1
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Alabed HBR, Pellegrino RM, Buratta S, Lema Fernandez AG, La Starza R, Urbanelli L, Mecucci C, Emiliani C, Gorello P. Metabolic Profiling as an Approach to Differentiate T-Cell Acute Lymphoblastic Leukemia Cell Lines Belonging to the Same Genetic Subgroup. Int J Mol Sci 2024; 25:3921. [PMID: 38612731 PMCID: PMC11011837 DOI: 10.3390/ijms25073921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive tumor mainly affecting children and adolescents. It is driven by multiple genetic mutations that together define the leukemic phenotype. Interestingly, based on genetic alterations and/or deregulated expression, at least six genetic subgroups have been recognized. The TAL/LMO subgroup is one of the most represented genetic subgroups, characterizing 30-45% of pediatric T-ALL cases. The study of lipid and metabolic profiles is increasingly recognized as a valuable tool for comprehending the development and progression of tumors. In this study, metabolic and lipidomic analysis via LC/MS have been carried out on four T-ALL cell lines belonging to the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM) to identify new potential metabolic biomarkers and to provide a subclassification of T-ALL cell lines belonging to the same subgroup. A total of 343 metabolites were annotated, including 126 polar metabolites and 217 lipid molecules. The statistical analysis, for both metabolic and lipid profiles, shows significant differences and similarities among the four cell lines. The Molt-4 cell line is the most distant cell line and CCRF-CEM shows a high activity in specific pathways when compared to the other cell lines, while Molt-16 and Jurkat show a similar metabolic profile. Additionally, this study highlighted the pathways that differ in each cell line and the possible enzymes involved using bioinformatic tools, capable of predicting the pathways involved by studying the differences in the metabolic profiles. This experiment offers an approach to differentiate T-ALL cell lines and could open the way to verify and confirm the obtained results directly in patients.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
3
|
Paudel BB, Tan SF, Fox TE, Ung J, Golla U, Shaw JJP, Dunton W, Lee I, Fares WA, Patel S, Sharma A, Viny AD, Barth BM, Tallman MS, Cabot M, Garrett-Bakelman FE, Levine RL, Kester M, Feith DJ, Claxton D, Janes KA, Loughran TP. Acute myeloid leukemia stratifies as 2 clinically relevant sphingolipidomic subtypes. Blood Adv 2024; 8:1137-1142. [PMID: 38170742 PMCID: PMC10909712 DOI: 10.1182/bloodadvances.2023010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- B. Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Johnson Ung
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Microbiology/Immunology/Cancer Biology, University of Virginia, Charlottesville, VA
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Jeremy J. P. Shaw
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Wendy Dunton
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
| | - Irene Lee
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX
| | - Wisam A. Fares
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Cancer Institute, Hershey, PA
| | - Aaron D. Viny
- Department of Medicine, Division of Hematology & Oncology, and of Genetics & Development, Herbert Irving Comprehensive Cancer Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
| | - Brian M. Barth
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK
| | - Martin S. Tallman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Myles Cabot
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Francine E. Garrett-Bakelman
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - David J. Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - David Claxton
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA
- Penn State Cancer Institute, Hershey, PA
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| | - Thomas P. Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA
- University of Virginia Cancer Center, Charlottesville, VA
| |
Collapse
|
4
|
Arévalo C, Rojas L, Santamaria M, Molina L, Arbeláez L, Sánchez P, Ballesteros-Ramírez R, Arevalo-Zambrano M, Quijano S, Cala MP, Fiorentino S. Untargeted metabolomic and lipidomic analyses reveal lipid dysregulation in the plasma of acute leukemia patients. Front Mol Biosci 2023; 10:1235160. [PMID: 38028534 PMCID: PMC10667492 DOI: 10.3389/fmolb.2023.1235160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Acute leukemias (AL) are aggressive neoplasms with high mortality rates. Metabolomics and oxidative status have emerged as important tools to identify new biomarkers with clinical utility. To identify the metabolic differences between healthy individuals (HI) and patients with AL, a multiplatform untargeted metabolomic and lipidomic approach was conducted using liquid and gas chromatography coupled with quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS or GC-QTOF-MS). Additionally, the total antioxidant capacity (TAC) was measured. A total of 20 peripheral blood plasma samples were obtained from patients with AL and 18 samples from HI. Our analysis revealed 135 differentially altered metabolites in the patients belonging to 12 chemical classes; likewise, the metabolic pathways of glycerolipids and sphingolipids were the most affected in the patients. A decrease in the TAC of the patients with respect to the HI was evident. This study conducted with a cohort of Colombian patients is consistent with observations from other research studies that suggest dysregulation of lipid compounds. Furthermore, metabolic differences between patients and HI appear to be independent of lifestyle, race, or geographic location, providing valuable information for future advancements in understanding the disease and developing more global therapies.
Collapse
Affiliation(s)
- Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary Santamaria
- MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | | | - Lina Arbeláez
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula Sánchez
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mónica P. Cala
- MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Li P, Chao K, Hu Z, Qin L, Yang T, Mao J, Zhu X, Hu P, Wang X, Gao X, Huang M. Plasma lipidomic profiling of thiopurine-induced leukopenia after NUDT15 genotype-guided dosing in Chinese IBD patients. Front Nutr 2023; 10:1138506. [PMID: 37441519 PMCID: PMC10333543 DOI: 10.3389/fnut.2023.1138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Thiopurines, azathiopurine (AZA) and mercaptopurine (6-MP) have been regularly used in the treatment of inflammatory bowel disease (IBD). Despite optimized dosage adjustment based on the NUDT15 genotypes, some patients still discontinue or change treatment regimens due to thiopurine-induced leukopenia. Methods We proposed a prospective observational study of lipidomics to reveal the lipids perturbations associated with thiopurine-induced leukopenia. One hundred and twenty-seven IBD participants treated with thiopurine were enrolled, twenty-seven of which have developed thiopurine-induced leucopenia. Plasma lipid profiles were measured using Ultra-High-Performance Liquid Chromatography-Tandem Q-Exactive. Lipidomic alterations were validated with an independent validation cohort (leukopenia n = 26, non-leukopenia n = 74). Results Using univariate and multivariate analysis, there were 16 lipid species from four lipid classes, triglyceride (n = 11), sphingomyelin (n = 1), phosphatidylcholine (n = 1) and lactosylceramide (n = 3) identified. Based on machine learning feature reduction and variable screening strategies, the random forest algorithm established by six lipids showed an excellent performance to distinguish the leukopenia group from the normal group, with a model accuracy of 95.28% (discovery cohort), 79.00% (validation cohort) and an area under the receiver operating characteristic (ROC) curve (ROC-AUC) of 0.9989 (discovery cohort), 0.8098 (validation cohort). Discussion Our novel findings suggested that lipidomic provided unique insights into formulating individualized medication strategies for thiopurines in IBD patients.
Collapse
Affiliation(s)
- Pan Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Zhanhua Hu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lulu Qin
- School of Pharmaceutical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Mao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Zhu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Pinjin Hu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Xueding Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Lo Presti C, Yamaryo-Botté Y, Mondet J, Berthier S, Nutiu D, Botté C, Mossuz P. Variation in Lipid Species Profiles among Leukemic Cells Significantly Impacts Their Sensitivity to the Drug Targeting of Lipid Metabolism and the Prognosis of AML Patients. Int J Mol Sci 2023; 24:ijms24065988. [PMID: 36983080 PMCID: PMC10054724 DOI: 10.3390/ijms24065988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Several studies have linked bad prognoses of acute myeloid leukemia (AML) to the ability of leukemic cells to reprogram their metabolism and, in particular, their lipid metabolism. In this context, we performed "in-depth" characterization of fatty acids (FAs) and lipid species in leukemic cell lines and in plasma from AML patients. We firstly showed that leukemic cell lines harbored significant differences in their lipid profiles at steady state, and that under nutrient stress, they developed common mechanisms of protection that led to variation in the same lipid species; this highlights that the remodeling of lipid species is a major and shared mechanism of adaptation to stress in leukemic cells. We also showed that sensitivity to etomoxir, which blocks fatty acid oxidation (FAO), was dependent on the initial lipid profile of cell lines, suggesting that only a particular "lipidic phenotype" is sensitive to the drug targeting of FAO. We then showed that the lipid profiles of plasma samples from AML patients were significantly correlated with the prognosis of patients. In particular, we highlighted the impact of phosphocholine and phosphatidyl-choline metabolism on patients' survival. In conclusion, our data show that balance between lipid species is a phenotypic marker of the diversity of leukemic cells that significantly influences their proliferation and resistance to stress, and thereby, the prognosis of AML patients.
Collapse
Affiliation(s)
- Caroline Lo Presti
- Team "Epigenetic and Cellular Signaling", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
- Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France
| | - Yoshiki Yamaryo-Botté
- Team "Apicolipid", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
| | - Julie Mondet
- Team "Epigenetic and Cellular Signaling", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
- Department of Molecular Pathology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France
| | - Sylvie Berthier
- Platform of Cytometry, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France
| | - Denisa Nutiu
- Team "Epigenetic and Cellular Signaling", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
| | - Cyrille Botté
- Team "Apicolipid", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
| | - Pascal Mossuz
- Team "Epigenetic and Cellular Signaling", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
- Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX 9, France
| |
Collapse
|
7
|
Rose TD, Köhler N, Falk L, Klischat L, Lazareva OE, Pauling JK. Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic alterations from lipidomics data. Brief Bioinform 2023; 24:bbac572. [PMID: 36592059 PMCID: PMC9851308 DOI: 10.1093/bib/bbac572] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/03/2023] Open
Abstract
Lipidomics is of growing importance for clinical and biomedical research due to many associations between lipid metabolism and diseases. The discovery of these associations is facilitated by improved lipid identification and quantification. Sophisticated computational methods are advantageous for interpreting such large-scale data for understanding metabolic processes and their underlying (patho)mechanisms. To generate hypothesis about these mechanisms, the combination of metabolic networks and graph algorithms is a powerful option to pinpoint molecular disease drivers and their interactions. Here we present lipid network explorer (LINEX$^2$), a lipid network analysis framework that fuels biological interpretation of alterations in lipid compositions. By integrating lipid-metabolic reactions from public databases, we generate dataset-specific lipid interaction networks. To aid interpretation of these networks, we present an enrichment graph algorithm that infers changes in enzymatic activity in the context of their multispecificity from lipidomics data. Our inference method successfully recovered the MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically interpret lipidomic alterations of adipocytes in obesity by leveraging network enrichment and lipid moieties. We address the general lack of lipidomics data mining options to elucidate potential disease mechanisms and make lipidomics more clinically relevant.
Collapse
Affiliation(s)
- Tim D Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nikolai Köhler
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lisa Falk
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lucie Klischat
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olga E Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Khokhlatchev AV, Sharma A, Deering TG, Shaw JJP, Costa‐Pinheiro P, Golla U, Annageldiyev C, Cabot MC, Conaway MR, Tan S, Ung J, Feith DJ, Loughran TP, Claxton DF, Fox TE, Kester M. Ceramide nanoliposomes augment the efficacy of venetoclax and cytarabine in models of acute myeloid leukemia. FASEB J 2022; 36:e22514. [PMID: 36106439 PMCID: PMC9544744 DOI: 10.1096/fj.202200765r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
Abstract
Despite several new therapeutic options for acute myeloid leukemia (AML), disease relapse remains a significant challenge. We have previously demonstrated that augmenting ceramides can counter various drug-resistance mechanisms, leading to enhanced cell death in cancer cells and extended survival in animal models. Using a nanoscale delivery system for ceramide (ceramide nanoliposomes, CNL), we investigated the effect of CNL within a standard of care venetoclax/cytarabine (Ara-C) regimen. We demonstrate that CNL augmented the efficacy of venetoclax/cytarabine in in vitro, ex vivo, and in vivo models of AML. CNL treatment induced non-apoptotic cytotoxicity, and augmented cell death induced by Ara-C and venetoclax. Mechanistically, CNL reduced both venetoclax (Mcl-1) and cytarabine (Chk1) drug-resistant signaling pathways. Moreover, venetoclax and Ara-C augmented the generation of endogenous pro-death ceramide species, which was intensified with CNL. Taken together, CNL has the potential to be utilized as an adjuvant therapy to improve outcomes, potentially extending survival, in patients with AML.
Collapse
Affiliation(s)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Tye G. Deering
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jeremy J. P. Shaw
- Department of Experimental PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pedro Costa‐Pinheiro
- Department of Experimental PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Charyguly Annageldiyev
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Mark R. Conaway
- University of Virginia School of MedicinePublic Health SciencesCharlottesvilleVirginiaUSA
| | - Su‐Fern Tan
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
| | - Johnson Ung
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology and Cancer BiologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - David J. Feith
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
| | - Thomas P. Loughran
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
| | - David F. Claxton
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Todd E. Fox
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Mark Kester
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
- NanoSTAR InstituteCharlottesvilleVirginiaUSA
| |
Collapse
|
9
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
10
|
Lipids and the cancer stemness regulatory system in acute myeloid leukemia. Essays Biochem 2022; 66:333-344. [PMID: 35996953 DOI: 10.1042/ebc20220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease of impaired myeloid differentiation and a caricature of normal hematopoiesis. Leukemic stem cells (LSCs) are responsible for long-term clonal propagation in AML just as hematopoietic stem cells (HSCs) sustain lifelong hematopoiesis. LSCs are often resistant to standard chemotherapy and are responsible for clinical relapse. Although AML is highly heterogeneous, determinants of stemness are prognostic for AML patient survival and can predict AML drug sensitivity. Therefore, one way to overcome challenges preventing efficacious treatment outcomes is to target LSC stemness. Metabolomic and lipidomic studies of serum and cells from AML patients are emerging to complement genomic, transcriptomic, epigenetic, and proteomic data sets to characterize and stratify AML. Recent studies have shown the value of fractionating LSCs versus blasts when characterizing metabolic pathways and implicate the importance of lipid balance to LSCs function. As more extensive metabolic studies coupled to functional in vivo assays are conducted on highly purified HSCs, bulk AML, and LSCs, the similarities and differences in lipid homeostasis in stem-like versus more mature AML subtypes as well as from normal HSCs are emerging. Here, we discuss the latest findings from studies of lipid function in LSCs, with a focus on sphingolipids (SLs) as stemness/lineage fate mediators in AML, and the balance of fatty acid anabolism and catabolism fueling metabolic flexibility and drug resistance in AML. We also discuss how designing successful strategies to target lipid vulnerabilities and improve AML patient survival should take into consideration the hierarchical nature of AML.
Collapse
|
11
|
Hoji A, Kumar R, Gern JE, Bendixsen CG, Seroogy CM, Cook-Mills JM. Cord blood sphingolipids are associated with atopic dermatitis and wheeze in the first year of life. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:162-171. [PMID: 36117517 PMCID: PMC9479978 DOI: 10.1016/j.jacig.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022]
Abstract
Background Allergen-sensitized pregnant mice have increased plasma levels of the lipids β-glucosylceramides (βGlcCers) that are transplacentally transferred to the fetus, increased subsets of proinflammatory dendritic cells in the fetal liver and pup lung, and increased allergen-induced offspring lung inflammation. Objective Our aim was to determine whether these preclinical observations extend to a human association of βGlcCers with wheeze and allergic disease in the prospective Wisconsin Infant Study Cohort. Methods We measured 74 lipids in cord blood plasma by using mass spectrometry detection of sphingolipids, eicosanoids, and docosinoids, as well as an ELISA for 13-hydroxyoctadecadienoic acid. Lipid profiles were determined by unbiased Uniform Manifold Approximation and Projection dimensional reduction machine learning. Lipid profiles and a proinflammatory lipid index were analyzed for association with maternal allergy and childhood outcomes of wheeze, atopic dermatitis, cord blood leukocytes, and total IgE level at age 1 year. Results Uniform Manifold Approximation and Projection analysis of lipids defined 8 cluster-specific plasma lipid profiles. Cluster 6 had significantly lower levels of plasma βGlcCers and a higher frequency of cord blood plasmacytoid dendritic cells that mediate anti-inflammatory responses, which is consistent with an anti-inflammatory profile. For clusters and for each infant, a proinflammatory lipid index was calculated to reflect the sum of the proinflammatory lipids minus the anti-inflammatory lipids that were significantly different than in cluster 6. The cluster proinflammatory lipid index was associated with cord blood basophil frequency and with wheeze and atopic dermatitis in the first year of life. The infant inflammatory lipid index was associated with increased risk of wheeze in the first year of life. Conclusion The cord blood proinflammatory lipid index is associated with early-life atopic dermatitis and wheezing.
Collapse
Affiliation(s)
- Aki Hoji
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Allergy and Clinical Immunology, Chicago, Ill
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, Ill
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Marshfield, Wis
| | - Casper G. Bendixsen
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Marshfield, Wis
| | - Joan M. Cook-Mills
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
12
|
Leukotrienes promote stem cell self-renewal and chemoresistance in acute myeloid leukemia. Leukemia 2022; 36:1575-1584. [PMID: 35461365 DOI: 10.1038/s41375-022-01579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by poor clinical outcomes due to high rates of relapse following standard-of-care induction chemotherapy. While many pathogenic drivers have been described in AML, our understanding of the molecular mechanisms mediating chemotherapy resistance remains poor. Therefore, we sought to identify resistance genes to induction therapy in AML and elucidated ALOX5 as a novel mediator of resistance to anthracycline-based therapy. ALOX5 is transcriptionally upregulated in AML patient blasts in comparison to normal hematopoietic stem/progenitor cells (HSPCs) and ALOX5 mRNA, and protein expression is increased in response to induction therapy. In vitro, and in vivo genetic, and pharmacologic perturbation studies confirm that ALOX5 positively regulates the leukemogenic potential of AML LSCs, and its loss does not significantly affect the function of normal HSPCs. ALOX5 mediates resistance to daunorubicin (DNR) and promotes AML cell survival and maintenance through its leukotriene (LT) synthetic capacity, specifically via modulating the synthesis of LTB4 and its binding to LTB receptor (BLTR). Our study reveals a previously unrecognized role of LTs in AML pathogenesis and chemoresistance, whereby inhibition of ALOX5 mediated LTB4 synthesis and function could be combined with standard chemotherapy, to enhance the overall therapeutic efficacy in AML.
Collapse
|
13
|
Chang W, Xiao D, Fang X, Wang J. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2021; 24:93-100. [PMID: 34742629 DOI: 10.1016/j.jcyt.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China.
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Xinyu Fang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Stergiou IE, Kapsogeorgou EK. Autophagy and Metabolism in Normal and Malignant Hematopoiesis. Int J Mol Sci 2021; 22:8540. [PMID: 34445246 PMCID: PMC8395194 DOI: 10.3390/ijms22168540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
16
|
Stockard B, Bhise N, Shin M, Guingab-Cagmat J, Garrett TJ, Pounds S, Lamba JK. Cellular Metabolomics Profiles Associated With Drug Chemosensitivity in AML. Front Oncol 2021; 11:678008. [PMID: 34178663 PMCID: PMC8222790 DOI: 10.3389/fonc.2021.678008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematological malignancy with a dismal prognosis. For over four decades, AML has primarily been treated by cytarabine combined with an anthracycline. Although a significant proportion of patients achieve remission with this regimen, roughly 40% of children and 70% of adults relapse. Over 90% of patients with resistant or relapsed AML die within 3 years. Thus, relapsed and resistant disease following treatment with standard therapy are the most common clinical failures that occur in treating this disease. In this study, we evaluated the relationship between AML cell line global metabolomes and variation in chemosensitivity. Methods We performed global metabolomics on seven AML cell lines with varying chemosensitivity to cytarabine and the anthracycline doxorubicin (MV4.11, KG-1, HL-60, Kasumi-1, AML-193, ME1, THP-1) using ultra-high performance liquid chromatography - mass spectrometry (UHPLC-MS). Univariate and multivariate analyses were performed on the metabolite peak intensity values from UHPLC-MS using MetaboAnalyst to identify cellular metabolites associated with drug chemosensitivity. Results A total of 1,624 metabolic features were detected across the leukemic cell lines. Of these, 187 were annotated to known metabolites. With respect to doxorubicin, we observed significantly greater abundance of a carboxylic acid (1-aminocyclopropane-1-carboxylate) and several amino acids in resistant cell lines. Pathway analysis found enrichment of several amino acid biosynthesis and metabolic pathways. For cytarabine resistance, nine annotated metabolites were significantly different in resistance vs. sensitive cell lines, including D-raffinose, guanosine, inosine, guanine, aldopentose, two xenobiotics (allopurinol and 4-hydroxy-L-phenylglycine) and glucosamine/mannosamine. Pathway analysis associated these metabolites with the purine metabolic pathway. Conclusion Overall, our results demonstrate that metabolomics differences contribute toward drug resistance. In addition, it could potentially identify predictive biomarkers for chemosensitivity to various anti-leukemic drugs. Our results provide opportunity to further explore these metabolites in patient samples for association with clinical response.
Collapse
Affiliation(s)
- Bradley Stockard
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Neha Bhise
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Miyoung Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, United States
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, United States
| | - Stanley Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States.,University of Florida Health Cancer Center, Gainesville, FL, United States.,Center for Pharmacogenetics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
The metabolic reprogramming in acute myeloid leukemia patients depends on their genotype and is a prognostic marker. Blood Adv 2021; 5:156-166. [PMID: 33570627 DOI: 10.1182/bloodadvances.2020002981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemic cells display some alterations in metabolic pathways, which play a role in leukemogenesis and in patients' prognosis. To evaluate the characteristics and the impact of this metabolic reprogramming, we explore the bone marrow samples from 54 de novo acute myeloid leukemia (AML) patients, using an untargeted metabolomics approach based on proton high-resolution magic angle spinning-nuclear magnetic resonance. The spectra obtained were subjected to multivariate statistical analysis to find specific metabolome alterations and biomarkers correlated to clinical features. We found that patients display a large diversity of metabolic profiles, according to the different AML cytologic subtypes and molecular statuses. The link between metabolism and molecular status was particularly strong for the oncometabolite 2-hydroxyglutarate (2-HG), whose intracellular production is directly linked to the presence of isocitrate dehydrogenase mutations. Moreover, patients' prognosis was strongly impacted by several metabolites, such as 2-HG that appeared as a good prognostic biomarker in our cohort. Conversely, deregulations in phospholipid metabolism had a negative impact on prognosis through 2 main metabolites (phosphocholine and phosphoethanolamine), which could be potential aggressiveness biomarkers. Finally, we highlighted an overexpression of glutathione and alanine in chemoresistant patients. Overall, our results demonstrate that different metabolic pathways could be activated in leukemic cells according to their phenotype and maturation levels. This confirms that metabolic reprogramming strongly influences prognosis of patients and underscores a particular role of certain metabolites and associated pathways in AML prognosis, suggesting common mechanisms developed by leukemic cells to maintain their aggressiveness even after well-conducted induction chemotherapy.
Collapse
|
18
|
Petrick L, Imani P, Perttula K, Yano Y, Whitehead T, Metayer C, Schiffman C, Dolios G, Dudoit S, Rappaport S. Untargeted metabolomics of newborn dried blood spots reveals sex-specific associations with pediatric acute myeloid leukemia. Leuk Res 2021; 106:106585. [PMID: 33971561 PMCID: PMC8275155 DOI: 10.1016/j.leukres.2021.106585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
The etiology of pediatric acute myeloid leukemia (AML) is largely unknown, but evidence for mutations in utero and long latency periods suggests that environmental factors play a role. Therefore, we used untargeted metabolomics of archived newborn dried blood spots (DBS) to investigate neonatal exposures as potential causal risk factors for AML. Untargeted metabolomics profiling was performed on DBS punches from 48 pediatric patients with AML and 46 healthy controls as part of the California Childhood Leukemia Study (CCLS). Because sex disparities are suggested by differences in AML incidence rates, metabolite features associated with AML were identified in analyses stratified by sex. There was no overlap between the 16 predictors of AML in females and 15 predictors in males, suggesting that neonatal metabolomic profiles of pediatric AML risk are sex-specific. In females, four predictors of AML were putatively annotated as ceramides, a class of metabolites that has been linked with cancer cell proliferation. In females, two metabolite predictors of AML were strongly correlated with breastfeeding duration, indicating a possible biological link between this putative protective risk factor and childhood leukemia. In males, a heterogeneous metabolite profile of AML predictors was observed. Replication with larger participant numbers is required to validate findings.
Collapse
Affiliation(s)
- Lauren Petrick
- The Institute of Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA.
| | - Partow Imani
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Kelsi Perttula
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA; Department of Health Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Yukiko Yano
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Todd Whitehead
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Catherine Metayer
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Courtney Schiffman
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Georgia Dolios
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA; Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Stephen Rappaport
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
19
|
Hori A, Ishida F, Nakazawa H, Yamaura M, Morita S, Uehara T, Honda T, Hidaka H. Serum sphingomyelin species profile is altered in hematologic malignancies. Clin Chim Acta 2020; 514:29-33. [PMID: 33279503 DOI: 10.1016/j.cca.2020.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 01/27/2023]
Abstract
Sphingomyelin (SM) plays key roles in regulating cell membrane fluidity and in intracellular signal transduction. However, little is known as to whether alterations in SM concentration or SM species distribution are linked pathological conditions. The present study examined SM concentrations and species profiles in serum taken from patients with hematologic malignancies. Serum was collected from normal subjects and from patients with B-cell lymphoma, myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and acute lymphatic leukemia/ lymphoblastic lymphoma (ALL/LBL). Serum SM species distribution was analyzed using electrospray ionization mass spectrometry/ mass spectrometry (ESI MS/MS). Serum lipids concentration were measured using enzymatic assays. Normal and hematologic malignancy sera were similar in terms of total serum SM and phosphatidylcholine (PC) concentrations and SM/PC ratio. However, all hematologic malignancy sera had lower levels of SM species containing saturated odd chain fatty acids (OCFAs) in the side chain compared to normal serum. In addition, the proportion of SM species with saturated (C20 and C22) and mono unsaturated fatty acids (C18, C20, C22) were lower in MDS patient serum compared to normal serum. The present study revealed that the serum SM species profile in patients with hematologic malignancies differed from that of normal subjects despite total serum SM and PC concentrations and SM/PC ratios being similar between the various cancer groups and the normal group.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan; Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan; Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideyuki Nakazawa
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Makoto Yamaura
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan; Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Sunao Morita
- Department of Medical Technology, Iida Municipal Hospital, Iida, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takayuki Honda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Hiroya Hidaka
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan.
| |
Collapse
|
20
|
(2 R,3 S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102842. [PMID: 33019704 PMCID: PMC7600928 DOI: 10.3390/cancers12102842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is one of several cancers where cancer proliferation occurs under the influence of an aberrant metabolite known as an oncometabolite produced by a mutated enzyme in the cancer cell. In AML, mutant isocitrate dehydrogenases produce the oncometabolite 2-hydroxyglutarate. We screened AML patients with and without mutant isocitrate dehydrogenases by using a technique known as metabolomics, which measures many different metabolites in patient plasma. It was observed that another metabolite, 2,3-dihydroxybutyrate, was produced in larger amounts in patients with mutated isocitrate dehydrogenase and correlated strongly with 2-hydroxyglutarate levels. Moreover, 2,3-dihydroxybutyrate was a better indicator of the presence of mutated isocitrate dehydrogenase in the cancer than the known oncometabolite 2-hydroxyglutarate. These findings may lead to the characterization of 2,3-dihydroxybutyrate as a novel oncometabolite in AML, which would bring a fuller understanding of the etiology of this disease and offer opportunities for the development of novel therapeutic agents. Abstract Acute myeloid leukemia (AML) frequently harbors mutations in isocitrate 1 (IDH1) and 2 (IDH2) genes, leading to the formation of the oncometabolite (2R)-hydroxyglutaric acid (2R-HG) with epigenetic consequences for AML proliferation and differentiation. To investigate if broad metabolic aberrations may result from IDH1 and IDH2 mutations in AML, plasma metabolomics was conducted by gas chromatography–mass spectrometry (GC–MS) on 51 AML patients, 29 IDH1/2 wild-type (WT), 9 with IDH1R132, 12 with IDH2R140 and one with IDH2R172 mutations. Distinct metabolic differences were observed between IDH1/2 WT, IDH1R132 and IDH2R140 patients that comprised 22 plasma metabolites that were mainly amino acids. Only two plasma metabolites were statistically significantly different (p < 0.0001) between both IDH1R132 and WT IDH1/2 and IDH2R140 and WT IDH1/2, specifically (2R)-hydroxyglutaric acid (2R-HG) and the threonine metabolite (2R,3S)-dihydroxybutanoic acid (2,3-DHBA). Moreover, 2R-HG correlated strongly (p < 0.0001) with 2,3-DHBA in plasma. One WT patient was discovered to have a D-2-hydroxyglutarate dehydrogenase (D2HGDH) A426T inactivating mutation but this had little influence on 2R-HG and 2,3-DHBA plasma concentrations. Expression of transporter genes SLC16A1 and SLC16A3 displayed a weak correlation with 2R-HG but not 2,3-DHBA plasma concentrations. Receiver operating characteristic (ROC) analysis demonstrated that 2,3-DHBA was a better biomarker for IDH mutation than 2R-HG (Area under the curve (AUC) 0.861; p < 0.0001; 80% specificity; 87.3% sensitivity). It was concluded that 2,3-DHBA and 2R-HG are both formed by mutant IDH1R132, IDH2R140 and IDH2R172, suggesting a potential role of 2,3-DHBA in AML pathogenesis.
Collapse
|
21
|
Gil-de-Gómez L, Balgoma D, Montero O. Lipidomic-Based Advances in Diagnosis and Modulation of Immune Response to Cancer. Metabolites 2020; 10:metabo10080332. [PMID: 32824009 PMCID: PMC7465074 DOI: 10.3390/metabo10080332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
While immunotherapies for diverse types of cancer are effective in many cases, relapse is still a lingering problem. Like tumor cells, activated immune cells have an anabolic metabolic profile, relying on glycolysis and the increased uptake and synthesis of fatty acids. In contrast, immature antigen-presenting cells, as well as anergic and exhausted T-cells have a catabolic metabolic profile that uses oxidative phosphorylation to provide energy for cellular processes. One goal for enhancing current immunotherapies is to identify metabolic pathways supporting the immune response to tumor antigens. A robust cell expansion and an active modulation via immune checkpoints and cytokine release are required for effective immunity. Lipids, as one of the main components of the cell membrane, are the key regulators of cell signaling and proliferation. Therefore, lipid metabolism reprogramming may impact proliferation and generate dysfunctional immune cells promoting tumor growth. Based on lipid-driven signatures, the discrimination between responsiveness and tolerance to tumor cells will support the development of accurate biomarkers and the identification of potential therapeutic targets. These findings may improve existing immunotherapies and ultimately prevent immune escape in patients for whom existing treatments have failed.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Colket Translational Research Center, 3501 Civic Center Blvd, PA 19104, USA
- Correspondence:
| | - David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Husarg. 3, 75123 Uppsala, Sweden;
| | - Olimpio Montero
- Spanish National Research Council (CSIC), Boecillo’s Technological Park Bureau, Av. Francisco Vallés 8, 47151 Boecillo, Spain;
| |
Collapse
|
22
|
Wojcicki AV, Kasowski MM, Sakamoto KM, Lacayo N. Metabolomics in acute myeloid leukemia. Mol Genet Metab 2020; 130:230-238. [PMID: 32457018 DOI: 10.1016/j.ymgme.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is a complex, heterogenous hematological malignancy caused by mutations in myeloid differentiation and proliferation. Response to therapy and long-term outcomes vary widely based on chromosomal and molecular aberrations. Many platforms have been used to characterize and stratify AML. Metabolomics, the global profiling of small molecules in a biological sample, has emerged in the last decade as an important tool for studying the metabolic dependency of cancer cells. Metabolic reprogramming is not only an important manifestation of AML but clinically relevant for diagnosis, risk stratification and targeted drug development. In this review, we discuss notable metabolic studies of the last decade and their application to novel therapies.
Collapse
Affiliation(s)
- Anna V Wojcicki
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maya M Kasowski
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Norman Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Olson KC, Moosic KB, Jones MK, Larkin PMK, Olson TL, Toro MF, Fox TE, Feith DJ, Loughran TP. Large granular lymphocyte leukemia serum and corresponding hematological parameters reveal unique cytokine and sphingolipid biomarkers and associations with STAT3 mutations. Cancer Med 2020; 9:6533-6549. [PMID: 32710512 PMCID: PMC7520360 DOI: 10.1002/cam4.3246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia is a rare hematological disorder with expansion of the T-cell or natural killer (NK) cell lineage. Signal transducer and activator of transcription 3 (STAT3) exhibits somatic activating mutations in 30%-40% of LGL leukemia cases. Transcriptional targets of STAT3 include inflammatory cytokines, thus previous studies have measured cytokine levels of LGL leukemia patients compared to normal donors. Sphingolipid metabolism is a growing area of cancer research, with efforts focused on drug discovery. To date, no studies have examined serum sphingolipids in LGL leukemia patients, and only one study compared a subset of cytokines between the T-LGL and NK-LGL subtypes. Therefore, here, we included both LGL leukemia subtypes with the goals of (a) measuring serum sphingolipids for the first time, (b) measuring cytokines to find distinctions between the subtypes, and (c) establishing relationships with STAT3 mutations and clinical data. The serum analyses identified cytokines (EGF, IP-10, G-CSF) and sphingolipids (SMC22, SMC24, SMC20, LysoSM) significantly different in the LGL leukemia group compared to normal donors. In a mixed STAT3 mutation group, D661Y samples exhibited the highest mean corpuscular volume (MCV) values. We explored this further by expanding the cohort to include larger groups of single STAT3 mutations. Male D661Y STAT3 samples had lower Hgb and higher MCV compared to wild type (WT) or Y640F counterparts. This is the first report examining large groups of individual STAT3 mutations. Overall, our results revealed novel serum biomarkers and evidence that D661Y mutation may show different clinical manifestation compared to WT or Y640F STAT3.
Collapse
Affiliation(s)
- Kristine C. Olson
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Katharine B. Moosic
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Marieke K. Jones
- Health Sciences LibraryUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Paige M. K. Larkin
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Department of PathologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA,Present address:
Department of Pathology and Laboratory MedicineUniversity of California Los AngelesLos AngelesCAUSA
| | - Thomas L. Olson
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Mariella F. Toro
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Todd E. Fox
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of PharmacologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - David J. Feith
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Thomas P. Loughran
- University of Virginia Cancer CenterCharlottesvilleVAUSA,Department of MedicineDivision of Hematology/OncologyUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| |
Collapse
|
24
|
Chowdhury A, Loaiza S, Yebra-Fernandez E, Nadal-Melsio E, Apperley JF, Khorashad JS. An ex vivo investigation of interactions between primary acute myeloid leukaemia and mesenchymal stromal cells yields novel therapeutic targets. Br J Haematol 2020; 190:e236-e239. [PMID: 32519342 DOI: 10.1111/bjh.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Avirup Chowdhury
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Sandra Loaiza
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Eva Yebra-Fernandez
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Elisabet Nadal-Melsio
- SIHMDS North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Jane F Apperley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
25
|
Mendez LM, Posey RR, Pandolfi PP. The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Front Oncol 2019; 9:1162. [PMID: 31781488 PMCID: PMC6856667 DOI: 10.3389/fonc.2019.01162] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
AML holds a unique place in the history of immunotherapy by virtue of being among the first malignancies in which durable remissions were achieved with "adoptive immunotherapy," now known as allogeneic stem cell transplantation. The successful deployment of unselected adoptive cell therapy established AML as a disease responsive to immunomodulation. Classification systems for AML have been refined and expanded over the years in an effort to capture the variability of this heterogeneous disease and risk-stratify patients. Current systems increasingly incorporate information about cytogenetic alterations and genetic mutations. The advent of next generation sequencing technology has enabled the comprehensive identification of recurrent genetic mutations, many with predictive power. Recurrent genetic mutations found in AML have been intensely studied from a cell intrinsic perspective leading to the genesis of multiple, recently approved targeted therapies including IDH1/2-mutant inhibitors and FLT3-ITD/-TKD inhibitors. However, there is a paucity of data on the effects of these targeted agents on the leukemia microenvironment, including the immune system. Recently, the phenomenal success of checkpoint inhibitors and CAR-T cells has re-ignited interest in understanding the mechanisms leading to immune dysregulation and suppression in leukemia, with the objective of harnessing the power of the immune system via novel immunotherapeutics. A paradigm has emerged that places crosstalk with the immune system at the crux of any effective therapy. Ongoing research will reveal how AML genetics inform the composition of the immune microenvironment paving the way for personalized immunotherapy.
Collapse
Affiliation(s)
- Lourdes M. Mendez
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Ryan R. Posey
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Pandolfi
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Chapuis N, Poulain L, Birsen R, Tamburini J, Bouscary D. Rationale for Targeting Deregulated Metabolic Pathways as a Therapeutic Strategy in Acute Myeloid Leukemia. Front Oncol 2019; 9:405. [PMID: 31192118 PMCID: PMC6540604 DOI: 10.3389/fonc.2019.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Metabolic reprogramming is a common cancer cell phenotype as it sustains growth and proliferation. Targeting metabolic activities offers a wide range of therapeutic possibilities which are applicable to acute myeloid leukemia (AML). Indeed, in addition to the IDH1/2-mutated AML model which established the proof-of-concept for specifically targeting metabolic adaptations in AML, several recent reports have expanded the scope of such strategies in these diseases. This review highlights recent findings on metabolic deregulation in AML and summarizes their implications in leukemogenesis.
Collapse
Affiliation(s)
- Nicolas Chapuis
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Biologique, Paris, France
| | - Laury Poulain
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Rudy Birsen
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Jerome Tamburini
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - Didier Bouscary
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| |
Collapse
|
27
|
Loew A, Köhnke T, Rehbeil E, Pietzner A, Weylandt KH. A Role for Lipid Mediators in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20102425. [PMID: 31100828 PMCID: PMC6567850 DOI: 10.3390/ijms20102425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Bone Marrow
- Disease Progression
- Fatty Acids, Omega-3/immunology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/immunology
- Fatty Acids, Omega-6/therapeutic use
- Fatty Acids, Unsaturated
- Hematologic Neoplasms/drug therapy
- Hematopoiesis
- Humans
- Immunity, Innate/drug effects
- Immunotherapy
- Inflammation
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Lipids/immunology
- Lipids/therapeutic use
- Neoplasms/drug therapy
- Prognosis
- Tumor Microenvironment
Collapse
Affiliation(s)
- Andreas Loew
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Thomas Köhnke
- Department of Internal Medicine III, University of Munich, 81377 Munich, Germany.
| | - Emma Rehbeil
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Anne Pietzner
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
| | - Karsten-H Weylandt
- Department of Medicine B, Ruppin General Hospital, Brandenburg Medical School, 16816 Neuruppin, Germany.
- Medical Department, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
28
|
Abstract
Although a large number of studies have shown the associations of high plasma lipid profile levels with cancer, few studies demonstrate the association between low serum cholesterol (<160 mg/dl) and risk for cancer mortality. The aim of this study was to determine the association of low serum cholesterol level as a risk factor for mortality in cancer. The prospective cohort studies were conducted on 19 of 52 cohort studies including 30 179 male and 26 005 female participants who were followed up for 9 years. Cox proportion hazard model was applied to analyze these data. The associations are presented as hazard ratios (HRs) with 95% confidence intervals (CI). The statistical package for the social sciences software was used for analysis. The multivariate analysis results showed risk associations with low serum cholesterol for the first decile among male participants (cancer: HR=1.52, 95% CI: 1.06-2.18; noncancer liver dysfunction: HR=10.73, 95% CI: 3.74-30.18) and female participants (cancer: HR=1.03, 95% CI: 0.52-2.05; noncancer liver dysfunction: HR=25.8, 95% CI: 3.09-217.70). Furthermore, in the second decile, this association among male patients (noncancer liver dysfunction: HR=3.73, 95% CI: 1.16-11.95) had a statistically significant result. For the remaining deciles in both sexes, cancer and noncancer liver dysfunction has some risk or protective association, although not significant. Findings of this study indicated an inverse association between low serum cholesterol and cancer and noncancer liver dysfunction mortality.
Collapse
|
29
|
Grzybek M, Palladini A, Alexaki VI, Surma MA, Simons K, Chavakis T, Klose C, Coskun Ü. Comprehensive and quantitative analysis of white and brown adipose tissue by shotgun lipidomics. Mol Metab 2019; 22:12-20. [PMID: 30777728 PMCID: PMC6437637 DOI: 10.1016/j.molmet.2019.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Shotgun lipidomics enables an extensive analysis of lipids from tissues and fluids. Each specimen requires appropriate extraction and processing procedures to ensure good coverage and reproducible quantification of the lipidome. Adipose tissue (AT) has become a research focus with regard to its involvement in obesity-related pathologies. However, the quantification of the AT lipidome is particularly challenging due to the predominance of triacylglycerides, which elicit high ion suppression of the remaining lipid classes. Methods We present a new and validated method for shotgun lipidomics of AT, which tailors the lipid extraction procedure to the target specimen and features high reproducibility with a linear dynamic range of at least 4 orders of magnitude for all lipid classes. Results Utilizing this method, we observed tissue-specific and diet-related differences in three AT types (brown, gonadal, inguinal subcutaneous) from lean and obese mice. Brown AT exhibited a distinct lipidomic profile with the greatest lipid class diversity and responded to high-fat diet by altering its lipid composition, which shifted towards that of white AT. Moreover, diet-induced obesity promoted an overall remodeling of the lipidome, where all three AT types featured a significant increase in longer and more unsaturated triacylglyceride and phospholipid species. Conclusions The here presented method facilitates reproducible systematic lipidomic profiling of AT and could be integrated with further –omics approaches used in (pre-) clinical research, in order to advance the understanding of the molecular metabolic dynamics involved in the pathogenesis of obesity-associated disorders. Validated shotgun lipidomics method of AT covering 300 lipids of 20 classes and linear dynamic range of 4 orders of magnitude. Increase of longer and more unsaturated triacylglycerides and phospholipids in brown and white AT under high-fat diet. Differences in the lipidomes of gonadal, subcutaneous and brown AT.
Collapse
Affiliation(s)
- Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Vasileia I Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | | | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
30
|
Degan P, Cappelli E, Longobardi M, Pulliero A, Cuccarolo P, Dufour C, Ravera S, Calzia D, Izzotti A. A Global MicroRNA Profile in Fanconi Anemia: A Pilot Study. Metab Syndr Relat Disord 2018; 17:53-59. [PMID: 30376422 DOI: 10.1089/met.2018.0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Fanconi anemia (FA) is a complex tumor-prone disease defined by an entangled genotype and phenotype. Despite enormous efforts in the last 20 years, a comprehensive and integrated view of the disease is still missing. The aim of this pilot study was to establish whether a global microRNA (miRNA) analysis approach could be helpful in defining aspects in FA phenotype, which might deserve future attention with the perspective to develop miRNA-based therapies. METHODS miRNA array were employed to characterize the global miRNA (miRNoma) profile of FA RNA samples with respect to normal samples. RESULTS We report and compare miRNA profile from two FA established cell lines and three FA patients. This analysis reveals that 36 and 64 miRNAs, respectively, are found differentially expressed (>2-fold variation and P < 0.05) in the samples from FA cell lines and FA patients. Overlap of these data results in 24 miRNAs as shared in the two sample populations. Available bioinformatics methods were used to predict target genes for the differentially expressed miRNAs and to perform pathway enrichment analysis. CONCLUSIONS Seven pathway results associated with the FA phenotype. It is interesting to note that some of these pathways were previously unrelated to FA phenotype. It might be important to focus on these pathways not previously emerged as dysfunctional in FA to better define the pathophysiological context of this disease. This is the first report of a global miRNA analysis in FA.
Collapse
Affiliation(s)
- Paolo Degan
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Alessandra Pulliero
- 3 Department of Health Sciences, School of Medicine, University of Genoa, Genova, Italy
| | - Paola Cuccarolo
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | - Carlo Dufour
- 2 Hematology, Istituto Giannina Gaslini, Genova, Italy
| | - Silvia Ravera
- 4 Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Daniela Calzia
- 4 Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Alberto Izzotti
- 1 Mutagenesis and Preventive Oncology, Ospedale Policlinico San Martino, Genova, Italy.,3 Department of Health Sciences, School of Medicine, University of Genoa, Genova, Italy
| |
Collapse
|
31
|
Ha M, Han M, Kim J, Jeong DC, Oh S, Kim YH. Prognostic role of
TPD52
in acute myeloid leukemia: A retrospective multicohort analysis. J Cell Biochem 2018; 120:3672-3678. [DOI: 10.1002/jcb.27645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Mihyang Ha
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Myoung‐Eun Han
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Ji‐Young Kim
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Dae Cheon Jeong
- Deloitte Analytics Group, Deloitte Consulting LLC Seoul Republic of Korea
| | - Sae‐Ock Oh
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
- BEER, Busan Society of Evidence‐Based Medicine and Research Busan Republic of Korea
| |
Collapse
|
32
|
Montefusco DJ, Allegood JC, Spiegel S, Cowart LA. Non-alcoholic fatty liver disease: Insights from sphingolipidomics. Biochem Biophys Res Commun 2018; 504:608-616. [PMID: 29778532 DOI: 10.1016/j.bbrc.2018.05.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major clinical concern and its treatment consumes abundant resources. While accumulation of lipids in hepatocytes initiates the disease, this in itself is not necessarily harmful; rather, initiation of inflammation and subsequent fibrosis and cirrhosis are critical steps in NAFLD pathology. Mechanisms linking lipid overload to downstream disease progression are not fully understood; however, bioactive lipid metabolism may underlie instigation of proinflammatory signaling. With the advent of high-throughput, sensitive, and quantitative mass spectrometry-based methods for assessing lipid profiles in NAFLD, several trends have emerged, including that increases in specific sphingolipids correlate with the transition from the relatively benign condition of simple fatty liver to the much more concerning inflamed state. Continued studies that implement sphingolipid profiling will enable the extrapolations of candidate enzymes and pathways involved in NAFLD, either in biopsies or plasma from human samples, and also in animal models, from which data are much more abundant. While most data thus far are derived from targeted lipidomics approaches, unbiased, semi-quantitative approaches hold additional promise for furthering our understanding of sphingolipids as markers of and players in NAFLD.
Collapse
Affiliation(s)
- David J Montefusco
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|