1
|
Wafula ST, Maiga-Ascofare O, Struck NS, Mathanga DP, Cohee LM, May J, Puradiredja DI, Lorenz E. Socioeconomic disparities in Plasmodium falciparum infection risk in Southern Malawi: mediation analyses. Sci Rep 2024; 14:27290. [PMID: 39516554 PMCID: PMC11549479 DOI: 10.1038/s41598-024-78512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the mediators of the association between socioeconomic position (SEP) and Plasmodium falciparum (Pf) infection in Southern region of Malawi. We utilized data from the 2014 International Center of Excellence for Malaria Research (ICEMR) surveys from Malawi in which blood samples of all individuals from selected households in Blantyre, Thyolo and Chikhwawa were tested for Pf parasitemia. We assessed household SEP and potential mediators - housing quality, food security, education status of household heads, and use of long-lasting Insecticide-treated nets (LLINs) and nutritional status. We conducted causal mediation analyses to assess the proportion of SEP effect that is attributed to each mediator and combination of mediators. The mediation analysis shows that during the rainy season, improved housing and educational attainment explained 39.4% and 17.0% of the SEP effect on Pf infection, respectively, and collectively 66.4%. In the dry season, housing, educational attainment, and LLIN usage collectively mediated 33.4% of SEP's effect with individual contributions of 15.6%, 11.2%, and 3.8%, respectively. Nutrition also played a role, particularly for children, mediating 9.2% of SEP's effect in the rainy season and 3.7% in the dry season. The study concluded that multifaceted interventions targeting housing, education, LLIN usage, and nutrition are vital to reducing socioeconomic disparities in Pf infection risk in the Southern region of Malawi.
Collapse
Affiliation(s)
- Solomon T Wafula
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University, Kampala, Uganda.
| | - Oumou Maiga-Ascofare
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Luebeck-Riems, Hamburg, Germany
| | - Nicole S Struck
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Luebeck-Riems, Hamburg, Germany
| | - Don P Mathanga
- School of Global and Public Health, Kamuzu University of Health Sciences (KUHeS), Private Bag 360, Blantyre 3, Chichiri, Malawi
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Private Bag 360, Blantyre 3, Chichiri, Malawi
| | - Lauren M Cohee
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Luebeck-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dewi I Puradiredja
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Eva Lorenz
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Luebeck-Riems, Hamburg, Germany
| |
Collapse
|
2
|
Minwuyelet A, Abiye M, Zeleke AJ, Getie S. Plasmodium gametocyte carriage in humans and sporozoite rate in anopheline mosquitoes in Gondar zuria district, Northwest Ethiopia. PLoS One 2024; 19:e0306289. [PMID: 38950022 PMCID: PMC11216604 DOI: 10.1371/journal.pone.0306289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Although the overall burden of malaria is decreasing in Ethiopia, a recent report of an unpredictable increased incidence may be related to the presence of community-wide gametocyte-carrier individuals and a high proportion of infected vectors. This study aimed to reveal the current prevalence of gametocyte-carriage and the sporozoite infectivity rate of Anopheles vectors for Plasmodium parasites. A community-based cross-sectional study was conducted from May 01 to June 30/2019. A total of 53 households were selected using systematic random sampling and a 242 study participants were recruited. Additionally,515 adult female Anopheles mosquitoes were collected using Center for Diseases Control and Prevention (CDC) light traps and mouth aspirators. Parasite gametocytemia was determined using giemsa stain microscopy, while sporozoite infection was determined by giemsa staining microscopy and enzyme linked immunosorbent assay (ELISA). Among the total 242 study participants, 5.4% (95%, CI = 2.9-8.3) of them were positive for any of the Plasmodium species gametocyte. Furthermore, being female [AOR = 15.5(95%, CI = 1.71-140.39)], age group between 15-29 years old [AOR = 16.914 (95%, CI = 1.781-160.63)], no ITNs utilization [AOR = 16.7(95%, CI = 1.902 -146.727)], and high asexual parasite density [(95%, CI = 0.057-0.176, P = 0.001, F = 18.402)] were identified as statistically significant factors for gametocyte carriage. Whereas sporozoite infection rate was 11.6% (95%, CI = 8.2-15.5) and 12.7% (95%, CI = 9.6-16.3) by microscopy and ELISA, respectively. Overall, this study indicated that malaria remains to be an important public health problem in Gondar Zuria district where high gametocyte carriage rate and sporozoite infection rate could sustain its transmission and burden. Therefore, in Ethiopia, where malaria elimination program is underway, frequent, and active community-based surveillance of gametocytemia and sporozoite infection rate is important.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Melkam Abiye
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Sisay Getie
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Oduma CO, Koepfli C. Plasmodium falciparum and Plasmodium vivax Adjust Investment in Transmission in Response to Change in Transmission Intensity: A Review of the Current State of Research. Front Cell Infect Microbiol 2021; 11:786317. [PMID: 34956934 PMCID: PMC8692836 DOI: 10.3389/fcimb.2021.786317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria parasites can adjust the proportion of parasites that develop into gametocytes, and thus the probability for human-to-vector transmission, through changes in the gametocyte conversion rate. Understanding the factors that impact the commitment of malaria parasites to transmission is required to design better control interventions. Plasmodium spp. persist across countries with vast differences in transmission intensities, and in sites where transmission is highly seasonal. Mounting evidence shows that Plasmodium spp. adjusts the investment in transmission according to seasonality of vector abundance, and transmission intensity. Various techniques to determine the investment in transmission are available, i.e., short-term culture, where the conversion rate can be measured most directly, genome and transcriptome studies, quantification of mature gametocytes, and mosquito feeding assays. In sites with seasonal transmission, the proportion of gametocytes, their densities and infectivity are higher during the wet season, when vectors are plentiful. When countries with pronounced differences in transmission intensity were compared, the investment in transmission was higher when transmission was low, thus maximizing the parasite’s chances to be transmitted to mosquitoes. Increased transmissibility of residual infections after a successful reduction of malaria transmission levels need to be considered when designing intervention measures.
Collapse
Affiliation(s)
- Colins O Oduma
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
4
|
Usui M, Williamson KC. Stressed Out About Plasmodium falciparum Gametocytogenesis. Front Cell Infect Microbiol 2021; 11:790067. [PMID: 34926328 PMCID: PMC8674873 DOI: 10.3389/fcimb.2021.790067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Blocking malaria transmission is critical to malaria control programs but remains a major challenge especially in endemic regions with high levels of asymptomatic infections. New strategies targeting the transmissible sexual stages of the parasite, called gametocytes, are needed. This review focuses on P. falciparum gametocytogenesis in vivo and in vitro. Highlighting advances made elucidating genes required for gametocyte production and identifying key questions that remain unanswered such as the factors and regulatory mechanisms that contribute to gametocyte induction, and the mechanism of sequestration. Tools available to begin to address these issues are also described to facilitate advances in our understanding of this important stage of the life cycle.
Collapse
Affiliation(s)
- Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Gadalla AAH, Siciliano G, Farid R, Alano P, Ranford-Cartwright L, McCarthy JS, Thompson J, Babiker HA. Real-time PCR assays for detection and quantification of early P. falciparum gametocyte stages. Sci Rep 2021; 11:19118. [PMID: 34580326 PMCID: PMC8476600 DOI: 10.1038/s41598-021-97456-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022] Open
Abstract
The use of quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. To understand how the parasite adjusts its transmission in response to in-host environmental conditions including antimalarials requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that specifically detect and quantify early-stage P. falciparum gametocytes. The assays are based on expression of known early and late gametocyte genes and were developed using purified stage II and stage V gametocytes and tested in natural and controlled human infections. Genes pfpeg4 and pfg27 are specifically expressed at significant levels in early gametocytes with a limit of quantification of 190 and 390 gametocytes/mL, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection. In natural infections, both early (pfpeg4/pfg27) and late gametocyte transcripts (pfs25) were detected in 71.2% of individuals, only early gametocyte transcripts in 12.6%, and only late gametocyte transcripts in 15.2%. The pfpeg4/pfg27 qRT-PCR assays are sensitive and specific for quantification of circulating sexually committed ring stages/early gametocytes and can be used to increase our understanding of epidemiological processes that modulate P. falciparum transmission.
Collapse
Affiliation(s)
- Amal A H Gadalla
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Division of Population Medicine, School of Medicine, College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Ryan Farid
- QIMR Berghofer Medical Research Institute and University of Queensland, Brisbane, Australia
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute and University of Queensland, Brisbane, Australia
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Hamza A Babiker
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
6
|
Touray AO, Mobegi VA, Wamunyokoli F, Butungi H, Herren JK. Prevalence of asymptomatic P. falciparum gametocyte carriage among school children in Mbita, Western Kenya and assessment of the association between gametocyte density, multiplicity of infection and mosquito infection prevalence. Wellcome Open Res 2021; 5:259. [PMID: 33959684 PMCID: PMC8078214 DOI: 10.12688/wellcomeopenres.16299.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Asymptomatic Plasmodium falciparum gametocyte carriers are reservoirs for sustaining transmission in malaria endemic regions. Gametocyte presence in the host peripheral blood is a predictor of capacity to transmit malaria. However, it does not always directly translate to mosquito infectivity. Factors that affect mosquito infectivity include, gametocyte sex-ratio and density, multiplicity of infection (MOI), and host and vector anti-parasite immunity. We assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and to further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: P. falciparum parasite infections were detected by RDT (Rapid Diagnostic Test) and microscopy among schoolchildren (5-15 years old). Blood from 37 microscopy positive gametocyte carriers offered to laboratory reared An. gambiae s.l. mosquitoes. A total of 3395 fully fed mosquitoes were screened for Plasmodium sporozoites by ELISA. P. falciparum was genotyped using 10 polymorphic microsatellite markers. The association between MOI and gametocyte density and mosquito infection prevalence was investigated. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) ( p-value < 0.001) compared to females 26.72% (657/2459). The microscopic gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3-3.4], P = 0.002) as compared to children aged 10-15 years. After offering gametocyte positive blood to An. gambiae s.l. by membrane feeding assay, our results indicated that 68.1% of the variation in mosquito infection prevalence was accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: We observed a higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI significantly predicted mosquito infection prevalence.
Collapse
Affiliation(s)
- Abdoulie O. Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
7
|
Oduma CO, Ogolla S, Atieli H, Ondigo BN, Lee MC, Githeko AK, Dent AE, Kazura JW, Yan G, Koepfli C. Increased investment in gametocytes in asymptomatic Plasmodium falciparum infections in the wet season. BMC Infect Dis 2021; 21:44. [PMID: 33422001 PMCID: PMC7797145 DOI: 10.1186/s12879-020-05761-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Transmission stemming from asymptomatic infections is increasingly being recognized as a threat to malaria elimination. In many regions, malaria transmission is seasonal. It is not well understood whether Plasmodium falciparum modulates its investment in transmission to coincide with seasonal vector abundance. Methods We sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in the dry season, in two sites in western Kenya, representing different transmission intensities (Chulaimbo, moderate transmission, and Homa Bay, low transmission). Blood samples were screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-qPCR. Results Parasite prevalence by qPCR was 27.1% (Chulaimbo, dry), 48.2% (Chulaimbo, wet), 9.4% (Homabay, dry), and 7.8% (Homabay, wet). Mean parasite densities did not differ between seasons (P = 0.562). pfs25 transcripts were detected in 119/456 (26.1%) of infections. In the wet season, fewer infections harbored detectable gametocytes (22.3% vs. 33.8%, P = 0.009), but densities were 3-fold higher (wet: 3.46 transcripts/uL, dry: 1.05 transcripts/uL, P < 0.001). In the dry season, 4.0% of infections carried gametocytes at moderate-to-high densities likely infective (> 1 gametocyte per 2 uL blood), compared to 7.9% in the wet season. Children aged 5–15 years harbored 76.7% of infections with gametocytes at moderate-to-high densities. Conclusions Parasites increase their investment in transmission in the wet season, reflected by higher gametocyte densities. Despite increased gametocyte densities, parasite density remained similar across seasons and were often below the limit of detection of microscopy or rapid diagnostic test, thus a large proportion of infective infections would escape population screening in the wet season. Seasonal changes of gametocytemia in asymptomatic infections need to be considered when designing malaria control measures. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05761-6.
Collapse
Affiliation(s)
- Colins O Oduma
- Department of Biochemistry and Molecular Biology, Egerton University, P. O Box 536, Nakuru, 20115, Kenya.,Kenya Medical Research Institute/Centre for Global Health Research, P. O Box 1578, Kisumu, 40100, Kenya
| | - Sidney Ogolla
- Kenya Medical Research Institute/Centre for Global Health Research, P. O Box 1578, Kisumu, 40100, Kenya
| | - Harrysone Atieli
- School of Public Health, Maseno University, P. O Box 3275, Maseno, 40100, Kenya.,International Center of Excellence for Malaria Research, P. O Box 199, Homa Bay, 40300, Kenya
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, P. O Box 536, Nakuru, 20115, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute Health, Bethesda, MD, 20892, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, P. O Box 199, Homa Bay, 40300, Kenya
| | - Arlene E Dent
- Case Western Reserve University, Center for Global Health and Diseases, LC 4983, Cleveland, OH, 44106, USA
| | - James W Kazura
- Case Western Reserve University, Center for Global Health and Diseases, LC 4983, Cleveland, OH, 44106, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Cristian Koepfli
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556-0369, USA.
| |
Collapse
|
8
|
Touray AO, Mobegi VA, Wamunyokoli F, Butungi H, Herren JK. Prevalence of asymptomatic P. falciparum gametocyte carriage in schoolchildren and assessment of the association between gametocyte density, multiplicity of infection and mosquito infection prevalence. Wellcome Open Res 2020; 5:259. [PMID: 33959684 PMCID: PMC8078214 DOI: 10.12688/wellcomeopenres.16299.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 07/22/2023] Open
Abstract
Background: Malaria is a major public health threat in sub-Saharan Africa. Asymptomatic Plasmodium falciparum gametocyte carriers are potential infectious reservoirs for sustaining transmission in many malaria endemic regions. The aim of the study was to assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: Rapid diagnostic tests were used to screen for P. falciparum parasite infection among schoolchildren (5-15 years old) and the results were verified using microscopy. Microscopy positive gametocyte carriers were selected to feed laboratory reared An. gambiae s.l. mosquitoes using membrane feeding method. Genomic DNA was extracted from dry blood spot samples and P. falciparum populations were genotyped using 10 polymorphic microsatellite markers. Assessment of the association between MOI and gametocyte density and mosquito infection prevalence was conducted. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) ( p-value < 0.001) compared to females 26.72% (657/2459). The microscopy gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3-3.4], P = 0.002) as compared to children aged 10-15 years. After challenging An. gambiae s.l. by membrane feeding assay on gametocyte positive patient blood, our results indicate that 68.1% of the variation in mosquito infection prevalence is accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: Age was a significant risk factor for gametocyte carriage, as indicated by the higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI statistically significantly predicted mosquito infection prevalence. Both of the variables added significantly to the prediction ( p < 0.05).
Collapse
Affiliation(s)
- Abdoulie O. Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
9
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
10
|
Gupta H, Galatas B, Chidimatembue A, Huijben S, Cisteró P, Matambisso G, Nhamussua L, Simone W, Bassat Q, Ménard D, Ringwald P, Rabinovich NR, Alonso PL, Saúte F, Aide P, Mayor A. Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS One 2020; 15:e0240174. [PMID: 33075062 PMCID: PMC7571678 DOI: 10.1371/journal.pone.0240174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum (Pf). However, concerns remain about its contribution to select for antimalarial drug resistance. METHODS We used Sanger sequencing and real-time PCR to determine the proportion of molecular markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds with dihydroartemisinin-piperaquine (DHAp) for two consecutive years in Magude district of Southern Mozambique. RESULTS None of the k13 polymorphisms associated with artemisinin resistance were observed in the Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplification associated with piperaquine resistance, was similar in pre- (4.9%) and post-MDA groups (3.4%; p = 1.000). No statistically significant differences were observed between pre- and post-MDA groups in the proportion of Pf isolates neither with mutations in pfcrt and pfmdr1 genes, nor with the carriage of pfmdr1 multiple copies (p>0.05). CONCLUSIONS This study does not show any evidence of increased frequency of molecular makers of antimalarial resistance after MDA with DHAp in southern Mozambique where markers of antimalarial resistance were absent or low at the beginning of the intervention.
Collapse
Affiliation(s)
- Himanshu Gupta
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Galatas
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | | | - Silvie Huijben
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Pau Cisteró
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Didier Ménard
- Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Pascal Ringwald
- World Health Organization (WHO), Global Malaria Programme, Geneva, Switzerland
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro L. Alonso
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- National Institute of Health, Ministry of Health, Manhica, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
| |
Collapse
|
11
|
Al-Rumhi A, Al-Hashami Z, Al-Hamidhi S, Gadalla A, Naeem R, Ranford-Cartwright L, Pain A, Sultan AA, Babiker HA. Influx of diverse, drug resistant and transmissible Plasmodium falciparum into a malaria-free setting in Qatar. BMC Infect Dis 2020; 20:413. [PMID: 32539801 PMCID: PMC7296620 DOI: 10.1186/s12879-020-05111-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Successful control programs have impeded local malaria transmission in almost all Gulf Cooperation Council (GCC) countries: Qatar, Bahrain, Kuwait, Oman, the United Arab Emirates (UAE) and Saudi Arabia. Nevertheless, a prodigious influx of imported malaria via migrant workers sustains the threat of local transmission. Here we examine the origin of imported malaria in Qatar, assess genetic diversity and the prevalence of drug resistance genes in imported Plasmodium falciparum, and finally, address the potential for the reintroduction of local transmission. METHODS This study examined imported malaria cases reported in Qatar, between 2013 and 2016. We focused on P. falciparum infections and estimated both total parasite and gametocyte density, using qPCR and qRT-PCR, respectively. We also examined ten neutral microsatellites and four genes associated with drug resistance, Pfmrp1, Pfcrt, Pfmdr1, and Pfkelch13, to assess the genetic diversity of imported P. falciparum strains, and the potential for propagating drug resistance genotypes respectively. RESULTS The majority of imported malaria cases were P. vivax, while P. falciparum and mixed species infections (P. falciparum / P. vivax) were less frequent. The primary origin of P. vivax infection was the Indian subcontinent, while P. falciparum was mostly presented by African expatriates. Imported P. falciparum strains were highly diverse, carrying multiple genotypes, and infections also presented with early- and late-stage gametocytes. We observed a high prevalence of mutations implicated in drug resistance among these strains, including novel SNPs in Pfkelch13. CONCLUSIONS The influx of genetically diverse P. falciparum, with multiple drug resistance markers and a high capacity for gametocyte production, represents a threat for the reestablishment of drug-resistant malaria into GCC countries. This scenario highlights the impact of mass international migration on the reintroduction of malaria to areas with absent or limited local transmission.
Collapse
Affiliation(s)
- Abir Al-Rumhi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Zainab Al-Hashami
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salama Al-Hamidhi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amal Gadalla
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Raeece Naeem
- Biological and Environmental Sciences and Engineering Division, King Abdulla University for Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdulla University for Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Research Centre for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, Japan
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), The John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Hamza A Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Pathak AK, Shiau JC, Thomas MB, Murdock CC. Field Relevant Variation in Ambient Temperature Modifies Density-Dependent Establishment of Plasmodium falciparum Gametocytes in Mosquitoes. Front Microbiol 2019; 10:2651. [PMID: 31803169 PMCID: PMC6873802 DOI: 10.3389/fmicb.2019.02651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
The relationship between Plasmodium falciparum gametocyte density and infections in mosquitoes is central to understanding the rates of transmission with important implications for control. Here, we determined whether field relevant variation in environmental temperature could also modulate this relationship. Anopheles stephensi were challenged with three densities of P. falciparum gametocytes spanning a ~10-fold gradient, and housed under diurnal/daily temperature range ("DTR") of 9°C (+5°C and -4°C) around means of 20, 24, and 28°C. Vector competence was quantified as the proportion of mosquitoes infected with oocysts in the midguts (oocyst rates) or infectious with sporozoites in the salivary glands (sporozoite rates) at peak periods of infection for each temperature to account for the differences in development rates. In addition, oocyst intensities were also recorded from infected midguts and the overall study replicated across three separate parasite cultures and mosquito cohorts. While vector competence was similar at 20 DTR 9°C and 24 DTR 9°C, oocyst and sporozoite rates were also comparable, with evidence, surprisingly, for higher vector competence in mosquitoes challenged with intermediate gametocyte densities. For the same gametocyte densities however, severe reductions in the sporozoite rates was accompanied by a significant decline in overall vector competence at 28 DTR 9°C, with gametocyte density per se showing a positive and linear effect at this temperature. Unlike vector competence, oocyst intensities decreased with increasing temperatures with a predominantly positive and linear association with gametocyte density, especially at 28 DTR 9°C. Oocyst intensities across individual infected midguts suggested temperature-specific differences in mosquito susceptibility/resistance: at 20 DTR 9°C and 24 DTR 9°C, dispersion (aggregation) increased in a density-dependent manner but not at 28 DTR 9°C where the distributions were consistently random. Limitations notwithstanding, our results suggest that variation in temperature could modify seasonal dynamics of infectious reservoirs with implications for the design and deployment of transmission-blocking vaccines/drugs.
Collapse
Affiliation(s)
- Ashutosh K. Pathak
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Justine C. Shiau
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Matthew B. Thomas
- The Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| | - Courtney C. Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Riverbasin Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Vantaux A, Samreth R, Piv E, Khim N, Kim S, Berne L, Chy S, Lek D, Siv S, Taylor WR, Ménard D. Contribution to Malaria Transmission of Symptomatic and Asymptomatic Parasite Carriers in Cambodia. J Infect Dis 2019; 217:1561-1568. [PMID: 29394367 DOI: 10.1093/infdis/jiy060] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Eliminating falciparum malaria in Cambodia is a top priority, requiring the implementation of novel tools and strategies to interrupt its transmission. To date, few data are available regarding the contributions to malaria transmission of symptomatic and asymptomatic carriers. Methods Direct-membrane and skin feeding assays (DMFAs, SFAs) were performed, using Anopheles minimus and Anopheles dirus, to determine infectivity of symptomatic falciparum-infected patients and malaria asymptomatic carriers; a subset of the latter were followed up for 2 months to assess their transmission potential. Results By microscopy and real-time polymerase chain reaction, Plasmodium falciparum gametocyte prevalence rates were, respectively, 19.3% (n = 21/109) and 44% (n = 47/109) on day (D) 0 and 17.9% (n = 5/28) and 89.3% (n = 25/28) in recrudescent patients (Drec) (RT-PCR Drec vs D0 P = .002). Falciparum malaria patient infectivity was low on D0 (6.2%; n = 3/48) and in Drec (8.3%; n = 1/12). Direct-membrane feeding assays and SFAs gave similar results. None of the falciparum (n = 0/19) and 3 of 28 Plasmodium vivax asymptomatic carriers were infectious to mosquitoes, including those that were followed up for 2 months. Overall, P. falciparum gametocytemias were low except in a few symptomatic carriers. Conclusions Only symptomatic falciparum malaria patients were infectious to mosquito vectors at baseline and recrudescence, highlighting the need to detect promptly and treat effectively P. falciparum patients.
Collapse
Affiliation(s)
- Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Reingsey Samreth
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Eakpor Piv
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Laura Berne
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Xeno Cell Innovations, Plzen, Czech Republic
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control Program, Phnom Penh, Cambodia.,School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Sovannaroth Siv
- National Center for Parasitology, Entomology and Malaria Control Program, Phnom Penh, Cambodia
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.,Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Evolutionary sex allocation theory explains sex ratios in natural Plasmodium falciparum infections. Int J Parasitol 2019; 49:601-604. [PMID: 31153899 PMCID: PMC7614805 DOI: 10.1016/j.ijpara.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 01/06/2023]
Abstract
Malaria transmission is achieved by sexual stages, called gametocytes, and the proportion of gametocytes that are male versus female (sex ratio) influences transmission success. In malaria model systems, variation in gametocyte sex ratios can be explained by the predictions of evolutionary sex allocation theory. We test these predictions using natural Plasmodium falciparum infections. The predicted negative correlation between sex ratio and gametocyte density holds: the sex ratio increases when gametocyte densities decrease, and this is most apparent in single genotype infections and in the dry season. We do not observe higher gametocyte sex ratios in mixed compared with single genotype infections.
Collapse
|
15
|
Tadesse FG, Meerstein-Kessel L, Gonçalves BP, Drakeley C, Ranford-Cartwright L, Bousema T. Gametocyte Sex Ratio: The Key to Understanding Plasmodium falciparum Transmission? Trends Parasitol 2018; 35:226-238. [PMID: 30594415 PMCID: PMC6396025 DOI: 10.1016/j.pt.2018.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
A mosquito needs to ingest at least one male and one female gametocyte to become infected with malaria. The sex of Plasmodium falciparum gametocytes can be determined microscopically but recent transcriptomics studies paved the way for the development of molecular methods that allow sex-ratio assessments at much lower gametocyte densities. These sex-specific gametocyte diagnostics were recently used to examine gametocyte dynamics in controlled and natural infections as well as the impact of different antimalarial drugs. It is currently unclear to what extent sex-specific gametocyte diagnostics obviate the need for mosquito feeding assays to formally assess transmission potential. Here, we review recent and historic assessments of gametocyte sex ratio in relation to host and parasite characteristics, treatment, and transmission potential. Recent RNA sequencing studies have uncovered a number of P. falciparum gametocyte sex-specific targets and provided new insights in gametocyte biology. After decades when gametocyte sex-ratio research was restricted to nonhuman malarias or in vitro experiments, molecular tools for assessing gametocyte sex ratio are now increasingly available for use in natural P. falciparum infections. Evidence that gametocyte sex ratio is influenced by total gametocyte density and antimalarial treatment, and improves predictions of transmission potential, highlight the relevance of understanding the gametocyte sex ratio during natural infections. The finding that the most widely used P. falciparum gametocyte marker Pfs25 is expressed predominantly by female gametocytes and has non-negligible levels of background expression in asexual parasites necessitates a re-evaluation of existing gametocyte data.
Collapse
Affiliation(s)
- Fitsum G Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia; These authors contributed equally
| | - Lisette Meerstein-Kessel
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
16
|
Duffy CW, Amambua-Ngwa A, Ahouidi AD, Diakite M, Awandare GA, Ba H, Tarr SJ, Murray L, Stewart LB, D'Alessandro U, Otto TD, Kwiatkowski DP, Conway DJ. Multi-population genomic analysis of malaria parasites indicates local selection and differentiation at the gdv1 locus regulating sexual development. Sci Rep 2018; 8:15763. [PMID: 30361631 PMCID: PMC6202401 DOI: 10.1038/s41598-018-34078-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Parasites infect hosts in widely varying environments, encountering diverse challenges for adaptation. To identify malaria parasite genes under locally divergent selection across a large endemic region with a wide spectrum of transmission intensity, genome sequences were obtained from 284 clinical Plasmodium falciparum infections from four newly sampled locations in Senegal, The Gambia, Mali and Guinea. Combining these with previous data from seven other sites in West Africa enabled a multi-population analysis to identify discrete loci under varying local selection. A genome-wide scan showed the most exceptional geographical divergence to be at the early gametocyte gene locus gdv1 which is essential for parasite sexual development and transmission. We identified a major structural dimorphism with alternative 1.5 kb and 1.0 kb sequence deletions at different positions of the 3'-intergenic region, in tight linkage disequilibrium with the most highly differentiated single nucleotide polymorphism, one of the alleles being very frequent in Senegal and The Gambia but rare in the other locations. Long non-coding RNA transcripts were previously shown to include the entire antisense of the gdv1 coding sequence and the portion of the intergenic region with allelic deletions, suggesting adaptive regulation of parasite sexual development and transmission in response to local conditions.
Collapse
Affiliation(s)
- Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | | | | | - Mahamadou Diakite
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherches en Santé Publique (INRSP), Nouakchott, Mauritania
| | - Sarah J Tarr
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Lindsay B Stewart
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Umberto D'Alessandro
- MRC Gambia Unit, Fajara, The Gambia
- Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | | | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, UK.
| |
Collapse
|
17
|
Reece SE, Schneider P. Premature Rejection of Plasticity in Conversion. Trends Parasitol 2018; 34:633-634. [PMID: 29945759 DOI: 10.1016/j.pt.2018.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah E Reece
- Institute of Evolutionary Biology & Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Petra Schneider
- Institute of Evolutionary Biology & Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
18
|
Genetic diversity and transmissibility of imported Plasmodium vivax in Qatar and three countries of origin. Sci Rep 2018; 8:8870. [PMID: 29891983 PMCID: PMC5995916 DOI: 10.1038/s41598-018-27229-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/29/2018] [Indexed: 12/02/2022] Open
Abstract
Malaria control program in the Arabian Peninsula, backed by adequate logistical support, has interrupted transmission with exception of limited sites in Saudi Arabia and sporadic outbreaks in Oman. However, sustained influx of imported malaria represents a direct threat to the above success. Here we examined the extent of genetic diversity among imported P. vivax in Qatar, and its ability to produce gametocytes, compared to parasites in main sites of imported cases, the Indian subcontinent (india) and East Africa (Sudan and Ethiopia). High diversity was seen among imported P. vivax in Qatar, comparable to parasites in the Indian subcontinent and East Africa. Limited genetic differentiation was seen among imported P. vivax, which overlapped with parasites in India, but differentiated from that in Sudan and Ethiopia. Parasite density among imported cases, ranged widely between 26.25–7985934.1 Pv18S rRNA copies/µl blood, with a high prevalence of infections carried gametocytes detectable by qRT-PCR. Parasitaemia was a stronger predictor for P. vivax gametocytes density (r = 0.211, P = 0.04). The extensive diversity of imported P. vivax and its ability to produce gametocytes represent a major threat for re-introduction of malaria in Qatar. The genetic relatedness between P. vivax reported in Qatar and those in India suggest that elimination strategy should target flow and dispersal of imported malaria into the region.
Collapse
|
19
|
Lefevre T, Ohm J, Dabiré KR, Cohuet A, Choisy M, Thomas MB, Cator L. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol Appl 2018; 11:456-469. [PMID: 29636799 PMCID: PMC5891056 DOI: 10.1111/eva.12571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.
Collapse
Affiliation(s)
- Thierry Lefevre
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Johanna Ohm
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Anna Cohuet
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Choisy
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Oxford University Clinical Research UnitHanoiVietnam
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Lauren Cator
- Grand Challenges in Ecosystems and EnvironmentImperial College LondonAscotUK
| |
Collapse
|
20
|
Koepfli C, Yan G. Plasmodium Gametocytes in Field Studies: Do We Measure Commitment to Transmission or Detectability? Trends Parasitol 2018; 34:378-387. [PMID: 29544966 DOI: 10.1016/j.pt.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The proportion of Plasmodium spp. infections carrying gametocytes, and gametocyte densities, are often reported as surrogate markers for transmission potential. It remains unclear whether parasites under natural conditions adjust commitment to transmission depending on external factors. Population-based surveys comprising mostly asymptomatic low-density infections are always impacted by the sensitivity of the assays used to diagnose infections and detect gametocytes. Asexual parasite density is an important predictor for the probability of detecting gametocytes, and in many cases it can explain patterns in gametocyte carriage without the need for an adjustment of the gametocyte conversion rate. When reporting gametocyte data, quantification of blood-stage parasitemia and its inclusion as a confounder in multivariable analyses is essential.
Collapse
Affiliation(s)
- Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA
| |
Collapse
|