1
|
Estrada-Peña A, de la Fuente J. Machine learning algorithms for the evaluation of risk by tick-borne pathogens in Europe. Ann Med 2024; 56:2405074. [PMID: 39348264 PMCID: PMC11443563 DOI: 10.1080/07853890.2024.2405074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Tick-borne pathogens pose a major threat to human health worldwide. Understanding the epidemiology of tick-borne diseases to reduce their impact on human health requires models covering large geographic areas and considering both the abiotic traits that affect tick presence, as well as the vertebrates used as hosts, vegetation, and land use. Herein, we integrated the public information available for Europe regarding the variables that may affect habitat suitability for ticks and hosts and tested five machine learning algorithms (MLA) for predicting the distribution of four prominent tick species across Europe. MATERIALS AND METHODS A grid of cells 20 km in diameter was prepared to cover the entire territory, containing data on vegetation, points of water, habitat fragmentation, forest density, grass extension, or imperviousness, with information on temperature and water deficit. The distribution of the hosts (162 species) was modelled and included in the dataset. We used five MLA, namely, Random Forest, Neural Networks, Naive Bayes, Gradient Boosting, and AdaBoost, trained with reliable coordinates for Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus, and Hyalomma marginatum in Europe. RESULTS Both Random Forest and Gradient Boosting best predicted ticks and host environmental niches. Our results demonstrate that MLA can identify trait-matching combinations of environmental niches. The inclusion of land cover and land use variables has a superior capacity for predicting areas suitable for ticks, compared to classic methods based on the use of climate data alone. CONCLUSIONS Flexible MLA-driven models may offer several advantages over traditional models. We anticipate that these results may be extrapolated to other regions and combinations of tick-vertebrates. These results highlight the potential of MLA for inference in ecology and provide a background for the evolution of a completely automatized tool to calculate the seasonality of ticks for early warning systems aimed at preventing tick-borne diseases.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
2
|
Veiga J, Baltà O, Figuerola J. Does bird life-history influence the prevalence of ticks? A citizen science study in North East Spain. One Health 2024; 18:100718. [PMID: 38644969 PMCID: PMC11026695 DOI: 10.1016/j.onehlt.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
After mosquitoes, ticks are among the most important vector of pathogens of concern for animal and public health, but unless mosquitoes ticks remain attached to their hosts for long time periods providing an opportunity to analyse their role in the dispersal and dynamics of different zoonotic pathogens. Given their interest in public health it is important to understand which factors affect their incidence in different hosts and to stablish effective surveillance programs to determine the risk of transmission and spill-over of zoonotic pathogens. Taking benefit of a large network of volunteer ornithologists, we analysed the life-history traits associated to the presence of ticks using information of 620,609 individuals of 231 avian species. Bird phylogeny, locality and year explained a large amount of variance in tick prevalence. Non-colonial species non breeding in grasslands and non-spending the non-breeding season as gregarious groups or isolated individuals (e.g. thrushes, quails and finches) had the higher prevalence of ticks and appear as good candidates for zoonosis surveillance programs based on the analyses of ticks collected from wild birds. Ringers underestimated tick prevalence but can be considered as an important source of information of ticks for public and animal health surveillance programs if properly trained for the detection and collection of the different tick development phases.
Collapse
Affiliation(s)
- Jesus Veiga
- Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Oriol Baltà
- Institut Català d'Ornitologia, Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSIC, Sevilla, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Fabri ND, Heesterbeek H, Cromsigt JPGM, Ecke F, Sprong H, Nijhuis L, Hofmeester TR, Hartemink N. Exploring the influence of host community composition on the outbreak potential of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. Ticks Tick Borne Dis 2024; 15:102275. [PMID: 37922668 DOI: 10.1016/j.ttbdis.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
In large parts of the northern hemisphere, multiple deer species coexist, and management actions can strongly influence wild deer communities. Such changes may also indirectly influence other species in the community, such as small mammals and birds, because deer can have strong effects on their habitats and resources. Deer, small mammals and birds play an important role in the dynamics of tick-borne zoonotic diseases. It is, however, relatively underexplored how the abundance and composition of vertebrate communities may affect the outbreak potential, maintenance and circulation of tick-borne pathogens. In this study we focus on the outbreak potential by exploring how the basic reproduction number R0 for different tick-borne pathogens depends on host community composition. We used published data on co-varying roe deer (Capreolus capreolus) and fallow deer (Dama dama) densities following a hunting ban, and different small mammal and bird densities, to investigate how the change in host community influences the R0 of four tick-borne pathogens: one non-zoonotic, namely Anaplasma phagocytophilum ecotype 2, and three zoonotic, namely A. phagocytophilum ecotype 1, Borrelia afzelii and Borrelia garinii. We calculated R0 using a next generation matrix approach, and used elasticities to quantify the contributions to R0 of the different groups of host species. The value of R0 for A. phagocytophilum ecotype 1 was higher with high fallow deer density and low roe deer density, while it was the other way round for A. phagocytophilum ecotype 2. For B. afzelii, R0 was mostly related to the density of small mammals and for B. garinii it was mostly determined by bird density. Our results show that the effect of species composition is substantial in the outbreak potential of tick-borne pathogens. This implies that also management actions that change this composition, can (indirectly and unintentionally) affect the outbreak potential of tick-borne diseases.
Collapse
Affiliation(s)
- Nannet D Fabri
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Lonneke Nijhuis
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Tim R Hofmeester
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Nienke Hartemink
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
4
|
Pearson P, Rich C, Siegel EL, Brisson D, Rich SM. Differential Resistance of Borrelia burgdorferi Clones to Human Serum-Mediated Killing Does Not Correspond to Their Predicted Invasiveness. Pathogens 2023; 12:1238. [PMID: 37887754 PMCID: PMC10609869 DOI: 10.3390/pathogens12101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Reservoir host associations have been observed among and within Borrelia genospecies, and host complement-mediated killing is a major determinant in these interactions. In North America, only a subset of Borrelia burgdorferi lineages cause the majority of disseminated infections in humans. We hypothesize that differential resistance to human complement-mediated killing may be a major phenotypic determinant of whether a lineage can establish systemic infection. As a corollary, we hypothesize that borreliacidal action may differ among human subjects. To test these hypotheses, we isolated primary B. burgdorferi clones from field-collected ticks and determined whether the killing effects of human serum differed among those clones in vitro and/or whether these effects were consistent among human sera. Clones associated with human invasiveness did not show higher survival in human serum compared to noninvasive clones. These results indicate that differential complement-mediated killing of B. burgdorferi lineages is not a determinant of invasiveness in humans. Only one significant difference in the survivorship of individual clones incubated in different human sera was detected, suggesting that complement-mediated killing of B. burgdorferi is usually similar among humans. Mechanisms other than differential human complement-mediated killing of B. burgdorferi lineages likely explain why only certain lineages cause the majority of disseminated human infections.
Collapse
Affiliation(s)
- Patrick Pearson
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| | - Connor Rich
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| | - Eric L. Siegel
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stephen M. Rich
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| |
Collapse
|
5
|
Gandy S, Kilbride E, Biek R, Millins C, Gilbert L. No net effect of host density on tick-borne disease hazard due to opposing roles of vector amplification and pathogen dilution. Ecol Evol 2022; 12:e9253. [PMID: 36091342 PMCID: PMC9448966 DOI: 10.1002/ece3.9253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
To better understand vector-borne disease dynamics, knowledge of the ecological interactions between animal hosts, vectors, and pathogens is needed. The effects of hosts on disease hazard depends on their role in driving vector abundance and their ability to transmit pathogens. Theoretically, a host that cannot transmit a pathogen could dilute pathogen prevalence but increase disease hazard if it increases vector population size. In the case of Lyme disease, caused by Borrelia burgdorferi s.l. and vectored by Ixodid ticks, deer may have dual opposing effects on vectors and pathogen: deer drive tick population densities but do not transmit B. burgdorferi s.l. and could thus decrease or increase disease hazard. We aimed to test for the role of deer in shaping Lyme disease hazard by using a wide range of deer densities while taking transmission host abundance into account. We predicted that deer increase nymphal tick abundance while reducing pathogen prevalence. The resulting impact of deer on disease hazard will depend on the relative strengths of these opposing effects. We conducted a cross-sectional survey across 24 woodlands in Scotland between 2017 and 2019, estimating host (deer, rodents) abundance, questing Ixodes ricinus nymph density, and B. burgdorferi s.l. prevalence at each site. As predicted, deer density was positively associated with nymph density and negatively with nymphal infection prevalence. Overall, these two opposite effects canceled each other out: Lyme disease hazard did not vary with increasing deer density. This demonstrates that, across a wide range of deer and rodent densities, the role of deer in amplifying tick densities cancels their effect of reducing pathogen prevalence. We demonstrate how noncompetent host density has little effect on disease hazard even though they reduce pathogen prevalence, because of their role in increasing vector populations. These results have implications for informing disease mitigation strategies, especially through host management.
Collapse
Affiliation(s)
- Sara Gandy
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Foster E, Burtis J, Sidge JL, Tsao JI, Bjork J, Liu G, Neitzel DF, Lee X, Paskewitz S, Caporale D, Eisen RJ. Inter-annual variation in prevalence of Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum in host-seeking Ixodes scapularis (Acari: Ixodidae) at long-term surveillance sites in the upper midwestern United States: Implications for public health practice. Ticks Tick Borne Dis 2022; 13:101886. [PMID: 34929604 PMCID: PMC10621653 DOI: 10.1016/j.ttbdis.2021.101886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
The geographic range of the blacklegged tick, Ixodes scapularis, and its associated human pathogens have expanded substantially over the past 20 years putting an increasing number of persons at risk for tick-borne diseases, particularly in the upper midwestern and northeastern United States. Prevention and diagnosis of tick-borne diseases rely on an accurate understanding by the public and health care providers of when and where persons may be exposed to infected ticks. While tracking changes in the distribution of ticks and tick-borne pathogens provides fundamental information on risk for tick-borne diseases, metrics that incorporate prevalence of infection in ticks better characterize acarological risk. However, assessments of infection prevalence are more labor intensive and costly than simple measurements of tick or pathogen presence. Our objective was to examine whether data derived from repeated sampling at longitudinal sites substantially influences public health recommendations for Lyme disease and anaplasmosis prevention, or if more constrained sampling is sufficient. Here, we summarize inter-annual variability in prevalence of the agents of Lyme disease (Borrelia burgdorferi s.s.) and anaplasmosis (Anaplasma phagocytophilum) in host-seeking I. scapularis nymphs and adults at 28 longitudinal sampling sites in the Upper Midwestern US (Michigan, Minnesota, and Wisconsin). Infection prevalence was highly variable among sites and among years within sites. We conclude that monitoring infection prevalence in ticks aids in describing coarse acarological risk trends, but setting a fixed prevalence threshold for prevention or diagnostic decisions is not feasible given the observed variability and lack of temporal trends. Reducing repeated sampling of the same sites had minimal impact on regional (Upper Midwest) estimates of average infection prevalence; this information should be useful in allocating scarce public health resources for tick and tick-borne pathogen surveillance, prevention, and control activities.
Collapse
Affiliation(s)
- Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - James Burtis
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Jennifer L Sidge
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA; Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Jenna Bjork
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN 55164, USA
| | - Gongping Liu
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN 55164, USA
| | - David F Neitzel
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN 55164, USA
| | - Xia Lee
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diane Caporale
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
7
|
MacDonald H, Akçay E, Brisson D. The role of host phenology for parasite transmission. THEOR ECOL-NETH 2021; 14:123-143. [PMID: 34721722 PMCID: PMC8549968 DOI: 10.1007/s12080-020-00484-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/20/2020] [Indexed: 11/27/2022]
Abstract
Phenology is a fundamental determinant of species distributions, abundances, and interactions. In host–parasite interactions, host phenology can affect parasite fitness due to the temporal constraints it imposes on host contact rates. However, it remains unclear how parasite transmission is shaped by the wide range of phenological patterns observed in nature. We develop a mathematical model of the Lyme disease system to study the consequences of differential tick developmental-stage phenology for the transmission of B. burgdorferi. Incorporating seasonal tick activity can increase B. burgdorferi fitness compared to continuous tick activity but can also prevent transmission completely. B. burgdorferi fitness is greatest when the activity period of the infectious nymphal stage slightly precedes the larval activity period. Surprisingly, B. burgdorferi is eradicated if the larval activity period begins long after the end of nymphal activity due to a feedback with mouse population dynamics. These results highlight the importance of phenology, a common driver of species interactions, for the fitness of a parasite.
Collapse
Affiliation(s)
- Hannelore MacDonald
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| |
Collapse
|
8
|
Pawełczyk A, Bednarska M, Hamera A, Religa E, Poryszewska M, Mierzejewska EJ, Welc-Falęciak R. Long-term study of Borrelia and Babesia prevalence and co-infection in Ixodes ricinus and Dermacentor recticulatus ticks removed from humans in Poland, 2016-2019. Parasit Vectors 2021; 14:348. [PMID: 34210355 PMCID: PMC8252237 DOI: 10.1186/s13071-021-04849-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/12/2021] [Indexed: 02/01/2023] Open
Abstract
Background Lyme borreliosis (LB) is the most common vector-borne disease in Europe. Monitoring changes in the prevalence of different Borrelia species in ticks may be an important indicator of risk assessment and of differences in pathogenicity in humans. The objective of our study was to assess the prevalence, co-infection and distribution of Borrelia and Babesia species in ticks removed from humans in a large sample collected during a study period of 4 years. Methods The ticks were collected throughout Poland from March to November over 4-year period from 2016 to 2019. All ticks (n = 1953) were morphologically identified in terms of species and developmental stage. Molecular screening for Borrelia and Babesia by amplification of the flagellin gene (flaB) or 18S rRNA marker was performed. Pathogen identity was confirmed by Sanger sequencing or PCR–restriction fragment length polymorphism analysis. Results The ticks removed from humans in Poland during this study belonged to two species: Ixodes ricinus (97%) and Dermacentor reticulatus (3%). High Borrelia prevalence (25.3%), including B. miyamotoi (8.4%), was confirmed in Ixodes ricinus ticks removed from humans, as was the change in frequency of occurrence of Borrelia species during the 4-year study. Despite Babesia prevalence being relatively low (1.3%), the majority of tested isolates are considered to be pathogenic to humans. Babesia infection was observed more frequently among Borrelia-positive ticks (2.7%) than among ticks uninfected with Borrelia (0.8%). The most frequent dual co-infections were between Borrelia afzelii and Babesia microti. The presence of Borrelia was also confirmed in D. reticulatus (12.7%); however the role of these ticks in spirochete transmission to susceptible hosts is still unclear. Conclusions Although the overall risk of developing LB after a tick bite is low in Europe, knowledge of the prevalence and distribution of Borrelia and Babesia species in ticks might be an important indicator of the risk of both these tick-borne diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04849-5.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Małgorzata Bednarska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Adrianna Hamera
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Emilia Religa
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Milena Poryszewska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Ewa J Mierzejewska
- Wild Urban Evolution and Ecology Lab, Centre of New Technologies, Banacha 2c Street, 02-097, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|
9
|
Adams B, Walter KS, Diuk-Wasser MA. Host Specialisation, Immune Cross-Reaction and the Composition of Communities of Co-circulating Borrelia Strains. Bull Math Biol 2021; 83:66. [PMID: 33939028 PMCID: PMC8093179 DOI: 10.1007/s11538-021-00896-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/27/2021] [Indexed: 10/25/2022]
Abstract
We use mathematical modelling to examine how microbial strain communities are structured by the host specialisation traits and antigenic relationships of their members. The model is quite general and broadly applicable, but we focus on Borrelia burgdorferi, the Lyme disease bacterium, transmitted by ticks to mice and birds. In this system, host specialisation driven by the evasion of innate immunity has been linked to multiple niche polymorphism, while antigenic differentiation driven by the evasion of adaptive immunity has been linked to negative frequency dependence. Our model is composed of two host species, one vector, and multiple co-circulating pathogen strains that vary in their host specificity and their antigenic distances from one another. We explore the conditions required to maintain pathogen diversity. We show that the combination of host specificity and antigenic differentiation creates an intricate niche structure. Unequivocal rules that relate the stability of a strain community directly to the trait composition of its members are elusive. However, broad patterns are evident. When antigenic differentiation is weak, stable communities are typically composed entirely of generalists that can exploit either host species equally well. As antigenic differentiation increases, more diverse stable communities emerge, typically around trait compositions of generalists, generalists and very similar specialists, and specialists roughly balanced between the two host species.
Collapse
Affiliation(s)
- Ben Adams
- Department of Mathematical Sciences, University of Bath, Bath, UK.
| | - Katharine S Walter
- Division of Infectious Disease and Geographic Medicine, Stanford School of Medicine, Stanford, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| |
Collapse
|
10
|
Abstract
The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.
Collapse
Affiliation(s)
- Zachary J. Oppler
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| | - Kayleigh R. O’Keeffe
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| | - Karen D. McCoy
- Centre for Research on the Ecology and Evolution of Diseases (CREES), MiVEGEC, University of Montpellier – CNRS - IRD, Montpellier, France
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
O'Keeffe KR, Oppler ZJ, Brisson D. Evolutionary ecology of Lyme Borrelia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104570. [PMID: 32998077 PMCID: PMC8349510 DOI: 10.1016/j.meegid.2020.104570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
The bacterial genus, Borrelia, is comprised of vector-borne spirochete species that infect and are transmitted from multiple host species. Some Borrelia species cause highly-prevalent diseases in humans and domestic animals. Evolutionary, ecological, and molecular research on many Borrelia species have resulted in tremendous progress toward understanding the biology and natural history of these species. Yet, many outstanding questions, such as how Borrelia populations will be impacted by climate and land-use change, will require an interdisciplinary approach. The evolutionary ecology research framework incorporates theory and data from evolutionary, ecological, and molecular studies while overcoming common assumptions within each field that can hinder integration across these disciplines. Evolutionary ecology offers a framework to evaluate the ecological consequences of evolved traits and to predict how present-day ecological processes may result in further evolutionary change. Studies of microbes with complex transmission cycles, like Borrelia, which interact with multiple vertebrate hosts and arthropod vectors, are poised to leverage the power of the evolutionary ecology framework to identify the molecular interactions involved in ecological processes that result in evolutionary change. Using existing data, we outline how evolutionary ecology theory can delineate how interactions with other species and the physical environment create selective forces or impact migration of Borrelia populations and result in micro-evolutionary changes. We further discuss the ecological and molecular consequences of those micro-evolutionary changes. While many of the currently outstanding questions will necessitate new experimental designs and additional empirical data, many others can be addressed immediately by integrating existing molecular and ecological data within an evolutionary ecology framework.
Collapse
Affiliation(s)
| | - Zachary J Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Lin YP, Diuk-Wasser MA, Stevenson B, Kraiczy P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends Parasitol 2020; 36:634-645. [PMID: 32456964 DOI: 10.1016/j.pt.2020.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/31/2023]
Abstract
Lyme disease is the most common vector-borne disease in the northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent manifestations in these animals; however, Lyme borreliae strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown. To survive in vertebrate hosts, Lyme borreliae require the ability to escape from host defense mechanisms, in particular complement. To facilitate the evasion of complement, Lyme borreliae produce diverse proteins at different stages of infection, allowing them to persistently survive without being recognized by hosts and potentially resulting in host-specific infection. This review discusses the current knowledge regarding the ecology and evolutionary mechanisms of Lyme borreliae-host associations driven by complement evasion.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Science, State University of New York at Albany, NY, USA.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany.
| |
Collapse
|
13
|
Halsey SJ, Miller JR. Maintenance of
Borrelia burgdorferi
among vertebrate hosts: a test of dilution effect mechanisms. Ecosphere 2020. [DOI: 10.1002/ecs2.3048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Samniqueka J. Halsey
- School of Natural Resources University of Missouri‐Columbia 1111 E. Rollin Street Columbia Missouri 65201 USA
| | - James R. Miller
- Department of Natural Resources and Environmental Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
14
|
Tufts DM, Hart TM, Chen GF, Kolokotronis SO, Diuk-Wasser MA, Lin YP. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Mol Microbiol 2019; 111:868-882. [PMID: 30666741 DOI: 10.1111/mmi.14209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Lyme borreliosis is caused by multiple species of the spirochete bacteria Borrelia burgdorferi sensu lato. The spirochetes are transmitted by ticks to vertebrate hosts, including small- and medium-sized mammals, birds, reptiles, and humans. Strain-to-strain variation in host-specific infectivity has been documented, but the molecular basis that drives this differentiation is still unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One potential mechanism that drives this strain-to-strain variation of immune evasion and colonization is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we summarize research on strain-to-strain variation in host competence and discuss the evidence that supports the role of spirochete-produced protein polymorphisms in driving this variation in host specialization. Such information will provide greater insights into the adaptive mechanisms driving host and Lyme borreliae association, which will lead to the development of interventions to block pathogen spread and eventually reduce Lyme borreliosis health burden.
Collapse
Affiliation(s)
- Danielle M Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Thomas M Hart
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Grace F Chen
- Department of Biology, Misericordia University, Dallas, PA, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
15
|
Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors 2019; 12:1. [PMID: 30606222 PMCID: PMC6318929 DOI: 10.1186/s13071-018-3256-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Background The geographical expansion of the tick Ixodes ricinus in northern Europe is a serious concern for animal and human health. The pathogen Anaplasma phagocytophilum is transmitted by ticks and causes emergences of tick-borne fever (anaplasmosis) in livestock. The transmission dynamics of the different ecotypes of A. phagocytophilum in the ecosystems is only partly determined. Red deer and roe deer contribute to circulation of different ecotypes of A. phagocytophilum in continental Europe, while the role of moose for circulation of different ecotypes is not fully established but an important issue in northern Europe. Methods We determined infection prevalence and ecotypes of A. phagocytophilum in moose (n = 111), red deer (n = 141), roe deer (n = 28) and questing ticks (n = 9241) in Norway. Results As previously described, red deer was exclusively linked to circulation of ecotype I, while roe deer was exclusively linked to circulation of ecotype II. Surprisingly, we found 58% ecotype I (n = 19) and 42% of ecotype II (n = 14) in moose. Both ecotypes were found in questing ticks in areas with multiple cervid species present, while only ecotype I was found in ticks in a region with only red deer present. Hence, the geographical distribution of ecotypes in ticks followed the distribution of cervid species present in a given region and their link to ecotype I and II. Conclusions Moose probably function as reservoirs for both ecotype I and II, indicating that the ecotypes of A. phagocytophilum are not entirely host-specific and have overlapping niches. The disease hazard depends also on both host abundance and the number of immature ticks fed by each host. Our study provides novel insights in the northern distribution and expansion of tick-borne fever.
Collapse
Affiliation(s)
- Vetle M Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research, PO Box 5685, Sluppen, NO-7485, Trondheim, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway. .,Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
16
|
Roden‐Reynolds P, Hummell G, Machtinger ET, Li AY. Development of nontarget wildlife exclusion devices for small mammal trap protection. WILDLIFE SOC B 2018. [DOI: 10.1002/wsb.905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Roden‐Reynolds
- United States Department of AgricultureAgricultural Research ServicesInvasive Insect Biocontrol and Behavior Laboratory10300 Baltimore AvenueBeltsvilleMD20705USA
| | - Grace Hummell
- United States Department of AgricultureAgricultural Research ServicesInvasive Insect Biocontrol and Behavior Laboratory10300 Baltimore AvenueBeltsvilleMD20705USA
| | - Erika T. Machtinger
- United States Department of AgricultureAgricultural Research ServicesInvasive Insect Biocontrol and Behavior Laboratory10300 Baltimore AvenueBeltsvilleMD20705USA
| | - Andrew Y. Li
- United States Department of AgricultureAgricultural Research ServicesInvasive Insect Biocontrol and Behavior Laboratory10300 Baltimore AvenueBeltsvilleMD20705USA
| |
Collapse
|
17
|
Tyler S, Tyson S, Dibernardo A, Drebot M, Feil EJ, Graham M, Knox NC, Lindsay LR, Margos G, Mechai S, Van Domselaar G, Thorpe HA, Ogden NH. Whole genome sequencing and phylogenetic analysis of strains of the agent of Lyme disease Borrelia burgdorferi from Canadian emergence zones. Sci Rep 2018; 8:10552. [PMID: 30002414 PMCID: PMC6043495 DOI: 10.1038/s41598-018-28908-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Lyme disease is emerging in southern Canada due to range expansion of the tick vector, followed by invasion of the agent of Lyme disease Borrelia burgdorferi sensu stricto. Strain diversity, as determined by Multi Locus Sequence Typing, occurs in this zone of emergence, and this may have its origins in adaptation to ecological niches, and have phenotypic consequences for pathogenicity and serological test performance. Sixty-four unique strains were cultured from ticks collected in southern Canada and the genomes sequenced using the Illumina MiSeq platform. A maximum likelihood phylogenetic tree of the chromosome revealed two large clades with multiple subclades. Consistent with previous studies on this species, the clades were not geographically defined, and some Canadian strains were highly divergent from previously sequenced US strains. There was evidence for recombination in the chromosome but this did not affect the phylogeny. Analysis of chromosomal genes indicated that these are under intense purifying selection. Phylogenies of the accessory genome and chromosome were congruent. Therefore strain differences identified in the phylogeny of chromosomal genes likely act as a proxy for genetic determinants of phenotypic differences amongst strains that are harboured in the accessory genome. Further studies on health implications of strain diversity are needed.
Collapse
Affiliation(s)
- Shaun Tyler
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Shari Tyson
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael Drebot
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Morag Graham
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Natalie C Knox
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gabriele Margos
- Ludwig Maximilians Universität München, Department for Infectious Diseases and Zoonoses, Munich, Germany.,National Reference Centre for Borrelia, Oberschleissheim and Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Samir Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Gary Van Domselaar
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Harry A Thorpe
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Nick H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| |
Collapse
|
18
|
Decker LE, de Roode JC, Hunter MD. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecol Lett 2018; 21:1353-1363. [PMID: 30134036 DOI: 10.1111/ele.13101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2 , and measured changes in resistance, tolerance, and virulence. The most high-cardenolide milkweed species lost its medicinal properties under elevated CO2 ; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite-host interactions through changes in the medicinal properties of plants.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jacobus C de Roode
- Biology Department, Rollins 1113 O. Wayne Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
19
|
Sherwin WB, Chao A, Jost L, Smouse PE. Information Theory Broadens the Spectrum of Molecular Ecology and Evolution. Trends Ecol Evol 2017; 32:948-963. [PMID: 29126564 DOI: 10.1016/j.tree.2017.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/18/2023]
Abstract
Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance.
Collapse
Affiliation(s)
- W B Sherwin
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia; Murdoch University Cetacean Research Unit, Murdoch University, South Road, Murdoch, WA 6150, Australia.
| | - A Chao
- Institute of Statistics, National Tsing Hua University, Hsin-Chu 30043, Taiwan
| | - L Jost
- EcoMinga Foundation, Via a Runtun, Baños, Tungurahua, Ecuador
| | - P E Smouse
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8551, USA
| |
Collapse
|