1
|
Dhall A, Patiyal S, Kaur H, Raghava GPS. Risk assessment of cancer patients based on HLA-I alleles, neobinders and expression of cytokines. Comput Biol Med 2023; 167:107594. [PMID: 37918263 DOI: 10.1016/j.compbiomed.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Advancements in cancer immunotherapy have shown significant outcomes in treating cancers. To design effective immunotherapy, it's important to understand immune response of a patient based on its genomic profile. However, analyses to do that requires proficiency in the bioinformatic methods. Swiftly growing sequencing technologies and statistical methods create a blockage for the scientists who want to find the biomarkers for different cancers but don't have detailed knowledge of coding or tool. Here, we are providing a web-based resource that gives scientists with no bioinformatics expertise, the ability to obtain the prognostic biomarkers for different cancer types at different levels. We computed prognostic biomarkers from 8346 cancer patients for twenty cancer types. These biomarkers were computed based on i) presence of 352 Human leukocyte antigen class-I, ii) 660959 tumor-specific HLA1 neobinders, and iii) expression profile of 153 cytokines. It was observed that survival risk of cancer patients depends on presence of certain type of HLA-I alleles; for example, liver hepatocellular carcinoma patients with HLA-A*03:01 are at lower risk. Our analysis indicates that neobinders of HLA-I alleles have high correlation with overall survival of certain type of cancer patients. For example, HLA-B*07:02 binders have 0.49 correlation with survival of lung squamous cell carcinoma and -0.77 with kidney chromophobe patients. Additionally, we computed prognostic biomarkers based on cytokine expressions. Higher expression of few cytokines is survival favorable like IL-2 for bladder urothelial carcinoma, whereas IL-5R is survival unfavorable for kidney chromophobe patients. Freely accessible to public, CancerHLA-I maintains raw and analysed data (https://webs.iiitd.edu.in/raghava/cancerhla1/).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Harpreet Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
2
|
Dhall A, Jain S, Sharma N, Naorem LD, Kaur D, Patiyal S, Raghava GPS. In silico tools and databases for designing cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:1-50. [PMID: 35305716 DOI: 10.1016/bs.apcsb.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunotherapy is a rapidly growing therapy for cancer which have numerous benefits over conventional treatments like surgery, chemotherapy, and radiation. Overall survival of cancer patients has improved significantly due to the use of immunotherapy. It acts as a novel pillar for treating different malignancies from their primary to the metastatic stage. Recent preferments in high-throughput sequencing and computational immunology leads to the development of targeted immunotherapy for precision oncology. In the last few decades, several computational methods and resources have been developed for designing immunotherapy against cancer. In this review, we have summarized cancer-associated genomic, transcriptomic, and mutation profile repositories. We have also enlisted in silico methods for the prediction of vaccine candidates, HLA binders, cytokines inducing peptides, and potential neoepitopes. Of note, we have incorporated the most important bioinformatics pipelines and resources for the designing of cancer immunotherapy. Moreover, to facilitate the scientific community, we have developed a web portal entitled ImmCancer (https://webs.iiitd.edu.in/raghava/immcancer/), comprises cancer immunotherapy tools and repositories.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India.
| |
Collapse
|
3
|
Kaur H, Kumar R, Lathwal A, Raghava GPS. Computational resources for identification of cancer biomarkers from omics data. Brief Funct Genomics 2021; 20:213-222. [PMID: 33788922 DOI: 10.1093/bfgp/elab021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer is one of the most prevailing, deadly and challenging diseases worldwide. The advancement in technology led to the generation of different types of omics data at each genome level that may potentially improve the current status of cancer patients. These data have tremendous applications in managing cancer effectively with improved outcome in patients. This review summarizes the various computational resources and tools housing several types of omics data related to cancer. Major categorization of resources includes-cancer-associated multiomics data repositories, visualization/analysis tools for omics data, machine learning-based diagnostic, prognostic, and predictive biomarker tools, and data analysis algorithms employing the multiomics data. The review primarily focuses on providing comprehensive information on the open-source multiomics tools and data repositories, owing to their broader applicability, economic-benefit and usability. Sections including the comparative analysis, tools applicability and possible future directions have also been discussed in detail. We hope that this information will significantly benefit the researchers and clinicians, especially those with no sound background in bioinformatics and who lack sufficient data analysis skills to interpret something from the plethora of cancer-specific data generated nowadays.
Collapse
|
4
|
Kaur H, Bhalla S, Kaur D, Raghava GP. CancerLivER: a database of liver cancer gene expression resources and biomarkers. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5798989. [PMID: 32147717 PMCID: PMC7061090 DOI: 10.1093/database/baaa012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liver cancer is the fourth major lethal malignancy worldwide. To understand the development and progression of liver cancer, biomedical research generated a tremendous amount of transcriptomics and disease-specific biomarker data. However, dispersed information poses pragmatic hurdles to delineate the significant markers for the disease. Hence, a dedicated resource for liver cancer is required that integrates scattered multiple formatted datasets and information regarding disease-specific biomarkers. Liver Cancer Expression Resource (CancerLivER) is a database that maintains gene expression datasets of liver cancer along with the putative biomarkers defined for the same in the literature. It manages 115 datasets that include gene-expression profiles of 9611 samples. Each of incorporated datasets was manually curated to remove any artefact; subsequently, a standard and uniform pipeline according to the specific technique is employed for their processing. Additionally, it contains comprehensive information on 594 liver cancer biomarkers which include mainly 315 gene biomarkers or signatures and 178 protein- and 46 miRNA-based biomarkers. To explore the full potential of data on liver cancer, a web-based interactive platform was developed to perform search, browsing and analyses. Analysis tools were also integrated to explore and visualize the expression patterns of desired genes among different types of samples based on individual gene, GO ontology and pathways. Furthermore, a dataset matrix download facility was provided to facilitate the users for their extensive analysis to elucidate more robust disease-specific signatures. Eventually, CancerLivER is a comprehensive resource which is highly useful for the scientific community working in the field of liver cancer.Availability: CancerLivER can be accessed on the web at https://webs.iiitd.edu.in/raghava/cancerliver.
Collapse
Affiliation(s)
- Harpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector -39A, Chandigarh-160036, India.,Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India
| | - Sherry Bhalla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India.,Centre for Systems Biology and Bioinformatics, Sector-25, Panjab University, Chandigarh-160036, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India
| | - Gajendra Ps Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India
| |
Collapse
|
5
|
Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines 2020; 19:699-726. [PMID: 32648830 DOI: 10.1080/14760584.2020.1794832] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Due to overcome the hardness of the vaccine design, computational vaccinology is emerging widely. Prediction of T cell and B cell epitopes, antigen processing analysis, antigenicity analysis, population coverage, conservancy analysis, allergenicity assessment, toxicity prediction, and protein-peptide docking are important steps in the process of designing and developing potent vaccines against various viruses and cancers. In order to perform all of the analyses, several bioinformatics tools and online web servers have been developed. Scientists must take the decision to apply more suitable and precise servers for each part based on their accuracy. AREAS COVERED In this review, a wide-range list of different bioinformatics tools and online web servers has been provided. Moreover, some studies were proposed to show the importance of various bioinformatics tools for predicting and developing efficient vaccines against different pathogens including viruses, bacteria, parasites, and fungi as well as cancer. EXPERT OPINION Immunoinformatics is the best way to find potential vaccine candidates against different pathogens. Thus, the selection of the most accurate tools is necessary to predict and develop potent preventive and therapeutic vaccines. To further evaluation of the computational and in silico vaccine design, in vitro/in vivo analyses are required to develop vaccine candidates.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center , Tehran, Iran
| |
Collapse
|
6
|
Bai Y, Baker S, Exoo K, Dai X, Ding L, Khattak NA, Li H, Liu H, Liu X. MMiRNA-Viewer2, a bioinformatics tool for visualizing functional annotation for MiRNA and MRNA pairs in a network. BMC Bioinformatics 2020; 21:247. [PMID: 32631332 PMCID: PMC7336395 DOI: 10.1186/s12859-020-3436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022] Open
Abstract
Background Although there are many studies on the characteristics of miRNA-mRNA interactions using miRNA and mRNA sequencing data, the complexity of the change of the correlation coefficients and expression values of the miRNA-mRNA pairs between tumor and normal samples is still not resolved, and this hinders the potential clinical applications. There is an urgent need to develop innovative methodologies and tools that can characterize and visualize functional consequences of cancer risk gene and miRNA pairs while analyzing the tumor and normal samples simultaneously. Results We developed an innovative bioinformatics tool for visualizing functional annotation of miRNA-mRNA pairs in a network, known as MMiRNA-Viewer2. The tool takes mRNA and miRNA interaction pairs and visualizes mRNA and miRNA regulation network. Moreover, our MMiRNA-Viewer2 web server integrates and displays the mRNA and miRNA gene annotation information, signaling cascade pathways and direct cancer association between miRNAs and mRNAs. Functional annotation and gene regulatory information can be directly retrieved from our web server, which can help users quickly identify significant interaction sub-network and report possible disease or cancer association. The tool can identify pivotal miRNAs or mRNAs that contribute to the complexity of cancer, while engaging modern next-generation sequencing technology to analyze the tumor and normal samples concurrently. We compared our tools with other visualization tools. Conclusion Our MMiRNA-Viewer2 serves as a multitasking platform in which users can identify significant interaction clusters and retrieve functional and cancer-associated information for miRNA-mRNA pairs between tumor and normal samples. Our tool is applicable across a range of diseases and cancers and has advantages over existing tools.
Collapse
|
7
|
Lathwal A, Kumar R, Raghava GP. Computer-aided designing of oncolytic viruses for overcoming translational challenges of cancer immunotherapy. Drug Discov Today 2020; 25:1198-1205. [DOI: 10.1016/j.drudis.2020.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022]
|
8
|
Abstract
Molecular tumor profiling is now a routine part of patient care, revealing targetable genomic alterations and molecularly distinct tumor subtypes with therapeutic and prognostic implications. The widespread adoption of next-generation sequencing technologies has greatly facilitated clinical implementation of genomic data and opened the door for high-throughput multigene-targeted sequencing. Herein, we discuss the variability of cancer genetic profiling currently offered by clinical laboratories, the challenges of applying rapidly evolving medical knowledge to individual patients, and the need for more standardized population-based molecular profiling.
Collapse
Affiliation(s)
- Doreen Nguyen
- The Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Christopher D Gocke
- The Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA. .,The Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA. .,Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA.
| |
Collapse
|