1
|
Xu M, Zhang H, Chang Y, Hua X, Chen X, Sheng Y, Shan D, Bao M, Hu S, Song J. Overexpression of ATP5F1A in Cardiomyocytes Promotes Cardiac Reverse Remodeling. Circ Heart Fail 2024; 17:e011504. [PMID: 38910562 PMCID: PMC11244755 DOI: 10.1161/circheartfailure.123.011504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The mechanism of cardiac reverse remodeling (CRR) mediated by the left ventricular assist device remains unclear. This study aims to identify the specific cell type responsible for CRR and develop the therapeutic target that promotes CRR. METHODS The nuclei were extracted from the left ventricular tissue of 4 normal controls, 4 CRR patients, and 4 no cardiac reverse remodeling patients and then subjected to single-nucleus RNA sequencing for identifying key cell types responsible for CRR. Gene overexpression in transverse aortic constriction and dilated cardiomyopathy heart failure mouse model (C57BL/6J background) and pathological staining were performed to validate the results of single-nucleus RNA sequencing. RESULTS Ten cell types were identified among 126 156 nuclei. Cardiomyocytes in CRR patients expressed higher levels of ATP5F1A than the other 2 groups. The macrophages in CRR patients expressed more anti-inflammatory genes and functioned in angiogenesis. Endothelial cells that elevated in no cardiac reverse remodeling patients were involved in the inflammatory response. Echocardiography showed that overexpressing ATP5F1A through cardiomyocyte-specific adeno-associated virus 9 demonstrated an ability to improve heart function and morphology. Pathological staining showed that overexpressing ATP5F1A could reduce fibrosis and cardiomyocyte size in the heart failure mouse model. CONCLUSIONS The present results of single-nucleus RNA sequencing and heart failure mouse model indicated that ATP5F1A could mediate CRR and supported the development of therapeutics for overexpressing ATP5F1A in promoting CRR.
Collapse
Affiliation(s)
- Mengda Xu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Hang Zhang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Yuan Chang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Xiumeng Hua
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Yixuan Sheng
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Dan Shan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Mengni Bao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Shengshou Hu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| | - Jiangping Song
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China. Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China. The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
2
|
Wali R, Xu H, Cheruiyot C, Saleem HN, Janshoff A, Habeck M, Ebert A. Integrated machine learning and multimodal data fusion for patho-phenotypic feature recognition in iPSC models of dilated cardiomyopathy. Biol Chem 2024; 405:427-439. [PMID: 38651266 DOI: 10.1515/hsz-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.
Collapse
Affiliation(s)
- Ruheen Wali
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hang Xu
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Cleophas Cheruiyot
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hafiza Nosheen Saleem
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Göttingen University, Tammannstraße 6, D-37077 Göttingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital , Kollegiengasse 10, D-07743 Jena, Germany
| | - Antje Ebert
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
3
|
Tsuru H, Yoshihara C, Suginobe H, Matsumoto M, Ishii Y, Narita J, Ishii R, Wang R, Ueyama A, Ueda K, Hirose M, Hashimoto K, Nagano H, Tanaka R, Okajima T, Ozono K, Ishida H. Pathogenic Roles of Cardiac Fibroblasts in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc 2023; 12:e029676. [PMID: 37345811 PMCID: PMC10356057 DOI: 10.1161/jaha.123.029676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Background Dilated cardiomyopathy (DCM) is a major cause of heart failure in children. Despite intensive genetic analyses, pathogenic gene variants have not been identified in most patients with DCM, which suggests that cardiomyocytes are not solely responsible for DCM. Cardiac fibroblasts (CFs) are the most abundant cell type in the heart. They have several roles in maintaining cardiac function; however, the pathological role of CFs in DCM remains unknown. Methods and Results Four primary cultured CF cell lines were established from pediatric patients with DCM and compared with 3 CF lines from healthy controls. There were no significant differences in cellular proliferation, adhesion, migration, apoptosis, or myofibroblast activation between DCM CFs compared with healthy CFs. Atomic force microscopy revealed that cellular stiffness, fluidity, and viscosity were not significantly changed in DCM CFs. However, when DCM CFs were cocultured with healthy cardiomyocytes, they deteriorated the contractile and diastolic functions of cardiomyocytes. RNA sequencing revealed markedly different comprehensive gene expression profiles in DCM CFs compared with healthy CFs. Several humoral factors and the extracellular matrix were significantly upregulated or downregulated in DCM CFs. The pathway analysis revealed that extracellular matrix receptor interactions, focal adhesion signaling, Hippo signaling, and transforming growth factor-β signaling pathways were significantly affected in DCM CFs. In contrast, single-cell RNA sequencing revealed that there was no specific subpopulation in the DCM CFs that contributed to the alterations in gene expression. Conclusions Although cellular physiological behavior was not altered in DCM CFs, they deteriorated the contractile and diastolic functions of healthy cardiomyocytes through humoral factors and direct cell-cell contact.
Collapse
Affiliation(s)
- Hirofumi Tsuru
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
- Department of PediatricsNiigata University School of MedicineNiigataJapan
| | - Chika Yoshihara
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidehiro Suginobe
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Mizuki Matsumoto
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Yoichiro Ishii
- Department of Pediatric CardiologyOsaka Medical Center for Maternal and Child HealthOsakaJapan
| | - Jun Narita
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryo Ishii
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Renjie Wang
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Atsuko Ueyama
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazutoshi Ueda
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Masaki Hirose
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhisa Hashimoto
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Nagano
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Ryosuke Tanaka
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Takaharu Okajima
- Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
| | - Keiichi Ozono
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
4
|
Langa P, Shafaattalab S, Goldspink PH, Wolska BM, Fernandes AA, Tibbits GF, Solaro RJ. A perspective on Notch signalling in progression and arrhythmogenesis in familial hypertrophic and dilated cardiomyopathies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220176. [PMID: 37122209 PMCID: PMC10150215 DOI: 10.1098/rstb.2022.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/02/2023] Open
Abstract
In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Sanam Shafaattalab
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - Paul H. Goldspink
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aurelia A. Fernandes
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Glen F. Tibbits
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| |
Collapse
|
5
|
Molecular genetic mechanisms of dilated cardiomyopathy. Curr Opin Genet Dev 2022; 76:101959. [PMID: 35870234 DOI: 10.1016/j.gde.2022.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
Heart failure (HF) is a rapidly growing cardiovascular condition with a prevalence of ~40 million individuals worldwide [1]. While HF can be caused by acquired conditions such as myocardial infarctions and viruses [2], the genetic basis for HF is rapidly emerging particularly for dilated cardiomyopathy (DCM) that is the most prevalent HF type. In this review, insights from the rapid expansion in next-generation sequencing technologies applied in the HF clinic are merged with recent functional genomics studies to provide a contemporary view of DCM molecular genetics.
Collapse
|
6
|
Xu H, Wali R, Cheruiyot C, Bodenschatz J, Hasenfuss G, Janshoff A, Habeck M, Ebert A. Non-negative blind deconvolution for signal processing in a CRISPR-edited iPSC-cardiomyocyte model of dilated cardiomyopathy. FEBS Lett 2021; 595:2544-2557. [PMID: 34482543 DOI: 10.1002/1873-3468.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
We developed an integrated platform for analysis of parameterized data from human disease models. We report a non-negative blind deconvolution (NNBD) approach to quantify calcium (Ca2+ ) handling, beating force and contractility in human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) at the single-cell level. We employed CRISPR/Cas gene editing to introduce a dilated cardiomyopathy (DCM)-causing mutation in troponin T (TnT), TnT-R141W, into wild-type control iPSCs (MUT). The NNDB-based method enabled data parametrization, fitting and analysis in wild-type controls versus isogenic MUT iPSC-CMs. Of note, Cas9-edited TnT-R141W iPSC-CMs revealed significantly reduced beating force and prolonged contractile event duration. The NNBD-based platform provides an alternative framework for improved quantitation of molecular disease phenotypes and may contribute to the development of novel diagnostic tools.
Collapse
Affiliation(s)
- Hang Xu
- Heart Research Center, Department of Cardiology and Pneumology, University Medical Center, Goettingen University, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Germany
| | - Ruheen Wali
- Heart Research Center, Department of Cardiology and Pneumology, University Medical Center, Goettingen University, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Germany
| | - Cleophas Cheruiyot
- Heart Research Center, Department of Cardiology and Pneumology, University Medical Center, Goettingen University, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Germany
| | | | - Gerd Hasenfuss
- Heart Research Center, Department of Cardiology and Pneumology, University Medical Center, Goettingen University, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Goettingen University, Germany
| | | | - Antje Ebert
- Heart Research Center, Department of Cardiology and Pneumology, University Medical Center, Goettingen University, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Germany
| |
Collapse
|
7
|
Pettinato AM, Ladha FA, Mellert DJ, Legere N, Cohn R, Romano R, Thakar K, Chen YS, Hinson JT. Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation of Human TNNT2 Variants. Circulation 2020; 142:2262-2275. [PMID: 33025817 DOI: 10.1161/circulationaha.120.047999] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. METHODS We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell-derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament-directed calcium reporter to monitor changes in myofilament calcium affinity. RESULTS Hypertrophic cardiomyopathy-associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction. TNNT2 variant-dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX, and NPPB. We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. CONCLUSIONS Our study found that hypertrophic cardiomyopathy-associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.
Collapse
Affiliation(s)
| | - Feria A Ladha
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.)
| | - David J Mellert
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Robert Romano
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.)
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - J Travis Hinson
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.).,The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.).,Calhoun Cardiology Center, UConn Health (J.T.H.), Farmington
| |
Collapse
|
8
|
Robinson P, Sparrow AJ, Patel S, Malinowska M, Reilly SN, Zhang YH, Casadei B, Watkins H, Redwood C. Dilated cardiomyopathy mutations in thin-filament regulatory proteins reduce contractility, suppress systolic Ca 2+, and activate NFAT and Akt signaling. Am J Physiol Heart Circ Physiol 2020; 319:H306-H319. [PMID: 32618513 PMCID: PMC7473929 DOI: 10.1152/ajpheart.00272.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dilated cardiomyopathy (DCM) is clinically characterized by dilated ventricular cavities and reduced ejection fraction, leading to heart failure and increased thromboembolic risk. Mutations in thin-filament regulatory proteins can cause DCM and have been shown in vitro to reduce contractility and myofilament Ca2+-affinity. In this work we have studied the functional consequences of mutations in cardiac troponin T (R131W), cardiac troponin I (K36Q) and α-tropomyosin (E40K) using adenovirally transduced isolated guinea pig left ventricular cardiomyocytes. We find significantly reduced fractional shortening with reduced systolic Ca2+. Contraction and Ca2+ reuptake times were slowed, which contrast with some findings in murine models of myofilament Ca2+ desensitization. We also observe increased sarcoplasmic reticulum (SR) Ca2+ load and smaller fractional SR Ca2+ release. This corresponds to a reduction in SR Ca2+-ATPase activity and increase in sodium-calcium exchanger activity. We also observe dephosphorylation and nuclear translocation of the nuclear factor of activated T cells (NFAT), with concordant RAC-α-serine/threonine protein kinase (Akt) phosphorylation but no change to extracellular signal-regulated kinase activation in chronically paced cardiomyocytes expressing DCM mutations. These changes in Ca2+ handling and signaling are common to all three mutations, indicating an analogous pathway of disease pathogenesis in thin-filament sarcomeric DCM. Previous work has shown that changes to myofilament Ca2+ sensitivity caused by DCM mutations are qualitatively opposite from hypertrophic cardiomyopathy (HCM) mutations in the same genes. However, we find several common pathways such as increased relaxation times and NFAT activation that are also hallmarks of HCM. This suggests more complex intracellular signaling underpinning DCM, driven by the primary mutation.NEW & NOTEWORTHY Dilated cardiomyopathy (DCM) is a frequently occurring cardiac disorder with a degree of genetic inheritance. We have found that DCM mutations in proteins that regulate the contractile machinery cause alterations to contraction, calcium-handling, and some new signaling pathways that provide stimuli for disease development. We have used guinea pig cells that recapitulate human calcium-handling and introduced the mutations using adenovirus gene transduction to look at the initial triggers of disease before remodeling.
Collapse
Affiliation(s)
- Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alexander J Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Suketu Patel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Marta Malinowska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Svetlana N Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yin-Hua Zhang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation, Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
10
|
Dieseldorff Jones KM, Koh Y, Weller RS, Turna RS, Ahmad F, Huke S, Knollmann BC, Pinto JR, Hwang HS. Pathogenic troponin T mutants with opposing effects on myofilament Ca 2+ sensitivity attenuate cardiomyopathy phenotypes in mice. Arch Biochem Biophys 2018; 661:125-131. [PMID: 30445044 DOI: 10.1016/j.abb.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
Mutations in cardiac troponin T (TnT) associated with hypertrophic cardiomyopathy generally lead to an increase in the Ca2+ sensitivity of contraction and susceptibility to arrhythmias. In contrast, TnT mutations linked to dilated cardiomyopathy decrease the Ca2+ sensitivity of contraction. Here we tested the hypothesis that two TnT disease mutations with opposite effects on myofilament Ca2+ sensitivity can attenuate each other's phenotype. We crossed transgenic mice expressing the HCM TnT-I79N mutation (I79N) with a DCM knock-in mouse model carrying the heterozygous TnT-R141W mutation (HET). The results of the Ca2+ sensitivity in skinned cardiac muscle preparations ranked from highest to lowest were as follow: I79N > I79N/HET > NTg > HET. Echocardiographic measurements revealed an improvement in hemodynamic parameters in I79N/HET compared to I79N and normalization of left ventricular dimensions and volumes compared to both I79N and HET. Ex vivo testing showed that the I79N/HET mouse hearts had reduced arrhythmia susceptibility compared to I79N mice. These results suggest that two disease mutations in TnT that have opposite effects on the myofilament Ca2+ sensitivity can paradoxically ameliorate each other's disease phenotype. Normalizing myofilament Ca2+ sensitivity may be a promising new treatment approach for a variety of diseases.
Collapse
Affiliation(s)
| | - Yeojung Koh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Rebecca S Weller
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rajdeep S Turna
- Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Ferhaan Ahmad
- Department of Internal Medicine University of Iowa, Iowa City, IA, USA
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
11
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
12
|
Immunological and pathological consequences of coxsackievirus RNA persistence in the heart. Virology 2017; 512:104-112. [PMID: 28950225 DOI: 10.1016/j.virol.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
Type B coxsackieviruses (CVB) can cause myocarditis and dilated cardiomyopathy (DCM), a potentially-fatal sequela that has been correlated to the persistence of viral RNA. Herein, we demonstrate that cardiac RNA persistence can be established even after an inapparent primary infection. Using an inducible Cre/lox mouse model, we ask: (i) Does persistent CVB3 RNA cause ongoing immune activation? (ii) If T1IFN signaling into cardiomyocytes is ablated after RNA persistence is established, is there any change in the abundance of persistent CVB3 RNA and/or does cytopathic infectious virus re-emerge? (iii) Does this loss of T1IFN responsiveness by cardiomyocytes lead to the recurrence/exacerbation of myocarditis? Our findings suggest that persistent enteroviral RNAs probably do not contribute to ongoing myocardial disease, and are more likely to be the fading remnants of a recent, possibly sub-clinical, primary infection which may have set in motion the process that ultimately ends in DCM.
Collapse
|
13
|
Yang HY, Firth JM, Francis AJ, Alvarez-Laviada A, MacLeod KT. Effect of ovariectomy on intracellular Ca 2+ regulation in guinea pig cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 313:H1031-H1043. [PMID: 28778911 DOI: 10.1152/ajpheart.00249.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 01/30/2023]
Abstract
This study addressed the hypothesis that long-term deficiency of ovarian hormones after ovariectomy (OVx) alters cellular Ca2+-handling mechanisms in the heart, resulting in the formation of a proarrhythmic substrate. It also tested whether estrogen supplementation to OVx animals reverses any alterations to cardiac Ca2+ handling and rescues proarrhythmic behavior. OVx or sham operations were performed on female guinea pigs using appropriate anesthetic and analgesic regimes. Pellets containing 17β-estradiol (1 mg, 60-day release) were placed subcutaneously in selected OVx animals (OVx + E). Cardiac myocytes were enzymatically isolated, and electrophysiological measurements were conducted with a switch-clamp system. In fluo-4-loaded cells, Ca2+ transients were 20% larger, and fractional sarcoplasmic reticulum (SR) Ca2+ release was 7% greater in the OVx group compared with the sham group. Peak L-type Ca2+ current was 16% larger in OVx myocytes with channel inactivation shifting to more positive membrane potentials, creating a larger "window" current. SR Ca2+ stores were 22% greater in the OVx group, and these cells showed a higher frequency of Ca2+ sparks and waves and shorter wave-free intervals. OVx myocytes showed higher frequencies of early afterdepolarizations, and a greater percentage of these cells showed delayed afterdepolarizations after exposure to isoprenaline compared with sham myocytes. The altered Ca2+ regulation occurring in the OVx group was not observed in the OVx + E group. These findings suggest that long-term deprivation of ovarian hormones in guinea pigs lead to changes in myocyte Ca2+-handling mechanisms that are considered proarrhythmogenic. 17β-Estradiol replacement prevented these adverse effects.NEW & NOTEWORTHY Ovariectomized guinea pig cardiomyocytes have higher frequencies of Ca2+ waves, and isoprenaline-challenged cells display more early afterdepolarizations, delayed afterdepolarizations, and extra beats compared with sham myocytes. These alterations to Ca2+ regulation were not observed in myocytes from ovariectomized guinea pigs supplemented with 17β-estradiol, suggesting that ovarian hormone deficiency modifies cardiac Ca2+ regulation, potentially creating proarrhythmic substrates.
Collapse
Affiliation(s)
- Hsiang-Yu Yang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defence Medical Center, Taipei, Taiwan
| | - Jahn M Firth
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kenneth T MacLeod
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
14
|
England J, Loughna S, Rutland CS. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:E8. [PMID: 29367539 PMCID: PMC5715711 DOI: 10.3390/jcdd4030008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
Animals have frequently been used as models for human disorders and mutations. Following advances in genetic testing and treatment options, and the decreasing cost of these technologies in the clinic, mutations in both companion and commercial animals are now being investigated. A recent review highlighted the genes associated with both human and non-human dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human and animal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jennifer England
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Siobhan Loughna
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK.
| |
Collapse
|
15
|
Abstract
There has been a significant progress in our understanding of the molecular mechanisms by which calcium (Ca2+) ions mediate various types of cardiac arrhythmias. A growing list of inherited gene defects can cause potentially lethal cardiac arrhythmia syndromes, including catecholaminergic polymorphic ventricular tachycardia, congenital long QT syndrome, and hypertrophic cardiomyopathy. In addition, acquired deficits of multiple Ca2+-handling proteins can contribute to the pathogenesis of arrhythmias in patients with various types of heart disease. In this review article, we will first review the key role of Ca2+ in normal cardiac function-in particular, excitation-contraction coupling and normal electric rhythms. The functional involvement of Ca2+ in distinct arrhythmia mechanisms will be discussed, followed by various inherited arrhythmia syndromes caused by mutations in Ca2+-handling proteins. Finally, we will discuss how changes in the expression of regulation of Ca2+ channels and transporters can cause acquired arrhythmias, and how these mechanisms might be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Andrew P Landstrom
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Dobromir Dobrev
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Xander H T Wehrens
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.).
| |
Collapse
|
16
|
Dewan S, McCabe KJ, Regnier M, McCulloch AD. Insights and Challenges of Multi-Scale Modeling of Sarcomere Mechanics in cTn and Tm DCM Mutants-Genotype to Cellular Phenotype. Front Physiol 2017; 8:151. [PMID: 28352236 PMCID: PMC5348544 DOI: 10.3389/fphys.2017.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 01/18/2023] Open
Abstract
Dilated Cardiomyopathy (DCM) is a leading cause of sudden cardiac death characterized by impaired pump function and dilatation of cardiac ventricles. In this review we discuss various in silico approaches to elucidating the mechanisms of genetic mutations leading to DCM. The approaches covered in this review focus on bridging the spatial and temporal gaps that exist between molecular and cellular processes. Mutations in sarcomeric regulatory thin filament proteins such as the troponin complex (cTn) and Tropomyosin (Tm) have been associated with DCM. Despite the experimentally-observed myofilament measures of contractility in the case of these mutations, the mechanisms by which the underlying molecular changes and protein interactions scale up to organ failure by these mutations remains elusive. The review highlights multi-scale modeling approaches and their applicability to study the effects of sarcomeric gene mutations in-silico. We discuss some of the insights that can be gained from computational models of cardiac biomechanics when scaling from molecular states to cellular level.
Collapse
Affiliation(s)
- Sukriti Dewan
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kimberly J McCabe
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael Regnier
- Departments of Bioengineering and Medicine, University of Washington Seattle, WA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|