1
|
Yousef Yengej FA, Pou Casellas C, Ammerlaan CME, Olde Hanhof CJA, Dilmen E, Beumer J, Begthel H, Meeder EMG, Hoenderop JG, Rookmaaker MB, Verhaar MC, Clevers H. Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease. Cell Rep 2024; 43:113614. [PMID: 38159278 DOI: 10.1016/j.celrep.2023.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.
Collapse
Affiliation(s)
- Fjodor A Yousef Yengej
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla Pou Casellas
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Charlotte J A Olde Hanhof
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Emre Dilmen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands; Institute of Human Biology, Roche Pharma Research and Early Development, 4058 Basel, Switzerland
| | - Harry Begthel
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands
| | - Elise M G Meeder
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute-KNAW, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
2
|
Davies W. An Analysis of Cellular Communication Network Factor Proteins as Candidate Mediators of Postpartum Psychosis Risk. Front Psychiatry 2019; 10:876. [PMID: 31849729 PMCID: PMC6901936 DOI: 10.3389/fpsyt.2019.00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Postpartum (or puerperal) psychosis (PP) is a severe psychiatric condition associated with hallucinations, delusions, cognitive disorganization, and mood problems, which affects approximately 1-2 out of every 1,000 mothers shortly after childbirth. While the risk factors for, and co-morbidities of, PP are relatively well-defined, currently, the pathophysiology underlying the disorder is very poorly-specified. Here, I argue, on the basis of multiple lines of new evidence, that altered expression of the Cellular Communication Network (CCN) factor proteins (and of the heterodimerizing CCN2 and CCN3 proteins in particular), may be associated with, and possibly causal for, increased PP risk. Future preclinical and clinical studies should aim to test this hypothesis as empirical support for it would provide much-needed clues regarding the biological substrates of PP, and could point to predictive biomarkers for the condition.
Collapse
Affiliation(s)
- William Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Moradi S, Aminian A, Abdollahi A, Jazayeri A, Ghamami G, Nikoui V, Bakhtiarian A, Jazaeri F. Cardiac chronotropic hypo-responsiveness and atrial fibrosis in rats chronically treated with lithium. Auton Neurosci 2019; 216:46-50. [DOI: 10.1016/j.autneu.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
4
|
Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Carlton) 2018; 23:897-903. [DOI: 10.1111/nep.13263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Justin Davis
- Department of Renal MedicineUniversity Hospital Geelong Geelong Victoria Australia
| | - Michael Desmond
- Department of Renal MedicineUniversity Hospital Geelong Geelong Victoria Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research CentreSchool of Medicine, Barwon Health Geelong Victoria Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental HealthUniversity of Melbourne Parkville Victoria Australia
| |
Collapse
|
5
|
Davies W. Understanding the pathophysiology of postpartum psychosis: Challenges and new approaches. World J Psychiatry 2017; 7:77-88. [PMID: 28713685 PMCID: PMC5491479 DOI: 10.5498/wjp.v7.i2.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/25/2017] [Accepted: 04/20/2017] [Indexed: 02/05/2023] Open
Abstract
Postpartum psychosis is a severe psychiatric condition which affects 1-2 of every 1000 mothers shortly after childbirth. Whilst there is convincing evidence that the condition is precipitated by a complex combination of biological and environmental factors, as yet the pathophysiological mechanisms remain extremely poorly defined. Here, I critically review approaches that have been, or are being, employed to identify and characterise such mechanisms; I also review a recent animal model approach, and describe a novel biological risk model that it suggests. Clarification of biological risk mechanisms underlying disorder risk should permit the identification of relevant predictive biomarkers which will ensure that “at risk” subjects receive prompt clinical intervention if required.
Collapse
|
6
|
Landolt L, Eikrem Ø, Strauss P, Scherer A, Lovett DH, Beisland C, Finne K, Osman T, Ibrahim MM, Gausdal G, Ahmed L, Lorens JB, Thiery JP, Tan TZ, Sekulic M, Marti HP. Clear Cell Renal Cell Carcinoma is linked to Epithelial-to-Mesenchymal Transition and to Fibrosis. Physiol Rep 2017; 5:e13305. [PMID: 28596300 PMCID: PMC5471444 DOI: 10.14814/phy2.13305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common type of kidney cancer with high mortality in its advanced stages. Our study aim was to explore the correlation between tumor epithelial-to-mesenchymal transition (EMT) and patient survival. Renal biopsies of tumorous and adjacent nontumorous tissue were taken with a 16 g needle from our patients (n = 26) undergoing partial or radical nephrectomy due to ccRCC RNA sequencing libraries were generated using Illumina TruSeq® Access library preparation protocol and TruSeq Small RNA library preparation kit. Next generation sequencing (NGS) was performed on Illumina HiSeq2500. Comparative analysis of matched sample pairs was done using the Bioconductor Limma/voom R-package. Liquid chromatography-tandem mass spectrometry and immunohistochemistry were applied to measure and visualize protein abundance. We detected an increased generic EMT transcript score in ccRCC Gene expression analysis showed augmented abundance of AXL and MMP14, as well as down-regulated expression of KL (klotho). Moreover, microRNA analyses demonstrated a positive expression correlation of miR-34a and its targets MMP14 and AXL Survival analysis based on a subset of genes from our list EMT-related genes in a publicly available dataset showed that the EMT genes correlated with ccRCC patient survival. Several of these genes also play a known role in fibrosis. Accordingly, recently published classifiers of solid organ fibrosis correctly identified EMT-affected tumor samples and were correlated with patient survival. EMT in ccRCC linked to fibrosis is associated with worse survival and may represent a target for novel therapeutic interventions.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland
- Institute for Molecular Medicine Finland (FIMM) University of Helsinki, Helsinki, Finland
| | - David H Lovett
- Department of Medicine, San Francisco VAMC University of California San Francisco, San Francisco, California
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | - James B Lorens
- BerGenBio AS, Bergen, Norway
- Department of Biomedicine, Center for Cancer Biomarkers University of Bergen, Bergen, Norway
| | - Jean Paul Thiery
- Department of Biomedicine, Center for Cancer Biomarkers University of Bergen, Bergen, Norway
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology Gustave Roussy EPHE Fac. de médecine-Univ. Paris-Sud Université Paris-Saclay, Villejuif, France
| | - Tuan Zea Tan
- Science Institute of Singapore National University of Singapore, Singapore, Singapore
| | - Miroslav Sekulic
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|