis produced in areas of environmental conservation and reforestation forests of Southern Brazil are generally poor in flavonoids, although one of its variants - Brazilian certified organic propolis 1 (OP1) - has shown strong antioxidant activity. The objective was to identify active compounds from OP1 related to its strong antioxidant activity. OP1 ethanolic extracts were subjected to liquid-liquid fractionation, and the fractions presenting the strongest antioxidant activity were combined and purified into subfractions. Compounds isolated from the most active subfractions had their structure elucidated by Nuclear Magnetic Resonance (NMR). As a result, five lignans and two lignan-precursors were isolated, and four of them are herein reported for the very first time in propolis. Hence, these compounds may be used as chemical markers for product standardization and authentication purposes, since OP1 is only produced by honeybees in native forests and its botanical origins remain unknown.
Collapse
Affiliation(s)
- Ana Paula Tiveron
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | | | - Adna Prado Massarioli
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
47
|
Berretta AA, Silveira MAD, Cóndor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother 2020; 131:110622. [PMID: 32890967 PMCID: PMC7430291 DOI: 10.1016/j.biopha.2020.110622] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Propolis, a resinous material produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as a health aid and immune system booster. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis compounds. SARS-CoV-2 entry into host cells is characterized by viral spike protein interaction with cellular angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2. This mechanism involves PAK1 overexpression, which is a kinase that mediates coronavirus-induced lung inflammation, fibrosis, and immune system suppression. Propolis components have inhibitory effects on the ACE2, TMPRSS2 and PAK1 signaling pathways; in addition, antiviral activity has been proven in vitro and in vivo. In pre-clinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF-α. This immunoregulation involves monocytes and macrophages, as well as Jak2/STAT3, NF-kB, and inflammasome pathways, reducing the risk of cytokine storm syndrome, a major mortality factor in advanced COVID-19 disease. Propolis has also shown promise as an aid in the treatment of various of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. Standardized propolis products with consistent bioactive properties are now available. Given the current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.
Collapse
Affiliation(s)
- Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, São Paulo, Brazil.
| | | | - José Manuel Cóndor Capcha
- Interdisciplinary Stem Cell Institute at Miller School of Medicine, University of Miami, Miami, Florida, United States.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
48
|
Al-Hariri MT, Abualait TS. Effects of Green Brazilian Propolis Alcohol Extract on Nociceptive Pain Models in Rats. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1102. [PMID: 32867097 PMCID: PMC7570148 DOI: 10.3390/plants9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Pain is one of the most common symptoms encountered in the medical practice. None of the management procedures used currently offer a complete relief for patients suffering from nociceptive pain. New treatment strategies for pain management are needed. Propolis has been used in traditional medicine to relieve various types of pain. The aim of the current study was to investigate the potential effects of the green Brazilian propolis alcohol extract in vivo on the nociceptive and inflammatory pain models in rats. Rats were distributed into three random groups (n = 6); Group I: control group received normal saline intraperitoneally (i.p.); Group II: treated with green Brazilian propolis alcohol extract (P50 mg/kg i.p.); Group III: treated with P100 mg/kg i.p. After sixty minutes, 50 μL of 5% formalin was injected subcutaneously into the dorsal surface of the right hind paw. The nociceptive response was identified by counting the number of flinches of the injected paw. The number of flinches was counted for the period of 0-5 min (early phase; neurogenic) and 10-60 min (late phase; inflammatory). Thermal hyperalgesia was assessed using three-paw withdrawal latency measurement with ten minutes intervals using a planter analgesic meter. Abdominal writhe (contraction) was induced by i.p. injection of acetic acid (1 mL of 2%). The results showed that green Brazilian propolis alcohol extract caused a significant inhibition of acetic acid-induced pain and significantly increased the pain threshold against infrared and formalin tests. The promising antinociceptive and anti-inflammatory properties of propolis and/or its active constituents as natural compounds in the present study indicates that it merits further studies in pain.
Collapse
Affiliation(s)
- Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31541, Saudi Arabia
| | - Turki S. Abualait
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| |
Collapse
|
49
|
Banzato TP, Gubiani JR, Bernardi DI, Nogueira CR, Monteiro AF, Juliano FF, de Alencar SM, Pilli RA, Lima CAD, Longato GB, Ferreira AG, Foglio MA, Carvalho JED, Vendramini-Costa DB, Berlinck RGS. Antiproliferative Flavanoid Dimers Isolated from Brazilian Red Propolis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1784-1793. [PMID: 32525315 DOI: 10.1021/acs.jnatprod.9b01136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein reported are results of the chemical and biological investigation of red propolis collected at the Brazilian Northeast coastline. New propolones A-D (1-4), with a 3-{3-[(2-phenylbenzofuran-3-yl)methyl]phenyl}chromane skeleton; propolonones A-C (5-7), with a 3-[3-(3-benzylbenzofuran-2-yl)phenyl]chromane skeleton; and propolol A (8), with a 6-(3-benzylbenzofuran-2-yl)-3-phenylchromane skeleton, were isolated as constituents of Brazilian red propolis by cytotoxicity-guided assays and structurally identified by analysis of their spectroscopic data. Propolone B (2) and propolonone A (5) display significant cytotoxic activities against an ovarian cancer cell line expressing a multiple drug resistance phenotype when compared with doxorubicin.
Collapse
Affiliation(s)
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Cláudio R Nogueira
- Faculty of Science and Technology, Federal University of Grande Dourados, 79804-970, Dourados, MS, Brazil
| | - Afif F Monteiro
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Fernanda F Juliano
- Department of Agri-food Industry, Food and Nutrition, University of São Paulo, Piracicaba, SP, Brazil
| | - Severino M de Alencar
- Department of Agri-food Industry, Food and Nutrition, University of São Paulo, Piracicaba, SP, Brazil
| | - Ronaldo A Pilli
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carolina A de Lima
- Laboratório de Pesquisa em Biologia Celular e Molecular de Tumores e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Giovanna B Longato
- Laboratório de Pesquisa em Biologia Celular e Molecular de Tumores e Compostos Bioativos, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | | | | | | | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
50
|
Nani BD, Sardi JDCO, Lazarini JG, Silva DR, Massariolli AP, Cunha TM, de Alencar SM, Franchin M, Rosalen PL. Anti-inflammatory and anti- Candida Effects of Brazilian Organic Propolis, a Promising Source of Bioactive Molecules and Functional Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2861-2871. [PMID: 31369255 DOI: 10.1021/acs.jafc.8b07304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brazilian organic propolis (BOP) is an unexplored Brazilian propolis that is produced organically and certified according to international legislation. Our results showed that BOP has strong anti-inflammatory effects and acts by reducing nuclear factor κB activation, tumor necrosis factor α release, and neutrophil migration. In addition, BOP6 exhibited antifungal activity on planktonic and biofilm cultures of Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsisolis and reduced in vitro yeast cell adhesion to human keratinocytes at sub-inhibitory concentrations. BOP demonstrated significantly low toxicity in Galleria melonella larvae at antifungal doses. Lastly, a chemical analysis revealed the presence of caffeoyltartaric acid, 3,4-dicaffeoylquinic acid, quercetin, and gibberellins A7, A9, and A20, which may be responsible for the biological properties observed. Thus, our data indicate that BOP is a promising source of anti-inflammatory and antifungal molecules that may be used as a functional food.
Collapse
Affiliation(s)
- Bruno Dias Nani
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-018, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-018, Brazil
| | - Josy Goldoni Lazarini
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-018, Brazil
| | - Diego Romário Silva
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-018, Brazil
| | - Adna Prado Massariolli
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-018, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo 13414-018, Brazil
| |
Collapse
|