1
|
Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci 2022; 9:866854. [PMID: 35558562 PMCID: PMC9086364 DOI: 10.3389/fmolb.2022.866854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacteria live in complex communities and environments, competing for space and nutrients. Within their niche habitats, bacteria have developed various inter-bacterial mechanisms to compete and communicate. One such mechanism is contact-dependent growth inhibition (CDI). CDI is found in many Gram-negative bacteria, including several pathogens. These CDI+ bacteria encode a CdiB/CdiA two-partner secretion system that delivers inhibitory toxins into neighboring cells upon contact. Toxin translocation results in the growth inhibition of closely related strains and provides a competitive advantage to the CDI+ bacteria. CdiB, an outer-membrane protein, secretes CdiA onto the surface of the CDI+ bacteria. When CdiA interacts with specific target-cell receptors, CdiA delivers its C-terminal toxin region (CdiA-CT) into the target-cell. CdiA-CT toxin proteins display a diverse range of toxic functions, such as DNase, RNase, or pore-forming toxin activity. CDI+ bacteria also encode an immunity protein, CdiI, that specifically binds and neutralizes its cognate CdiA-CT, protecting the CDI+ bacteria from auto-inhibition. In Gram-negative bacteria, toxin/immunity (CdiA-CT/CdiI) pairs have highly variable sequences and functions, with over 130 predicted divergent toxin/immunity complex families. In this review, we will discuss biochemical and structural advances made in the characterization of CDI. This review will focus on the diverse array of CDI toxin/immunity complex structures together with their distinct toxin functions. Additionally, we will discuss the most recent studies on target-cell recognition and toxin entry, along with the discovery of a new member of the CDI loci. Finally, we will offer insights into how these diverse toxin/immunity complexes could be harnessed to fight human diseases.
Collapse
Affiliation(s)
- Bonnie J. Cuthbert
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher S. Hayes
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Celia W. Goulding
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Contact-Dependent Growth Inhibition in Bacteria: Do Not Get Too Close! Int J Mol Sci 2020; 21:ijms21217990. [PMID: 33121148 PMCID: PMC7662968 DOI: 10.3390/ijms21217990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Over millions of years of evolution, bacteria have developed complex strategies for intra-and interspecies interactions and competition for ecological niches and resources. Contact-dependent growth inhibition systems (CDI) are designed to realize a direct physical contact of one bacterial cell with other cells in proximity via receptor-mediated toxin delivery. These systems are found in many microorganisms including clinically important human pathogens. The main purpose of these systems is to provide competitive advantages for the growth of the population. In addition, non-competitive roles for CDI toxin delivery systems including interbacterial signal transduction and mediators of bacterial collaboration have been suggested. In this review, our goal was to systematize the recent findings on the structure, mechanisms, and purpose of CDI systems in bacterial populations and discuss the potential biological and evolutionary impact of CDI-mediated interbacterial competition and/or cooperation.
Collapse
|
3
|
Thappeta KRV, Ciezki K, Morales-Soto N, Wesener S, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment. MICROBIOLOGY-SGM 2020; 166:1074-1087. [PMID: 33064635 DOI: 10.1099/mic.0.000981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.
Collapse
Affiliation(s)
- Kishore Reddy Venkata Thappeta
- University of Wisconsin, Milwaukee, WI, USA.,Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore
| | - Kristin Ciezki
- Aurora Health Care, Milwaukee, WI, USA.,University of Wisconsin, Milwaukee, WI, USA
| | - Nydia Morales-Soto
- Eck Institute for Global Health, University of Notre Dame, IN, USA.,University of Wisconsin, Milwaukee, WI, USA
| | | | - Heidi Goodrich-Blair
- University of Tennessee, Knoxville, TN, USA.,University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
4
|
Kaundal S, Deep A, Kaur G, Thakur KG. Molecular and Biochemical Characterization of YeeF/YezG, a Polymorphic Toxin-Immunity Protein Pair From Bacillus subtilis. Front Microbiol 2020; 11:95. [PMID: 32117125 PMCID: PMC7033585 DOI: 10.3389/fmicb.2020.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Polymorphic toxins are important and widespread elements of bacterial warfare that help in restricting the growth of competitors, aiding kin selection, and shaping the bacterial communities. Although widespread, polymorphic toxin systems (PTS) have been extensively studied in Gram-negative bacteria, there are limited studies describing PTS in Gram-positive bacteria. The present study characterizes YeeF/YezG, a predicted member of a PF04740 family of the polymorphic toxin-immunity system from a Gram-positive bacteria Bacillus subtilis. The expression of the C-terminal toxic domain of YeeF (YeeF-CT) causes growth inhibition and gross morphological changes in Escherichia coli. The observed toxic effects are neutralized by the co-expression of yezG, a gene present downstream of yeeF, confirming YeeF-CT/YezG as a toxin/immunity protein pair. Biochemical and in vivo studies reveal that YeeF-CT causes toxicity due to its non-specific metal-dependent DNase activity. This is different from the previously reported RNase activity from the three B. subtilis toxins belonging to PF04740 family. Isothermal titration calorimetry (ITC) data analysis suggests that YeeF-CT binds YezG with a dissociation constant in the nanomolar range. Analytical ultracentrifugation studies revealed that YeeF-CT forms a homodimer and binds with two molecules of monomeric YezG immunity protein to form a 2:2 stochiometric heterotetrameric complex. Biolayer interferometry and electrophoretic mobility shift assays show that YeeF-CT/YezG/DNA forms a stable ternary complex implicating that YezG is an exosite inhibitor of YeeF-CT. This study extends the molecular targets of the toxins in the PF04740 family and thus, this family of toxins can be broadly classified as nucleases harboring either DNases or RNases activities.
Collapse
Affiliation(s)
- Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Amar Deep
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific & Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| |
Collapse
|
5
|
Diversity of Contact-Dependent Growth Inhibition Systems of Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00776-18. [PMID: 31036723 DOI: 10.1128/jb.00776-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied in Escherichia coli and several other bacteria, but little is known about the extent of this diversity in Pseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems of P. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology of P. aeruginosa.
Collapse
|
6
|
Burkholderia cepacia Complex Contact-Dependent Growth Inhibition Systems Mediate Interbacterial Competition. J Bacteriol 2019; 201:JB.00012-19. [PMID: 30962350 DOI: 10.1128/jb.00012-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia species, including opportunistic pathogens in the Burkholderia cepacia complex (Bcc), have genes to produce contact-dependent growth inhibition (CDI) system proteins. CDI is a phenomenon in which Gram-negative bacteria use the toxic C terminus of a polymorphic surface-exposed exoprotein, BcpA, to inhibit the growth of susceptible bacteria upon direct cell-cell contact. Production of a small immunity protein, BcpI, prevents autoinhibition. Although CDI systems appear widespread in Gram-negative bacteria, their function has been primarily examined in several model species. Here we demonstrate that genes encoding predicted CDI systems in Bcc species exhibit considerable diversity. We also show that Burkholderia multivorans, which causes pulmonary infections in patients with cystic fibrosis, expresses genes that encode two CDI systems, both of which appear distinct from the typical Burkholderia-type CDI system. Each system can mediate intrastrain interbacterial competition and contributes to bacterial adherence. Surprisingly, the immunity-protein-encoding bcpI gene of CDI system 1 could be mutated without obvious deleterious effects. We also show that nonpathogenic Burkholderia thailandensis uses CDI to control B. multivorans growth during coculture, providing one of the first examples of interspecies CDI and suggesting that CDI systems could be manipulated to develop therapeutic strategies targeting Bcc pathogens.IMPORTANCE Competition among bacteria affects microbial colonization of environmental niches and host organisms, particularly during polymicrobial infections. The Bcc is a group of environmental bacteria that can cause life-threatening opportunistic infections in patients who have cystic fibrosis or are immunocompromised. Understanding the mechanisms used by these bacterial pathogens to compete with one another may lead to the development of more effective therapies. Findings presented here demonstrate that a Bcc species, Burkholderia multivorans, produces functional CDI system proteins and that growth of this pathogen can be controlled by CDI system proteins produced by neighboring Burkholderia cells.
Collapse
|
7
|
Ciezki K, Wesener S, Jaber D, Mirza S, Forst S. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. MICROBIOLOGY-SGM 2019; 165:538-553. [PMID: 30938671 DOI: 10.1099/mic.0.000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Xenorhabdus species are symbionts of entomopathogenic nematodes and pathogens of susceptible insects. Nematodes enter insect hosts and perforate the midgut to invade the haemocoel where Xenorhabdus bacteria are released transitioning to their pathogenic stage. During nematode invasion microbes from the insect gut translocate into the haemocoel. Different species of nematodes carrying specific strains of Xenorhabdus can also invade the same insect. Xenorhabdus species thereby compete for nutrients and space with both related strains and non-related gut microbes. While Xenorhabdus species produce diverse antimicrobial compounds in complex media, their functions in insect hosts are not well understood. We show that Xenorhabdus szentirmaii produced ngrA-dependent antibiotics that were active against both gut-derived microbes and Xenorhabdus nematophila whereas antibiotics of X. nematophila were not active against X. szentirmaii. X. nematophila growth was inhibited in co-cultures with wild-type X. szentirmaii in medium that mimics insect haemolymph. An antibiotic-deficient strain of X. szentirmaii was created by inactivating the ngrA gene that encodes the enzyme that attaches the 4' phosphopantetheinyl moiety to non-ribosomal peptide synthetases involved in antibiotic biosynthesis. X. nematophila growth was not inhibited in co-cultures with the ngrA strain. The growth of X. nematophila was suppressed in Manduca sexta co-injected with wild-type X. szentirmaii and X. nematophila. In contrast, growth of X. nematophila was not suppressed in M. sexta co-injected with the ngrA strain. Two unique compounds were detected by MALDI-TOF MS analysis in haemolymph infected with the wild-type but not with the ngrA strain. Finally, killing of M. sexta was delayed in insects infected with the ngrA strain. These findings indicate that in the insect host X. szentirmaii produces ngrA-dependent products involved in both interspecies competition and virulence.
Collapse
Affiliation(s)
- Kristin Ciezki
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shane Wesener
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Danny Jaber
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shama Mirza
- Shimadzu Laboratory for Advanced and Applied Analytical Chemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Steven Forst
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
De Gregorio E, Zarrilli R, Di Nocera PP. Contact-dependent growth inhibition systems in Acinetobacter. Sci Rep 2019; 9:154. [PMID: 30655547 PMCID: PMC6336857 DOI: 10.1038/s41598-018-36427-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022] Open
Abstract
In bacterial contact-dependent growth inhibition (CDI) systems, CdiA proteins are exported to the outer membrane by cognate CdiB proteins. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into neighbouring target cells. Whereas self bacteria produce CdiI antitoxins, non-self bacteria lack antitoxins and are therefore inhibited in their growth by CdiA. In silico surveys of pathogenic Acinetobacter genomes have enabled us to identify >40 different CDI systems, which we sorted into two distinct groups. Type-II CdiAs are giant proteins (3711 to 5733 residues) with long arrays of 20-mer repeats. Type-I CdiAs are smaller (1900-2400 residues), lack repeats and feature central heterogeneity (HET) regions, that vary in size and sequence and can be exchanged between CdiA proteins. HET regions in most type-I proteins confer the ability to adopt a coiled-coil conformation. CdiA-CT and pretoxin modules differ significantly between type-I and type-II CdiAs. Moreover, type-II genes only have remnants of genes in their 3' end regions that have been displaced by the insertion of novel cdi sequences. Type-I and type-II CDI systems are equally abundant in A. baumannii, whereas A. pittii and A. nosocomialis predominantly feature type-I and type-II systems, respectively.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Raffaele Zarrilli
- Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
9
|
McQuade R, Stock SP. Secretion Systems and Secreted Proteins in Gram-Negative Entomopathogenic Bacteria: Their Roles in Insect Virulence and Beyond. INSECTS 2018; 9:insects9020068. [PMID: 29921761 PMCID: PMC6023292 DOI: 10.3390/insects9020068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Many Gram-negative bacteria have evolved insect pathogenic lifestyles. In all cases, the ability to cause disease in insects involves specific bacterial proteins exported either to the surface, the extracellular environment, or the cytoplasm of the host cell. They also have several distinct mechanisms for secreting such proteins. In this review, we summarize the major protein secretion systems and discuss examples of secreted proteins that contribute to the virulence of a variety of Gram-negative entomopathogenic bacteria, including Photorhabdus, Xenorhabdus, Serratia, Yersinia, and Pseudomonas species. We also briefly summarize two classes of exported protein complexes, the PVC-like elements, and the Tc toxin complexes that were first described in entomopathogenic bacteria.
Collapse
Affiliation(s)
- Rebecca McQuade
- Center for Insect Science, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721, USA.
| | - S Patricia Stock
- Department of Entomology and School of Animal and Comparative Biomedical Sciences, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Chen H, Fang Q, Tu Q, Liu C, Yin J, Yin Y, Xia L, Bian X, Zhang Y. Identification of a contact-dependent growth inhibition system in the probiotic Escherichia coli Nissle 1917. FEMS Microbiol Lett 2018; 365:4980907. [PMID: 29688444 DOI: 10.1093/femsle/fny102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/19/2018] [Indexed: 01/02/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is a type of competitive mechanisms and has been identified in various strains including Burkholderia, Dickeya, E. coli and Yersinia. Classical CDI systems contain three genes, cdiB, cdiA and cdiI. CdiB encoded by cdiB gene is a conserved β-barrel protein and required for export of CdiA. CdiA protein encoded by cdiA gene includes a conserved N-terminal domain and variable C-terminal toxic domain (CdiA-CT). Immunity protein CdiI binds and inactivates toxin protein CdiA-CT. Here, we identified two CDI systems, an intact cdiBAI operon with a truncated CdiB due to an unexpected mutation and an 'orphan' cdiA-CT/cdiI module in the probiotic Escherichia coli Nissle 1917 (EcN) genome. Both CdiA-CTs from EcN showed auto-inhibition activity when transferring into E. coli DH5α, as well the sequential deletion of amino acid residues resulted in the generation of the most potent mutant of CdiA-CT. CdiI neutralized the toxicity activity of CdiA and was immunity protein as previous report. In conclusion, this is the first report that the functional CDI system is in probiotic EcN and might provide a potential competitive mechanism for probiotic EcN in intestinal microenvironment.
Collapse
Affiliation(s)
- Hanna Chen
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qian Fang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Qiang Tu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Chenlang Liu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaoying Bian
- Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China.,Suzhou Institute of Shandong University and Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
11
|
Kim IH, Aryal SK, Aghai DT, Casanova-Torres ÁM, Hillman K, Kozuch MP, Mans EJ, Mauer TJ, Ogier JC, Ensign JC, Gaudriault S, Goodman WG, Goodrich-Blair H, Dillman AR. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genomics 2017; 18:927. [PMID: 29191166 PMCID: PMC5709968 DOI: 10.1186/s12864-017-4311-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
- Present address: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD USA
| | | | - Dariush T. Aghai
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Kai Hillman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Michael P. Kozuch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Erin J. Mans
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Terra J. Mauer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | | | - Jerald C. Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Walter G. Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, CA USA
| |
Collapse
|
12
|
Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol 2017; 42:40-46. [PMID: 29078204 DOI: 10.1016/j.mib.2017.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023]
Abstract
Both Gram-negative and Gram-positive organisms harbor systems for delivering toxins to neighboring bacteria upon direct cell contact. These systems, typified by type VI secretion (T6S) and contact-dependent growth inhibition (CDI) systems, are defined by their ability to mediate interbacterial competition in vitro, while their biological roles have remained uncertain. Recent research into the mechanisms of toxin delivery and activity, as well as investigation of contact-dependent toxin function during relevant biological processes, has offered insight into how interbacterial competition might work outside of the laboratory. Furthermore, non-competitive roles for contact-dependent toxin delivery systems, including interbacterial signal transduction, have been described. This review suggests that contact-dependent toxin delivery systems that exhibit functions beyond interbacterial competition are probably more common than currently appreciated.
Collapse
Affiliation(s)
- Erin C Garcia
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
13
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
14
|
Can't you hear me knocking: contact-dependent competition and cooperation in bacteria. Emerg Top Life Sci 2017; 1:75-83. [PMID: 29085916 DOI: 10.1042/etls20160019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microorganisms are in constant competition for growth niches and environmental resources. In Gram-negative bacteria, contact-dependent growth inhibition (CDI) systems link the fate of one cell with its immediate neighbor through touch-dependent, receptor-mediated toxin delivery. Though discovered for their ability to confer a competitive growth advantage, CDI systems also play significant roles in inter-sibling cooperation, promoting both auto-aggregation and biofilm formation. In this review, we detail the mechanisms of CDI toxin delivery and consider how toxin exchange between isogenic sibling cells could regulate gene expression.
Collapse
|