1
|
Zhang C, Yang C, Jin M, Feng Z, Osei R, Cai F, Ma T, Wang Y. A PL1 family pectate lyase CP966_RS08110 gene was the pathogenic factor of Streptomyces galilaeus 5T-1 causing potato common scab. Front Microbiol 2024; 15:1469709. [PMID: 39664058 PMCID: PMC11631876 DOI: 10.3389/fmicb.2024.1469709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Pectate lyases (PL), as important polysaccharide lyases, play an important role in the infection of host plants by pathogenic. A previous study found that the PL gene CP966_RS08110 was up-regulated in the interaction between Streptomyces galilaeus 5T-1 and potatoes. In this study, S. galilaeus 5T-1 was used as the study object, and its gene function was investigated using bioinformatics analysis, prokaryotic expression, and CRISPR-Cas9 technology. The previous results showed that the pectate lyase CP966_RS08110 gene of Streptomyces galilaeus 5T-1 was up-regulated in the pathogenic process. In this study, the CP966_RS08110 gene was cloned from the genomic DNA of S. galilaeus 5T-1. It encoded for a 415-residue protein with a complete PL-6 superfamily domain and Pec_lyase_C domain, which belongs to the PL1 family. The soluble protein encoded by CP966_RS08110 was obtained successfully, which has high pathogenicity after inoculating healthy potatoes. The mutant strain △PL5T-1 with CP966_RS08110 gene deletion was successfully obtained, and its colony morphology and pigment were not significantly different from that of wild strains, but its growth rate was slowed down, moreover, the hyaline circle formed by the mutant strain ΔPL5T-1 using pectin was significantly smaller than wild strain, and the deletion of this gene affected the infestation rate of S. galilaeus 5T-1. Our results confirm that the CP966_RS08110 gene was the pathogenic factors and played a key role in process of infecting and causing potato common scab, which laid foundation for understanding the pathogenic mechanism of S. galilaeus 5T-1.
Collapse
Affiliation(s)
- Cuiwen Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Chengde Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Mengjun Jin
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Zhonghong Feng
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Richard Osei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Fengfeng Cai
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Ting Ma
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| | - Yidan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- Plant and Bacterial Diversity Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Bhatia SK, Vikal Y, Kaur P, Dhillon GS, Kaur G, Neelam K, Malik P, Lore JS, Khanna R, Singh K. Introgression and Mapping of a Novel Bacterial Blight Resistance Gene xa49(t) from Oryza rufipogon acc. CR100098A into O. sativa. PHYTOPATHOLOGY 2024; 114:2412-2420. [PMID: 39571096 DOI: 10.1094/phyto-02-24-0061-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is one of the epidemic diseases in rice. Rapid changes in the pathogenicity of the X. oryzae pv. oryzae pathogen demand the identification and characterization of novel BB resistance genes. Here, we report the transfer and mapping of a new BB resistance gene from Oryza rufipogon acc. CR100098A. Inheritance studies on the BC2F2 population, BC2F3 progenies, and backcross-derived recombinant inbred lines derived from a cross between Pusa44/O. rufipogon acc. CR100098A//2*PR114 showed that a single recessive gene confers resistance in O. rufipogon acc. CR100098A. Bulked segregant analysis using 203 simple sequence repeat (SSR) markers localized the BB resistance gene on chromosome 11 bracketed between two SSR markers, RM27235 and RM2136. Using PR114 and O. rufipogon acc. CR100098A genotyping by sequencing data, 86 KASP markers within the bracketed region were designed and tested for bulked segregant analysis. Only five KASP markers showed polymorphism between parents, and three were associated with the target gene. Seventy-seven new SSR markers were designed from the same interval. A total of 33 polymorphic markers were analyzed on the whole population and mapped the BB gene in an interval of 2.8 cM flanked by SSR markers PAU11_65 and PAU11_44 within a physical distance of 376.3 kb. The BB resistance gene mapped in this study is putatively new and designated as xa49(t). Fourteen putative candidate genes were identified within the xa49(t) region having a role in biotic stress resistance. The linked markers to the xa49(t) gene were validated in other rice cultivars for its successful deployment in BB resistance breeding.
Collapse
Affiliation(s)
- Sukhpreet Kaur Bhatia
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | | | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding and Genetics Ludhiana, Punjab Agricultural University, 141004, Punjab, India
| | - Renu Khanna
- Department of Plant Breeding and Genetics Ludhiana, Punjab Agricultural University, 141004, Punjab, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, Telangana, India
| |
Collapse
|
3
|
De Coninck T, Desmet T, Van Damme EJM. Carbohydrate-active enzymes involved in rice cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6206-6227. [PMID: 38980746 DOI: 10.1093/jxb/erae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Hu Y, Zhang J, Zhang A. Genome-Wide Transcriptome Analysis of a Virulent sRNA, Trans217, in Xanthomonas oryzae pv. oryzae ( Xoo), the Causative Agent of Rice Bacterial Blight. Microorganisms 2024; 12:1684. [PMID: 39203526 PMCID: PMC11357379 DOI: 10.3390/microorganisms12081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Small non-coding RNAs (sRNAs) act as post-transcriptional regulators to participate in many cellular processes. Among these, sRNA trans217 has been identified as a key virulent factor associated with pathogenicity in rice, triggering hypersensitive reactions in non-host tobacco and facilitating the secretion of the PthXo1 effector in Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99A. Elucidating potential targets and downstream regulatory genes is crucial for understanding cellular networks governing pathogenicity and plant resistance. To explore the targets regulated by sRNA trans217, transcriptome sequencing was carried out to assess differential expression genes (DEGs) between the wild-type strain PXO99A and a mutant lacking the sRNA fragment under both virulence-inducing or normal growth conditions. DEG analysis revealed that sRNA trans217 was responsible for diverse functions, such as type III secretion system (T3SS), glutamate synthase activity, and oxidative stress response. Three genes were selected for further investigation due to their significant differential expression and biological relevance. Deletion of PXO_RS08490 attenuated the pathogenicity of Xoo in rice and reduced the tolerance level of PXO99A to hydrogen peroxide. These findings suggest a regulatory role of sRNA trans217 in modulating bacterial virulence through multiple gene targets, either directly or indirectly.
Collapse
Affiliation(s)
- Yiqun Hu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
| | - Jianjian Zhang
- Department of science research University of Science and Technology of China, Hefei 230026, China;
| | - Aifang Zhang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Hefei 230031, China
| |
Collapse
|
5
|
Tayi L, Nathawat R, Kumar S, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Mutational analysis of predicted active site residues of an exoglucanase secreted by Xanthomonas oryzae pv. oryzae to determine their role in catalysis and in virulence on rice. Enzyme Microb Technol 2024; 174:110372. [PMID: 38104475 DOI: 10.1016/j.enzmictec.2023.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice. As a part of its virulence repertoire, Xoo secretes a cell wall degrading enzyme Cellobiosidase (CbsA), which is a critical virulence factor and also a determinant of tissue specificity. CbsA protein is made up of an N-terminal catalytic domain and a C-terminal fibronectin type III domain. According to the CAZy classification, the catalytic domain of CbsA protein belongs to the glycosyl hydrolase-6 (GH6) family that performs acid-base catalysis. However, the identity of the catalytic acid and the catalytic base of CbsA is not known. Based on the available structural and biochemical data, we identified putative catalytic residues and probed them by site-directed mutagenesis. Intriguingly, the biochemical analysis showed that none of the mutations abolishes the catalytic activity of CbsA, an observation that is contrary to other GH6 family members. All the mutants exhibited altered enzymatic activity and caused significant virulence deficiency in Xoo emphasising the requirement of specific exoglucanase activity of wild-type CbsA for virulence on rice. Our study highlights the need for further studies and the detailed characterisation of bacterial exoglucanases.
Collapse
Affiliation(s)
- Lavanya Tayi
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Rajkanwar Nathawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Sushil Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Roshan V Maku
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Hitendra Kumar Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India.
| | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007, India.
| |
Collapse
|
6
|
Zhang XQ, Liang YJ, Zhang BQ, Yan MX, Wang ZP, Huang DM, Huang YX, Lei JC, Song XP, Huang DL. Screening of Sugarcane Proteins Associated with Defense against Leifsonia xyli subsp. xyli, Agent of Ratoon Stunting Disease. PLANTS (BASEL, SWITZERLAND) 2024; 13:448. [PMID: 38337981 PMCID: PMC10857455 DOI: 10.3390/plants13030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Sugarcane is the most important sugar crop and one of the leading energy-producing crops in the world. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli, poses a huge threat to ratoon crops, causing a significant yield loss in sugarcane. Breeding resistant varieties is considered the most effective and fundamental approach to control RSD in sugarcane. The exploration of resistance genes forms the foundation for breeding resistant varieties through molecular technology. The pglA gene is a pathogenicity gene in L. xyli subsp. xyli, encoding an endopolygalacturonase. In this study, the pglA gene from L. xyli subsp. xyli and related microorganisms was analyzed. Then, a non-toxic, non-autoactivating pglA bait was successfully expressed in yeast cells. Simultaneously the yeast two-hybrid library was generated using RNA from the L. xyli subsp. xyli-infected sugarcane. Screening the library with the pglA bait uncovered proteins that interacted with pglA, primarily associated with ABA pathways and the plant immune system, suggesting that sugarcane employs these pathways to respond to L. xyli subsp. xyli, triggering pathogenicity or resistance. The expression of genes encoding these proteins was also investigated in L. xyli subsp. xyli-infected sugarcane, suggesting multiple layers of regulatory mechanisms in the interaction between sugarcane and L. xyli subsp. xyli. This work promotes the understanding of plant-pathogen interaction and provides target proteins/genes for molecular breeding to improve sugarcane resistance to L. xyli subsp. xyli.
Collapse
Affiliation(s)
- Xiao-Qiu Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo 532415, China;
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Mei-Xin Yan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Ze-Ping Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Dong-Mei Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Yu-Xin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Jing-Chao Lei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| |
Collapse
|
7
|
Wang W, Wang Y, Yi H, Liu Y, Zhang G, Zhang L, Mayo KH, Yuan Y, Zhou Y. Biochemical Characterization of Two Rhamnogalacturonan Lyases From Bacteroides ovatus ATCC 8483 With Preference for RG-I Substrates. Front Microbiol 2022; 12:799875. [PMID: 35087500 PMCID: PMC8787155 DOI: 10.3389/fmicb.2021.799875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Rhamnogalacturonan lyase (RGL) cleaves backbone α-1,4 glycosidic bonds between L-rhamnose and D-galacturonic acid residues in type I rhamnogalacturonan (RG-I) by β-elimination to generate RG oligosaccharides with various degrees of polymerization. Here, we cloned, expressed, purified and biochemically characterized two RGLs (Bo3128 and Bo4416) in the PL11 family from Bacteroides ovatus ATCC 8483. Bo3128 and Bo4416 displayed maximal activity at pH 9.5 and pH 6.5, respectively. Whereas the activity of Bo3128 could be increased 1.5 fold in the presence of 5 mM Ca2+, Bo4416 required divalent metal ions to show any enzymatic activity. Both of RGLs showed a substrate preference for RG-I compared to other pectin domains. Bo4416 and Bo3128 primarily yielded unsaturated RG oligosaccharides, with Bo3128 also producing them with short side chains, with yields of 32.4 and 62.4%, respectively. Characterization of both RGLs contribute to the preparation of rhamnogalacturonan oligosaccharides, as well as for the analysis of the fine structure of RG-I pectins.
Collapse
Affiliation(s)
- Weiyang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Haoting Yi
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yang Liu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guojing Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Le Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
9
|
Rai R, Pasion J, Majumdar T, Green CE, Hind SR. Genome Sequencing and Functional Characterization of Xanthomonas cucurbitae, the Causal Agent of Bacterial Spot Disease of Cucurbits. PHYTOPATHOLOGY 2021; 111:1289-1300. [PMID: 33734871 DOI: 10.1094/phyto-06-20-0228-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial leaf spot disease caused by Xanthomonas cucurbitae has severely affected the pumpkin industries in the Midwestern region of United States, with the bacteria mainly infecting pumpkin leaves and fruits, and leading to significant yield losses. In this study, we utilized genomics and genetics approaches to elucidate X. cucurbitae molecular mechanisms of pathogenesis during interaction with its host. We generated the first reference-quality whole-genome sequence of the X. cucurbitae type isolate and compared with other Xanthomonas species, X. cucurbitae has a smaller genome size with fewer virulence-related genes. RNA-seq analysis of X. cucurbitae under plant-mimicking media conditions showed altered transcriptional responses, with upregulation of virulence genes and downregulation of cellular homeostasis genes. Additionally, characterization of key virulence genes using gene deletion methods revealed that both type II enzymes and type III effectors are necessary for X. cucurbitae to cause infection in the pumpkin host.
Collapse
Affiliation(s)
- Rikky Rai
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Julius Pasion
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Tanvi Majumdar
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Cory E Green
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
10
|
Vieira PS, Bonfim IM, Araujo EA, Melo RR, Lima AR, Fessel MR, Paixão DAA, Persinoti GF, Rocco SA, Lima TB, Pirolla RAS, Morais MAB, Correa JBL, Zanphorlin LM, Diogo JA, Lima EA, Grandis A, Buckeridge MS, Gozzo FC, Benedetti CE, Polikarpov I, Giuseppe PO, Murakami MT. Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat Commun 2021; 12:4049. [PMID: 34193873 PMCID: PMC8245568 DOI: 10.1038/s41467-021-24277-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.
Collapse
Affiliation(s)
- Plinio S. Vieira
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Isabela M. Bonfim
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Araujo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.452567.70000 0004 0445 0877Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Ricardo R. Melo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Augusto R. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Melissa R. Fessel
- grid.418514.d0000 0001 1702 8585Butantan Institute, Butantan Foundation, São Paulo, São Paulo Brazil
| | - Douglas A. A. Paixão
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Gabriela F. Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Silvana A. Rocco
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Tatiani B. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Renan A. S. Pirolla
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mariana A. B. Morais
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jessica B. L. Correa
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Leticia M. Zanphorlin
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Jose A. Diogo
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, São Paulo Brazil
| | - Evandro A. Lima
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Adriana Grandis
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marcos S. Buckeridge
- grid.11899.380000 0004 1937 0722Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Gozzo
- grid.411087.b0000 0001 0723 2494Institute of Chemistry, University of Campinas, Campinas, São Paulo Brazil
| | - Celso E. Benedetti
- grid.452567.70000 0004 0445 0877Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Igor Polikarpov
- grid.11899.380000 0004 1937 0722São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo Brazil
| | - Priscila O. Giuseppe
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| | - Mario T. Murakami
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo Brazil
| |
Collapse
|
11
|
Zhong L, Wang X, Fan L, Ye X, Li Z, Cui Z, Huang Y. Characterization of an acidic pectin methylesterase from Paenibacillus xylanexedens and its application in fruit processing. Protein Expr Purif 2020; 179:105798. [PMID: 33232801 DOI: 10.1016/j.pep.2020.105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
A pectinase-producing bacterial isolate, identified as Paenibacillus xylanexedens SZ 29, was screened by using the soil dilution plate with citrus pectin and congo red. A pectin methylesterase gene (Pxpme) was cloned and expressed in Escherichia coli. The gene coded for a protein with 334 amino acids and a calculated molecular mass of 36.76 kDa. PxPME showed the highest identity of 32.4% with the characterized carbohydrate esterase family 8 pectin methylesterase from Daucus carota. The recombined PxPME showed a specific activity with 39.38 U/mg against citrus pectin with >65% methylesterification. The optimal pH and temperature for PxPME activity were 5.0 and 45 °C. Its Km and Vmax value were determined to be 1.43 mg/mL and 71.5 μmol/mg·min, respectively. Moreover, PxPME could increase the firmness of pineapple cubes by 114% when combined with CaCl2. The acidic and mesophilic properties make PxPME a potential candidate for application in the fruit processing.
Collapse
Affiliation(s)
- Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Microbial Resource Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
12
|
Koduru L, Kim HY, Lakshmanan M, Mohanty B, Lee YQ, Lee CH, Lee D. Genome-scale metabolic reconstruction and in silico analysis of the rice leaf blight pathogen, Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2020; 21:527-540. [PMID: 32068953 PMCID: PMC7060145 DOI: 10.1111/mpp.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/29/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.
Collapse
Affiliation(s)
- Lokanand Koduru
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Hyang Yeon Kim
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Bijayalaxmi Mohanty
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Yi Qing Lee
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
13
|
Mücke S, Reschke M, Erkes A, Schwietzer CA, Becker S, Streubel J, Morgan RD, Wilson GG, Grau J, Boch J. Transcriptional Reprogramming of Rice Cells by Xanthomonas oryzae TALEs. FRONTIERS IN PLANT SCIENCE 2019; 10:162. [PMID: 30858855 PMCID: PMC6397873 DOI: 10.3389/fpls.2019.00162] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/29/2019] [Indexed: 05/12/2023]
Abstract
Rice-pathogenic Xanthomonas oryzae bacteria cause severe harvest loss and challenge a stable food supply. The pathogen virulence relies strongly on bacterial TALE (transcription activator-like effector) proteins that function as transcriptional activators inside the plant cell. To understand the plant targets of TALEs, we determined the genome sequences of the Indian X. oryzae pv. oryzae (Xoo) type strain ICMP 3125T and the strain PXO142 from the Philippines. Their complete TALE repertoire was analyzed and genome-wide TALE targets in rice were characterized. Integrating computational target predictions and rice transcriptomics data, we were able to verify 12 specifically induced target rice genes. The TALEs of the Xoo strains were reconstructed and expressed in a TALE-free Xoo strain to attribute specific induced genes to individual TALEs. Using reporter assays, we could show that individual TALEs act directly on their target promoters. In particular, we show that TALE classes assigned by AnnoTALE reflect common target genes, and that TALE classes of Xoo and the related pathogen X. oryzae pv. oryzicola share more common target genes than previously believed. Taken together, we establish a detailed picture of TALE-induced plant processes that significantly expands our understanding of X. oryzae virulence strategies and will facilitate the development of novel resistances to overcome this important rice disease.
Collapse
Affiliation(s)
- Stefanie Mücke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Maik Reschke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Annett Erkes
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia-Alice Schwietzer
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Sebastian Becker
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Jana Streubel
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | | | | | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
14
|
Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization. Appl Environ Microbiol 2018; 85:AEM.02114-18. [PMID: 30341080 DOI: 10.1128/aem.02114-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Pectin is a complex uronic acid-containing polysaccharide typically found in plant cell walls, though forms of pectin are also found in marine diatoms and seagrasses. Genetic loci that target pectin have recently been identified in two phyla of marine bacteria. These loci appear to encode a pectin saccharification pathway that is distinct from the canonical pathway typically associated with phytopathogenic terrestrial bacteria. However, very few components of the marine pectin metabolism pathway have been experimentally validated. Here, we biochemically reconstructed the pectin saccharification pathway from a marine Pseudoalteromonas sp. in vitro and show that it results in the production of galacturonate and the key metabolic intermediate 5-keto-4-deoxyuronate (DKI). We demonstrate the sequential de-esterification and depolymerization of pectin into oligosaccharides and the synergistic action of glycoside hydrolases (GHs) to fully degrade these oligosaccharides into monosaccharides. Furthermore, we show that this pathway relies on enzymes belonging to GH family 105 to carry out the equivalent chemistry afforded by an exolytic polysaccharide lyase (PL) and KdgF in the canonical pectin pathway. Finally, we synthesize our findings into a model of marine pectin degradation and compare it with the canonical pathway. Our results underline the shifting view of pectin as a solely terrestrial polysaccharide and highlight the importance of marine pectin as a carbon source for suitably adapted marine heterotrophs. This alternate pathway has the potential to be exploited in the growing field of biofuel production from plant waste.IMPORTANCE Marine polysaccharides, found in the cell walls of seaweeds and other marine macrophytes, represent a vast sink of photosynthetically fixed carbon. As such, their breakdown by marine microbes contributes significantly to global carbon cycling. Pectin is an abundant polysaccharide found in the cell walls of terrestrial plants, but it has recently been reported that some marine bacteria possess the genetic capacity to degrade it. In this study, we biochemically characterized seven key enzymes from a marine bacterium that, together, fully degrade the backbone of pectin into its constituent monosaccharides. Our findings highlight the importance of pectin as a marine carbon source available to bacteria that possess this pathway. The characterized enzymes also have the potential to be utilized in the production of biofuels from plant waste.
Collapse
|
15
|
Intracellular Fate of Universally Labelled 13C Isotopic Tracers of Glucose and Xylose in Central Metabolic Pathways of Xanthomonas oryzae. Metabolites 2018; 8:metabo8040066. [PMID: 30326608 PMCID: PMC6316632 DOI: 10.3390/metabo8040066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C₅] xylose or 40% [13C₆] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.
Collapse
|
16
|
Tan H, Chen W, Liu Q, Yang G, Li K. Pectin Oligosaccharides Ameliorate Colon Cancer by Regulating Oxidative Stress- and Inflammation-Activated Signaling Pathways. Front Immunol 2018; 9:1504. [PMID: 30013563 PMCID: PMC6036268 DOI: 10.3389/fimmu.2018.01504] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big challenge for exploring new effective medicine for treating CC. Natural product promoting human health has become a hot topic and attracted many researchers recently. Pectin, a complex polysaccharide in plant cell wall, mainly consists of four major types of polysaccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of which can be degraded into various pectin oligosaccharides (POS) and may provide abundant resource for exploring potential anticancer drugs. POS have been regarded as a novel class of potential functional food with multiple health-promoting properties. POS have antibacterial activities against some aggressive and recurrent bacterial infection and exert beneficial immunomodulation for controlling CC risk. However, the molecular functional role of POS in the prevention of CC risk and progression remains doubtful. The review focuses on antioxidant and anti-inflammatory roles of POS for promoting human health by regulating some potential oxidative and inflammation-activated pathways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling pathways increases the antioxidant and antiinflammatory activities, which will result in the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS may inhibit CC development by affecting antioxidant and antiinflammatory signaling pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant and anti-inflammatory properties and promote CC progression. Specific structural and structurally modified POS may be associated with their functions and should be deeply explored in the future. The present review paper lacks the important information for the linkage between the specific structure of POS and its function. To further explore the effects of prebiotic potential of POS and their derivatives on human immunomodulation in the prevention of CC, the specific POS with a certain degree of polymerization or purified polymers are highly demanded to be performed in clinical practice.
Collapse
Affiliation(s)
- Haidong Tan
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
17
|
Tayi L, Kumar S, Nathawat R, Haque AS, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. A mutation in an exoglucanase of Xanthomonas oryzae pv. oryzae, which confers an endo mode of activity, affects bacterial virulence, but not the induction of immune responses, in rice. MOLECULAR PLANT PATHOLOGY 2018; 19:1364-1376. [PMID: 28976110 PMCID: PMC6638110 DOI: 10.1111/mpp.12620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/16/2017] [Accepted: 09/29/2017] [Indexed: 05/08/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, a serious disease of rice. Xoo secretes a repertoire of cell wall-degrading enzymes, including cellulases, xylanases and pectinases, to degrade various polysaccharide components of the rice cell wall. A secreted Xoo cellulase, CbsA, is not only a key virulence factor of Xoo, but is also a potent inducer of innate immune responses of rice. In this study, we solved the crystal structure of the catalytic domain of the CbsA protein to a resolution of 1.86 Å. The core structure of CbsA shows a central distorted TIM barrel made up of eight β strands with N- and C-terminal loops enclosing the active site, which is a characteristic structural feature of an exoglucanase. The aspartic acid at the 131st position of CbsA was predicted to be important for catalysis and was therefore mutated to alanine to study its role in the catalysis and biological functions of CbsA. Intriguingly, the D131A CbsA mutant protein displayed the enzymatic activity of a typical endoglucanase. D131A CbsA was as proficient as wild-type (Wt) CbsA in inducing rice immune responses, but was deficient in virulence-promoting activity. This indicates that the specific exoglucanase activity of the Wt CbsA protein is required for this protein to promote the growth of Xoo in rice.
Collapse
Affiliation(s)
- Lavanya Tayi
- CSIR‐Centre for Cellular and Molecular BiologyHyderabad 500007India
- Present address:
Centre for Plant Molecular BiologyOsmania UniversityHyderabad 500007India
| | - Sushil Kumar
- CSIR‐Centre for Cellular and Molecular BiologyHyderabad 500007India
- Present address:
Institute of Life SciencesNalco SquareBhuvaneshwar 751023India
| | | | - Asfarul S. Haque
- CSIR‐Centre for Cellular and Molecular BiologyHyderabad 500007India
- Present address:
Department of BiochemistryMcGill UniversityMontréalQC H3G 0B1Canada
| | - Roshan V. Maku
- CSIR‐Centre for Cellular and Molecular BiologyHyderabad 500007India
| | | | | | - Ramesh V. Sonti
- CSIR‐Centre for Cellular and Molecular BiologyHyderabad 500007India
| |
Collapse
|
18
|
Wagschal KC, Rose Stoller J, Chan VJ, Jordan DB. Expression and Characterization of Hyperthermostable Exopolygalacturonase RmGH28 from Rhodothermus marinus. Appl Biochem Biotechnol 2017; 183:1503-1515. [DOI: 10.1007/s12010-017-2518-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 11/28/2022]
|