1
|
Ding WY, Davies IG, Gupta D, Lip GYH. Relationship between Renal Function, Fibrin Clot Properties and Lipoproteins in Anticoagulated Patients with Atrial Fibrillation. Biomedicines 2022; 10:biomedicines10092270. [PMID: 36140371 PMCID: PMC9496227 DOI: 10.3390/biomedicines10092270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mechanisms by which chronic kidney disease (CKD) influences fibrin clot properties in atrial fibrillation (AF) remain ill-defined. We aimed to investigate the effects of AF and CKD on fibrin clot properties and lipoproteins, and determine the relationship between these factors. Methods: Prospective cross-sectional study of patients recruited from cardiology services in Liverpool between September 2019 and October 2021. Primary groups consisted of anticoagulated AF patients with and without CKD in a 1:1 ratio. Control group comprised anticoagulated patients without AF or CKD. Fibrin clot properties were analysed using turbidity and permeation assays. Detailed lipoprotein characteristics, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), small dense LDL and oxidised LDL, were measured. Results: Fifty-six anticoagulated patients were enrolled (median age 72.5; 34% female); 46 with AF (23 with CKD and 23 without CKD) and 10 controls. AF was associated with changes in three indices of fibrin clot properties using PTT (Tlag 314 vs. 358 s, p = 0.047; Abspeak 0.153 vs. 0.111 units, p = 0.031; Tlysis50% 884 vs. 280 s, p = 0.047) and thrombin reagents (Tlag 170 vs. 132 s, p = 0.031; Tmax 590 vs. 462 s, p = 0.047; Tpeak50% 406 vs. 220 s, p = 0.005) while the concomitant presence of CKD led to changes in fibrin clot properties using kaolin (Tlag 1072 vs. 1640 s, p = 0.003; Tmax 1458 vs. 1962 s, p = 0.005; Tpeak50% 1294 vs. 2046, p = 0.008) and PPP reagents (Tlag 566 vs. 748 s, p = 0.044). Neither of these conditions were associated with changes in fibrin clot permeability. Deteriorating eGFR was significantly correlated to the speed of clot formation, and CKD was independently associated with unfavourable clot properties (Tlag −778, p = 0.002; Tmax −867, p = 0.004; Tpeak50% −853, p = 0.004 with kaolin reagent). AF alone was not associated with changes in lipoprotein distribution while AF patients with CKD had lower total cholesterol, LDL-C and small dense LDL due to the presence of other risk factors. No significant relationship was observed between fibrin clot properties and lipoprotein distribution. Conclusions: There are important changes that occur in fibrin clot properties with AF and CKD that may account for the increased risk of thromboembolic complications. However, these changes in fibrin clot properties were not attributable to alterations in lipoprotein distribution.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Correspondence:
| | - Ian G. Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
2
|
Hierons SJ, Marsh JS, Wu D, Blindauer CA, Stewart AJ. The Interplay between Non-Esterified Fatty Acids and Plasma Zinc and Its Influence on Thrombotic Risk in Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms221810140. [PMID: 34576303 PMCID: PMC8471329 DOI: 10.3390/ijms221810140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Thrombosis is a major comorbidity of obesity and type-2 diabetes mellitus (T2DM). Despite the development of numerous effective treatments and preventative strategies to address thrombotic disease in such individuals, the incidence of thrombotic complications remains high. This suggests that not all the pathophysiological mechanisms underlying these events have been identified or targeted. Non-esterified fatty acids (NEFAs) are increasingly regarded as a nexus between obesity, insulin resistance, and vascular disease. Notably, plasma NEFA levels are consistently elevated in obesity and T2DM and may impact hemostasis in several ways. A potentially unrecognized route of NEFA-mediated thrombotic activity is their ability to disturb Zn2+ speciation in the plasma. Zn2+ is a potent regulator of coagulation and its availability in the plasma is monitored carefully through buffering by human serum albumin (HSA). The binding of long-chain NEFAs such as palmitate and stearate, however, trigger a conformational change in HSA that reduces its ability to bind Zn2+, thus increasing the ion’s availability to bind and activate coagulation proteins. NEFA-mediated perturbation of HSA-Zn2+ binding is thus predicted to contribute to the prothrombotic milieu in obesity and T2DM, representing a novel targetable disease mechanism in these disorders.
Collapse
Affiliation(s)
- Stephen J. Hierons
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Jordan S. Marsh
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Dongmei Wu
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | | | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-1334-463546; Fax: +44-(0)-1334-463482
| |
Collapse
|
3
|
Hinton W, Nemeth B, de Lusignan S, Field B, Feher MD, Munro N, Roberts LN, Arya R, Whyte MB. Effect of type 1 diabetes and type 2 diabetes on the risk of venous thromboembolism. Diabet Med 2021; 38:e14452. [PMID: 33165941 PMCID: PMC8247424 DOI: 10.1111/dme.14452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
AIMS Whether diabetes increases venous thromboembolism (VTE) is unclear. Any greater risk may relate to insulin resistance, but many studies did not differentiate between type 1 diabetes and type 2 diabetes for VTE risk. METHODS Retrospective cohort study of the Royal College of General Practitioners Research and Surveillance Centre, comprising over 530 primary care practices. We determined whether type 1 diabetes and/or type 2 diabetes are independent risk factors for VTE. The index date was 1 January 2009, individuals were followed to 31 December 2018, or censoring. Cox proportional hazard regression analysis was used to investigate the risk of VTE in people with type 1 diabetes and type 2 diabetes relative to no diabetes. The primary outcome was occurrence of VTE. The model was adjusted for potential confounders for VTE. RESULTS There were 7086 people with type 1 diabetes and 95,566 with type 2 diabetes, diagnosed before 1 January 2009. The non-diabetes group consisted of 1,407,699 people. In the unadjusted analysis, there was no increased risk of VTE with type 1 diabetes (HR 1.00, 95% CI 0.76-1.33) but there was for type 2 diabetes (HR 2.70, 95% CI 2.57-2.84). In the fully adjusted model, VTE risk was increased in type 1 diabetes (HR 1.46, 95% CI 1.11-1.92), but not with type 2 diabetes (HR 1.06, 95% CI 0.98-1.14). CONCLUSIONS Type 1 diabetes was associated with a greater risk for VTE while type 2 diabetes was not. Further work is needed to determine the reason(s) for this.
Collapse
Affiliation(s)
- William Hinton
- Nuffield Department of Primary Care Health SciencesUniversity of OxfordOxfordUK
| | - Banne Nemeth
- Department of Clinical EpidemiologyLeiden UniversityLeidenThe Netherlands
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health SciencesUniversity of OxfordOxfordUK
- Faculty of Health & Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Royal College of General PractitionersRoyal College of General Practitioners (RCGP) Research and Surveillance Centre (RSCLondonUK
| | - Ben Field
- Faculty of Health & Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Michael D. Feher
- Nuffield Department of Primary Care Health SciencesUniversity of OxfordOxfordUK
| | - Neil Munro
- Faculty of Health & Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Lara N. Roberts
- King’s Thrombosis CentreDepartment of Haematological MedicineKing’s College NHS Foundation TrustLondonUK
| | - Roopen Arya
- King’s Thrombosis CentreDepartment of Haematological MedicineKing’s College NHS Foundation TrustLondonUK
| | - Martin B. Whyte
- Faculty of Health & Medical SciencesUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
4
|
Sobczak AIS, Katundu KGH, Phoenix FA, Khazaipoul S, Yu R, Lampiao F, Stefanowicz F, Blindauer CA, Pitt SJ, Smith TK, Ajjan RA, Stewart AJ. Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes. Chem Sci 2021; 12:4079-4093. [PMID: 34163679 PMCID: PMC8179462 DOI: 10.1039/d0sc06605b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Zn2+ is an essential regulator of coagulation and is released from activated platelets. In plasma, the free Zn2+ concentration is fine-tuned through buffering by human serum albumin (HSA). Importantly, the ability of HSA to bind/buffer Zn2+ is compromised by co-transported non-esterified fatty acids (NEFAs). Given the role of Zn2+ in blood clot formation, we hypothesise that Zn2+ displacement from HSA by NEFAs in certain conditions (such as type 2 diabetes mellitus, T2DM) impacts on the cellular and protein arms of coagulation. To test this hypothesis, we assessed the extent to which increasing concentrations of a range of medium- and long-chain NEFAs reduced Zn2+-binding ability of HSA. Amongst the NEFAs tested, palmitate (16 : 0) and stearate (18 : 0) were the most effective at suppressing zinc-binding, whilst the mono-unsaturated palmitoleate (16 : 1c9) was markedly less effective. Assessment of platelet aggregation and fibrin clotting parameters in purified systems and in pooled plasma suggested that the HSA-mediated impact of the model NEFA myristate on zinc speciation intensified the effects of Zn2+ alone. The effects of elevated Zn2+ alone on fibrin clot density and fibre thickness in a purified protein system were mirrored in samples from T2DM patients, who have derranged NEFA metabolism. Crucially, T2DM individuals had increased total plasma NEFAs compared to controls, with the concentrations of key saturated (myristate, palmitate, stearate) and mono-unsaturated (oleate, cis-vaccenate) NEFAs positively correlating with clot density. Collectively, these data strongly support the concept that elevated NEFA levels contribute to altered coagulation in T2DM through dysregulation of plasma zinc speciation.
Collapse
Affiliation(s)
- Amélie I S Sobczak
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Kondwani G H Katundu
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
- College of Medicine, University of Malawi Blantyre Malawi
| | - Fladia A Phoenix
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds UK
| | - Siavash Khazaipoul
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Ruitao Yu
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences 23 Xinning Road Xining Qinghai 810001 China
| | - Fanuel Lampiao
- College of Medicine, University of Malawi Blantyre Malawi
| | - Fiona Stefanowicz
- Scottish Trace Element and Micronutrient Diagnostic and Research Laboratory, Department of Biochemistry NHS Greater Glasgow and Clyde Glasgow UK
| | | | - Samantha J Pitt
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Terry K Smith
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews St Andrews UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| |
Collapse
|
5
|
Alangode A, Reick M, Reick M. Sodium oleate, arachidonate, and linoleate enhance fibrinogenolysis by Russell's viper venom proteinases and inhibit FXIIIa; a role for phospholipase A 2 in venom induced consumption coagulopathy. Toxicon 2020; 186:83-93. [PMID: 32755649 DOI: 10.1016/j.toxicon.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 06/02/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Life-threatening symptoms produced by Russell's viper (RV, Daboia russelii) envenomation result largely from venom induced consumption coagulopathy (VICC). VICC is thought to be mediated to a large degree by venom serine and metalloproteinases, as well as by snake venom phospholipase A2 (svPLA2), the most abundant constituent of RV venom (RVV). The observation that the phenolic lipid anacardic acid markedly enhances proteolytic degradation of fibrinogen by RVV proteinases led us to characterize the chemical basis of this phenomenon with results indicating that svPLA2 products may be major contributors to VICC. RESULTS: Of the chemical analogs tested, the anionic detergents sodium dodecyl sulfate, sodium deoxycholate, N-lauryl sodium sarcosine, and the sodium salts of the fatty acids arachidonic, oleic and to a lesser extend linoleic acid were able to enhance fibrinogenolysis by RVV proteinases. Enhanced Fibrinogenolysis (EF) was observed with various venom size exclusion fractions containing different proteinases, and also with trypsin, indicating that conformational changes of the substrate and increased accessibility of otherwise cryptic cleavage sites are likely to be responsible for EF. In addition to enhancing fibrinogenolysis, sodium arachidonate and oleate were found to partially inhibit thrombin induced, factor XIIIa (FXIIIa) mediated ligation of fibrin chains. In clotting experiments with fresh blood RVV was found to disrupt normal coagulation, leading to small, partial clot formation, whereas RVV pretreated with the PLA2 inhibitor Varespladib induced rapid and complete clot formation (after 5 min) compared to blood alone. CONCLUSION: The observations that fatty acid anions and anionic detergents induce conformational changes that render fibrin(ogen) more susceptible to proteolysis by RVV proteinases and that RVV-PLA2 activity (which produces FFA) is required to render blood incoagulable in clotting experiments with RVV indicate a mechanism by which the activity of highly abundant RVV-PLA2 promotes degradation and depletion of fibrin(ogen) resulting in incoagulable blood seen following RVV envenomation (VICC).
Collapse
Affiliation(s)
- Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India.
| |
Collapse
|
6
|
Takagaki S, Suzuki M, Suzuki E, Hasumi K. Unsaturated fatty acids enhance the fibrinolytic activity of subtilisin NAT (nattokinase). J Food Biochem 2020; 44:e13326. [PMID: 32572985 DOI: 10.1111/jfbc.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023]
Abstract
Subtilisin NAT (STN), alternatively designated nattokinase, is a serine protease with potent fibrinolytic activity. In this study, we screened several foods to enhance the fibrinolytic potential of STN and identified unsaturated fatty acid-rich ones as candidates. We isolated linoleic acid as a major active compound from one of the most active foods, red pepper. Linoleic acid promoted the STN-mediated fibrin/fibrinogen degradation at >20 μg/ml. STN cleaved three of the fibrinogen polypeptide chains, among which linoleic acid accelerated Bβ-chain and γ-chain degradations, but slightly suppressed the degradation of α-chain fragments. Linoleic acid failed to affect small synthetic peptide degradation, suggesting a conformational modulation of fibrin/fibrinogen for the linoleic acid promotion of STN activity. Of the various fatty acids tested, unsaturated ones were active but saturated ones were rather inhibitory to STN-mediated fibrinolysis. Thus, our data shed new light on the dietary promotion of STN activity. PRACTICAL APPLICATIONS: Subtilisin NAT (STN) is a serine protease abundantly contained in natto, a soybean food fermented with Bacillus subtilis var. natto. The use of STN as functional foods to improve blood circulation is getting attention because STN actively degrades fibrin. Our results demonstrate that widely occurring unsaturated fatty acids such as linoleic, eicosapentaenoic, and docosahexaenoic acids enhance the fibrinolytic activity of STN. Thus, the intake of natto or STN supplements in combination with unsaturated fatty acid-containing oil can be a novel way to gain cardiovascular benefits.
Collapse
Affiliation(s)
- Soichiro Takagaki
- Department of Applied Biological Science, Tokyo Noko University, Tokyo, Japan.,Organo Food Tech Corporation, Satte, Japan
| | - Maiko Suzuki
- Department of Applied Biological Science, Tokyo Noko University, Tokyo, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo Noko University, Tokyo, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo Noko University, Tokyo, Japan
| |
Collapse
|
7
|
Sobczak AIS, Stewart AJ. Coagulatory Defects in Type-1 and Type-2 Diabetes. Int J Mol Sci 2019; 20:E6345. [PMID: 31888259 PMCID: PMC6940903 DOI: 10.3390/ijms20246345] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes (both type-1 and type-2) affects millions of individuals worldwide. A major cause of death for individuals with diabetes is cardiovascular diseases, in part since both types of diabetes lead to physiological changes that affect haemostasis. Those changes include altered concentrations of coagulatory proteins, hyper-activation of platelets, changes in metal ion homeostasis, alterations in lipid metabolism (leading to lipotoxicity in the heart and atherosclerosis), the presence of pro-coagulatory microparticles and endothelial dysfunction. In this review, we explore the different mechanisms by which diabetes leads to an increased risk of developing coagulatory disorders and how this differs between type-1 and type-2 diabetes.
Collapse
Affiliation(s)
| | - Alan J. Stewart
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK;
| |
Collapse
|
8
|
Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019; 11:nu11092022. [PMID: 31466350 PMCID: PMC6770316 DOI: 10.3390/nu11092022] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased total plasma free fatty acid (FFA) concentrations and an elevated risk of cardiovascular disease. The exact mechanisms by which the plasma FFA profile of subjects with T2DM changes is unclear, but it is thought that dietary fats and changes to lipid metabolism are likely to contribute. Therefore, establishing the changes in concentrations of specific FFAs in an individual’s plasma is important. Each type of FFA has different effects on physiological processes, including the regulation of lipolysis and lipogenesis in adipose tissue, inflammation, endocrine signalling and the composition and properties of cellular membranes. Alterations in such processes due to altered plasma FFA concentrations/profiles can potentially result in the development of insulin resistance and coagulatory defects. Finally, fibrates and statins, lipid-regulating drugs prescribed to subjects with T2DM, are also thought to exert part of their beneficial effects by impacting on plasma FFA concentrations. Thus, it is also interesting to consider their effects on the concentration of FFAs in plasma. Collectively, we review how FFAs are altered in T2DM and explore the likely downstream physiological and pathological implications of such changes.
Collapse
|
9
|
Litvinov RI, Nabiullina RM, Zubairova LD, Shakurova MA, Andrianova IA, Weisel JW. Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1626. [PMID: 31379831 PMCID: PMC6646676 DOI: 10.3389/fimmu.2019.01626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Among complications of systemic lupus erythematosus (SLE), thrombotic events are relatively common and contribute significantly to the morbidity and mortality rates. An increased risk of thrombosis in various diseases has been shown to be associated with the lytic stability and mechanical stiffness of the fibrin clot determined by its structure. Here we studied alterations of the fibrin clot properties in relation to disease severity in SLE patients. Plasma clots from 28 SLE patients were characterized by the kinetics of formation and fibrinolytic dissolution (using dynamic turbidimetry), the network and fiber ultrastructure (scanning electron microscopy), viscoelasticity (shear rheometry), and the rate and degree of crosslinking (Western blotting) correlated with the disease activity, blood composition, and compared to clotting of pooled normal human plasma. Clots made from plasma of SLE patients were lysed faster with exogenous t-PA than control clots from normal plasma without a significant difference between those from active (SLEDAI>4) and inactive (SLEDAI<4) SLE patients. Clots from the blood of patients with active SLE were characterized by significantly slower onset, but faster rate of fibrin polymerization and a higher optical density due to thicker fibers compared to those from inactive SLE and control pooled normal plasma. The rheological parameters of the clots (storage and loss moduli) were significantly increased in the active SLE patients along with enhanced fibrin crosslinking and hyperfibrinogenemia. The structural and rheological alterations displayed a strong positive correlation with high fibrinogen levels and other laboratory markers of immune inflammation. In conclusion, changes in the blood composition associated with active systemic inflammation in SLE cause significant alterations in the lytic resistance of fibrin clots associated with changes in polymerization kinetics, viscoelastic properties, and structure. The formation of more rigid prothrombotic fibrin clots in the plasma of SLE patients is likely due to the inflammatory hyperfibrinogenemia and greater extent of crosslinking. However, the higher susceptibility of the SLE clots to fibrinolysis may be a protective and/or compensatory mechanism that reduces the risk of thrombotic complications and improves patient outcomes.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rosa M Nabiullina
- Departments of Biochemistry and General Pathology, Kazan State Medical University, Kazan, Russia
| | - Laily D Zubairova
- Departments of Biochemistry and General Pathology, Kazan State Medical University, Kazan, Russia
| | - Mileusha A Shakurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Izabella A Andrianova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
de Lange Z, Kahler B, Smuts CM, Pieters M. Plasma phospholipid fatty acids are associated with altered fibrin clot properties in a population-based setting. Prostaglandins Leukot Essent Fatty Acids 2019; 143:1-7. [PMID: 30975377 DOI: 10.1016/j.plefa.2019.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Evidence regarding the relationship of plasma clot properties with fatty acids is contradictory, owing to different experimental protocols employed. The relationship of fibrinogen and plasma fibrin clot properties with plasma phospholipid fatty acids were cross-sectionally investigated in a population-based setting in 900 individuals. Composite saturated fatty acids (driven by stearic acid) and composite n-3 and n-6 polyunsaturated fatty acids (driven by docosahexaenoic and arachidonic acid respectively) were associated with prothrombotic clot properties. Composite monounsaturated fatty acids (driven by oleic acid) were associated with a profibrinolytic clot phenotype. Fibrinogen and BMI partly mediated these relationships. Individual plasma fatty acids from the same composite group had opposing associations with clot properties indicating that associations with composite fatty acid groups is dependent on the relative composition of the comprising fatty acids. The relationship of the plasma phospholipid fatty acid profile with disease should not be interpreted without considering the role of regulatory mechanisms.
Collapse
Affiliation(s)
- Z de Lange
- Centre of Excellence for Nutrition, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - B Kahler
- Centre of Excellence for Nutrition, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - C M Smuts
- Centre of Excellence for Nutrition, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - M Pieters
- Centre of Excellence for Nutrition, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
11
|
Zayed EA, AinShoka AA, El Shazly KA, Abd El Latif HA. Improvement of insulin resistance via increase of GLUT4 and PPARγ in metabolic syndrome-induced rats treated with omega-3 fatty acid orl-carnitine. J Biochem Mol Toxicol 2018; 32:e22218. [DOI: 10.1002/jbt.22218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Eman Adel Zayed
- Minstry of health, Kafr El Shiekh General Hospital, Pharmacy department; Kafr El-Shaikh Egypt
| | - Afaf A. AinShoka
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Cairo University; Kafr El Sheikh, Giza Egypt
| | - Kamal A. El Shazly
- Department of Pharmacology; Faculty of Veterinary Medicine, Kafr El Sheikh University; Kafr El-Shaikh Egypt
| | - Hekma A. Abd El Latif
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Cairo University; Kafr El Sheikh, Giza Egypt
| |
Collapse
|