1
|
Tagawa M, Hiroi H, Nakano Y, Morishita R, Kobayashi K, Sakai O. Clinical Utility of Circulating Cell-Free DNA as a Liquid Biopsy in Cats With Various Tumours. Vet Comp Oncol 2024; 22:592-601. [PMID: 39385318 DOI: 10.1111/vco.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Only a limited number of tumour biomarkers are currently available in veterinary medicine, particularly in cats. Cell-free DNA (cfDNA) is an extracellular DNA fragment released upon cell death and is considered a minimally invasive biomarker for the diagnosis and monitoring of various human malignancies. This study aimed to clarify the utility of circulating cfDNA as a liquid biopsy for various feline tumours. Plasma samples were collected from 44 cats with various tumours, 24 cats with other diseases and 10 healthy controls. A follow-up study was conducted in three tumour-bearing patients. All cfDNA concentrations were quantified via real-time polymerase chain reaction (PCR), which provided short and long fragments of a newly identified feline LINE-1 gene. We found that cfDNA levels were significantly higher in cats with various tumours than in those with other diseases or healthy controls. The cfDNA concentration was not correlated with serum amyloid A (SAA) levels. Cats with tumours exhibited elevated cfDNA levels that predicted tumour-bearing with a sensitivity and specificity of 50.5% and 91.2%, respectively (AUC 0.736; p < 0.001). In lymphoma cases, cats with high cfDNA levels had significantly shorter survival times than those with low cfDNA levels (median: 33 days vs. 178 days; p = 0.003). In addition, the cfDNA levels of the three patients correlated with clinical status during follow-up. Collectively, these findings indicate the potential of cfDNA as a useful biomarker for the diagnosis, therapeutic monitoring and prognostic assessment of tumours in cats.
Collapse
Affiliation(s)
- Michihito Tagawa
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hotaka Hiroi
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yuzuki Nakano
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Riyo Morishita
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Osamu Sakai
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
2
|
Ke CH, Lin CS, Sio KM, Wu CH, Xia YY, Lee JJ, Hu CH, Liu CC, Liaw BS, Cheng CL, Lin KH, Wang YS. DR-70 (fibrinogen-fibrin degradation products) as a prognostic biomarker in dogs with neoplasms. Vet Q 2024; 44:1-10. [PMID: 39028259 PMCID: PMC11262238 DOI: 10.1080/01652176.2024.2380049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Fibrinogen-fibrin degradation products (DR-70) are derived from tumor cells or metastases. Our previous study reported the diagnostic values in dogs with tumors, but no research has yet to be conducted to establish DR-70 as a prognostic marker. Herein, we investigated changes in DR-70 concentrations and disease courses in dogs with tumors. Overall survival time (OST) analysis was performed in 195 dogs with tumors, stratified with a recommended cut-off (1.514 µg/mL). Continual DR-70 measurements were performed during the medical interventions of 27 dogs with neoplasms. Clinical conditions and medical records were retrospectively reviewed. According to a cut-off value, dogs with plasma DR-70 concentrations above 1.514 µg/mL had shorter survival rates than those with concentrations below this threshold. In cases with complete or partial remission in response to treatment, the DR-70 concentration was decreased compared with that at the first visit, whereas it was increased in patients with disease progression. Our study suggested that changes in DR-70 concentration can be used as a prognostic biomarker for canine neoplasms. Furthermore, increased plasma DR-70 levels might be associated with shorter survival, and DR-70 concentrations may reflect responses to medical intervention.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ka-Mei Sio
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Uni-Pharma Co-Ltd, Taipei, Taiwan
| | | | - Yuan-Yuan Xia
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Cancer Center, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jih-Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Cancer Center, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | - Cheng-Chi Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | - Yu-Shan Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Uni-Pharma Co-Ltd, Taipei, Taiwan
| |
Collapse
|
3
|
Megquier K, Husted C, Rhoades J, White ME, Genereux DP, Chen FL, Xiong K, Kwon E, Swofford R, Painter C, Adalsteinsson V, London CA, Gardner HL, Karlsson EK. Impact of preanalytical factors on liquid biopsy in the canine cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605605. [PMID: 39131379 PMCID: PMC11312437 DOI: 10.1101/2024.07.29.605605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
While liquid biopsy has potential to transform cancer diagnostics through minimally-invasive detection and monitoring of tumors, the impact of preanalytical factors such as the timing and anatomical location of blood draw is not well understood. To address this gap, we leveraged pet dogs with spontaneous cancer as a model system, as their compressed disease timeline facilitates rapid diagnostic benchmarking. Key liquid biopsy metrics from dogs were consistent with existing reports from human patients. The tumor content of samples was higher from venipuncture sites closer to the tumor and from a central vein. Metrics also differed between lymphoma and non-hematopoietic cancers, urging cancer-type-specific interpretation. Liquid biopsy was highly sensitive to disease status, with changes identified soon after post chemotherapy administration, and trends of increased tumor fraction and other metrics observed prior to clinical relapse in dogs with lymphoma or osteosarcoma. These data support the utility of pet dogs with cancer as a relevant system for advancing liquid biopsy platforms.
Collapse
Affiliation(s)
- Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Husted
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
| | | | | | | | - Frances L. Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Euijin Kwon
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Ross Swofford
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
| | | | | | - Cheryl A. London
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
Flory A, Wilson-Robles H. Noninvasive Blood-Based Cancer Detection in Veterinary Medicine. Vet Clin North Am Small Anim Pract 2024; 54:541-558. [PMID: 38195361 DOI: 10.1016/j.cvsm.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The past decade has seen incredible advances in blood-based cancer detection in people and in dogs - yet this represents only a glimpse of the benefits these tests can provide to patients. The clinical uses of this technology range from screening asymptomatic individuals for early detection to use as an aid in diagnosis when cancer is suspected, to cancer monitoring both during and after treatment. This article summarizes the benefits of early cancer detection and examines use cases and methods of blood-based cancer detection in dogs, including quantitative, qualitative, and alternative approaches.
Collapse
Affiliation(s)
- Andi Flory
- PetDx, 9310 Athena Circle, Suite 230, La Jolla, CA 92037, USA.
| | - Heather Wilson-Robles
- Volition Veterinary Diagnostics Development, LLC 1489 West Warm Springs Road Suite 110, Henderson, NV 89014, USA; Ethos Discovery, 10435 Sorrento Valley Road, San Diego, CA 92121, USA; The Oncology Service, United Veterinary Health, 6651 Backlick Road, Springfield, VA 22150, USA
| |
Collapse
|
5
|
Tanvetthayanont P, Yata T, Boonnil J, Temisak S, Ponglowhapan S. Advancing canine mammary tumor diagnostics: Unraveling the diagnostic potential of Cytokeratin 19 through droplet digital PCR analysis. Theriogenology 2024; 217:127-135. [PMID: 38271766 DOI: 10.1016/j.theriogenology.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Cytokeratin 19 (CK19) is a complex intracytoplasmic cytoskeletal protein primarily localized in the ducts of the mammary gland and skin epithelial cells. In humans, the expression of CK19 gene within circulating tumor cells (CTCs) extracted from blood samples of breast cancer patients reflects tumor cell activity, offering valuable insights for predicting early metastatic relapse or monitoring treatment effectiveness. However, knowledge of serum tumor markers is limited in veterinary oncology. Recently, droplet digital PCR (ddPCR), has been employed to explore rare target genes due to its heightened sensitivity and accuracy as a novel molecular diagnostic tool. The objectives of this study were to investigate the expression of the CK19 mRNA in CTCs, non-neoplastic mammary tissues, and both benign and malignant canine mammary tumors (CMTs) through ddPCR analysis. In Study I, we optimized the discard volume for blood samples to reduce CK19 contamination from skin epithelial cells post-venipuncture. The results revealed that discarding the initial 3 mL of blood was adequate and effective in eliminating CK19 mRNA contamination. In Study II, after the removal of the initial 3 mL of blood, we investigated CK19 mRNA-positive CTCs in the peripheral blood of normal healthy dogs, including those with benign and malignant CMTs. Intriguingly, CK19 mRNA was undetectable in all blood samples. The expression of CK19 mRNA in mammary tissues was investigated in Study III. The copy number (CN) ratios of the CK19 gene in non-neoplastic mammary tissues (14.77 ± 14.65) were significantly higher (P < 0.05) than those in benign (4.23 ± 3.35) and malignant groups (6.56 ± 5.64). Notably, no difference was observed between the benign and malignant groups. In conclusion, CK19 mRNA appeared unlikely to be a suitable candidate as a biomarker in the peripheral blood of CMTs, while the CN ratio in mammary tissues could serve as a potential discriminator between non-neoplastic and CMT groups, complementing the gold standard of histopathological examination.
Collapse
Affiliation(s)
- Potsawat Tanvetthayanont
- Department of Obstetric Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapong Yata
- Unit of Biochemistry, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiranun Boonnil
- National Institute of Metrology (NIMT), Pathumthani, 12120, Thailand
| | - Sasithon Temisak
- National Institute of Metrology (NIMT), Pathumthani, 12120, Thailand.
| | - Suppawiwat Ponglowhapan
- Department of Obstetric Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
7
|
Jianpraphat N, Supsavhad W, Ngernmeesri P, Siripattarapravat K, Soontararak S, Akrimajirachoote N, Phaochoosak N, Jermnak U. A New Benzo[6,7]oxepino[3,2-b] Pyridine Derivative Induces Apoptosis in Canine Mammary Cancer Cell Lines. Animals (Basel) 2024; 14:386. [PMID: 38338029 PMCID: PMC10854894 DOI: 10.3390/ani14030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
CMC is the most frequently diagnosed cancer and one of the leading causes of death in non-spayed female dogs. Exploring novel therapeutic agents is necessary to increase the survival rate of dogs with CMC. MPOBA is a BZOP derivative that has a significant anticancer effect in a human cell line. The main goal of this study was to investigate the anticancer properties of MPOBA against two CMC cell lines (REM134 and CMGT071020) using a 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, a wound healing assay, a transwell migration assay, an Annexin V-FITC apoptosis assay with a flow cytometry analysis, a mRNA expression analysis using quantitative real-time PCR (qRT-PCR), and an immunohistochemistry (IHC). According to the accumulated studies, MPOBA caused significant concentration- and time-dependent reductions in cell proliferation and cell migration and induced apoptosis in both CMC cell lines. In gene expression analysis, nine canine genes, including TP53, BCL-2, BAX, epidermal growth factor receptor (EGFR), snail transcription factor (SNAIL), snail-related zinc-finger transcription factor (SLUG), TWIST, E-cadherin, and N-cadherin, were investigated. The mRNA expression results revealed that MPOBA induced upregulation of TP53 and overexpression of the pro-apoptotic gene BAX, together with an inhibition of BCL-2. Moreover, MPOBA also suppressed the mRNA expression levels of SNAIL, EGFR, and N-cadherin and induced upregulation of E-cadherin, crucial genes related to the epithelial-to-mesenchymal transition (EMT). However, there was no significant difference in the IHC results of the expression patterns of vimentin (VT) and cytokeratin (CK) between MPOBA-treated and control CMC cells. In conclusion, the results of the present study suggested that MPOBA exhibited significant anticancer activity by inducing apoptosis in both CMCs via upregulation of TP53 and BAX and downregulation of BCL-2 relative mRNA expression. MPOBA may prove to be a potential candidate drug to be further investigated as a therapeutic agent for CMC.
Collapse
Affiliation(s)
- Natamon Jianpraphat
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Wachiraphan Supsavhad
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Paiboon Ngernmeesri
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kannika Siripattarapravat
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Sirikul Soontararak
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Usuma Jermnak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| |
Collapse
|
8
|
Barbosa JMG, Shokry E, Caetano David L, Pereira NZ, da Silva AR, de Oliveira VF, Fioravanti MCS, da Cunha PHJ, de Oliveira AE, Antoniosi Filho NR. Cancer evaluation in dogs using cerumen as a source for volatile biomarker prospection. Mol Omics 2024; 20:27-36. [PMID: 37751172 DOI: 10.1039/d3mo00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cancer is one of the deadliest diseases in humans and dogs. Nevertheless, most tumor types spread faster in canines, and early cancer detection methods are necessary to enhance animal survival. Here, cerumen (earwax) was tested as a source of potential biomarkers for cancer evaluation in dogs. Earwax samples from dogs were collected from tumor-bearing and clinically healthy dogs, followed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS) analyses and multivariate statistical workflow. An evolutionary-based multivariate algorithm selected 18 out of 128 volatile metabolites as a potential cancer biomarker panel in dogs. The candidate biomarkers showed a full discrimination pattern between tumor-bearing dogs and cancer-free canines with high accuracy in the test dataset: an accuracy of 95.0% (75.1-99.9), and sensitivity and specificity of 100.0% and 92.9%, respectively. In summary, this work raises a new perspective on cancer diagnosis in dogs, being carried out painlessly and non-invasive, facilitating sample collection and periodic application in a veterinary routine.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Engy Shokry
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Lurian Caetano David
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Naiara Z Pereira
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Adriana R da Silva
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Vilma F de Oliveira
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Maria Clorinda S Fioravanti
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Paulo H Jorge da Cunha
- Hospital Veterinário - Escola de Veterinária e Zootecnia da UFG, Rodovia Goiânia - Nova Veneza, km 8 Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Anselmo E de Oliveira
- Laboratório de Química Teórica e Computacional, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratório de Métodos de Extração e Separação, Instituto de Química, Universidade Federal de Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Tagawa M, Aoki M. Clinical utility of liquid biopsy in canine oral malignant melanoma using cell-free DNA. Front Vet Sci 2023; 10:1182093. [PMID: 37408834 PMCID: PMC10319414 DOI: 10.3389/fvets.2023.1182093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Cell-free DNA (cfDNA), an extracellular free DNA released into the bloodstream by cells, is a potentially useful noninvasive marker to detect human malignancies and monitor response to treatment. In the present study, we evaluated the utility of circulating cfDNA in canine patients with oral malignant melanoma (OMM) in assessing therapeutic response and clinical outcomes. Methods Plasma samples were collected from 12 dogs with OMM and 9 healthy controls. cfDNA concentration was quantified by real-time PCR resulting in short (99bp) and long (218bp) fragments of long interspersed nuclear element-1 (LINE-1), and the DNA integrity index (DII) was then calculated (218/99). A follow-up study was conducted on 6 dogs with OMM, and the plasma cfDNA and DII were quantified throughout disease progression. Results Although cfDNA levels obtained from dogs with OMM were not significantly different compared to those obtained from healthy controls, the DII was significantly lower in dogs with OMM than in healthy controls. The DII tended to decrease as the disease stage progressed. Moreover, changes in cfDNA concentration and DII along the clinical course were observed when major changes, such as metastasis or apparent tumor progression, were observed. Discussion The results of our study suggest that measurements of serum cfDNA and DII using LINE-1 might be valuable new biomarkers for monitoring OMM progression in dogs. This preliminary study demonstrated the potential clinical utility of monitoring plasma cfDNA in canine patients with OMM.
Collapse
Affiliation(s)
- Michihito Tagawa
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Associated Science, Okayama University of Science, Imabari, Japan
| | - Minori Aoki
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
10
|
Guil-Luna S, Sánchez-Céspedes R, Rivas Crespo A, Dolores Fernández M, Fernández Sarmiento JA, Rodríguez-Ariza A, Millán Y. Analysis of cell-free DNA concentration, fragmentation patterns and TP53 gene expression in mammary tumor-bearing dogs: A pilot study. Front Vet Sci 2023; 10:1157878. [PMID: 37065257 PMCID: PMC10090457 DOI: 10.3389/fvets.2023.1157878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionLiquid biopsy based on the analysis of circulating cell-free DNA (cfDNA), as well as on detection of point mutations by digital droplet PCR (ddPCR), has revolutionized the research in oncology. In recent years, this technique has been pioneering in veterinary medicine since it is a minimally invasive approach with very promising results for characterization of tumors.MethodsThe aim of this study was, firstly, to analyze the concentration and the fragmentation pattern of cfDNA of dogs with mammary tumors (n = 36) and healthy dogs (n = 5) and its correlation with clinicopathological data. Secondly, analysis of TP53 gene expression and the point mutation in the codon 245 were performed in cfDNA and in tumor tissues to assess their potential as plasma biomarkers.Results and discussionOur results highlighted that those dogs with worse clinicopathological characteristics (simple or undifferentiated carcinomas, higher histological grade and presence of peritumoral inflammation) shown higher cfDNA concentration and higher concentrations of short-fragments (<190 bp) than healthy dogs. In addition, although no detection of the point mutation in codon 245 of TP53 gene could be detected neither in plasma nor tumor tissue, an increased TP53 expression was detected in animals with tumors bearing malignant characteristics. Finally, a high concordance with TP53 gene expression in plasma and tumor tissue and cfDNA concentration was also found. The results derived from this work confirm the valuable potential of cfDNA and its fragments, as well as the analysis of TP53 expression in plasma as useful liquid biomarkers for clinical application in veterinary oncology.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Grupo Nuevas Terapias en cáncer, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria de Córdoba, Universidad de Córdoba, Córdoba, Spain
- *Correspondence: Silvia Guil-Luna
| | - Raquel Sánchez-Céspedes
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Rivas Crespo
- Grupo Nuevas Terapias en cáncer, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - María Dolores Fernández
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | | | - Antonio Rodríguez-Ariza
- Grupo Nuevas Terapias en cáncer, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Yolanda Millán
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria de Córdoba, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
11
|
Colombe P, Béguin J, Benchekroun G, Le Roux D. Blood biomarkers for canine cancer, from human to veterinary oncology. Vet Comp Oncol 2022; 20:767-777. [PMID: 35815441 PMCID: PMC9796515 DOI: 10.1111/vco.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023]
Abstract
In recent decades, interest in circulating tumour biomarkers is increasing both in human and veterinary oncology. An ideal tumour biomarker would allow early diagnosis of neoplasia, identify it specifically, accurately, establish a prognosis and predict its behaviour, especially regarding different therapeutic solutions. It would also allow to monitor its evolution over time and all this in a non-invasive and inexpensive way. Actually, no biomarkers meeting all of these criteria have been identified in veterinary medicine, particularly due to a lack of specificity of the main protein tumour biomarkers studied to date. However, great hope is currently placed in biomarkers grouped under the name of liquid biopsy, which could prove to be effective tools for common clinical use in the near future. This review gives an update on blood cancer biomarkers studied in dogs, such as ions, proteins, nucleic acids and also circulating cells, of which some might become more prominent in the coming years to help improve the management of animal care.
Collapse
Affiliation(s)
- Philippe Colombe
- Ecole Nationale Vétérinaire d'AlfortBioPôle AlfortMaisons‐AlfortFrance,Ecole Nationale Vétérinaire d'AlfortCHUVA, Service de Médecine InterneMaisons‐AlfortFrance
| | - Jérémy Béguin
- Ecole Nationale Vétérinaire d'AlfortCHUVA, Service de Médecine InterneMaisons‐AlfortFrance,Anses, INRAE, Ecole Nationale Vétérinaire d'AlfortUMR VIROLOGIE, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Ghita Benchekroun
- Ecole Nationale Vétérinaire d'AlfortCHUVA, Service de Médecine InterneMaisons‐AlfortFrance,Ecole nationale Vétérinaire d'AlfortUniv Paris Est Créteil, INSERM, IMRBMaisons‐AlfortFrance
| | - Delphine Le Roux
- Ecole Nationale Vétérinaire d'AlfortBioPôle AlfortMaisons‐AlfortFrance,Anses, INRAE, Ecole Nationale Vétérinaire d'AlfortUMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| |
Collapse
|
12
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
13
|
Favaro PF, Stewart SD, McDonald BR, Cawley J, Contente-Cuomo T, Wong S, Hendricks WPD, Trent JM, Khanna C, Murtaza M. Feasibility of circulating tumor DNA analysis in dogs with naturally occurring malignant and benign splenic lesions. Sci Rep 2022; 12:6337. [PMID: 35428782 PMCID: PMC9012871 DOI: 10.1038/s41598-022-09716-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/28/2022] [Indexed: 11/27/2022] Open
Abstract
Comparative studies of naturally occurring canine cancers have provided new insight into many areas of cancer research. Development and validation of circulating tumor DNA (ctDNA) analysis in pet dogs can help address diagnostic needs in veterinary as well as human oncology. Dogs have high incidence of naturally occurring spontaneous cancers, demonstrate molecular heterogeneity and clonal evolution during therapy, allow serial sampling of blood from the same individuals during the course of disease progression, and have relatively compressed intervals for disease progression amenable to longitudinal studies. Here, we present a feasibility study of ctDNA analysis performed in 48 dogs including healthy dogs and dogs with either benign splenic lesions or malignant splenic tumors (hemangiosarcoma) using shallow whole genome sequencing (sWGS) of cell-free DNA. To enable detection and quantification of ctDNA using sWGS, we adapted two informatic approaches and compared their performance for the canine genome. At the time of initial clinical presentation, mean ctDNA fraction in dogs with malignant splenic tumors was 11.2%, significantly higher than dogs with benign lesions (3.2%; p = 0.001). ctDNA fraction was 14.3% and 9.0% in dogs with metastatic and localized disease, respectively (p = 0.227). In dogs treated with surgical resection of malignant tumors, mean ctDNA fraction decreased from 11.0% prior to resection to 7.9% post-resection (p = 0.047 for comparison of paired samples). Our results demonstrate that ctDNA analysis is feasible in dogs with hemangiosarcoma using a cost-effective approach such as sWGS. Additional studies are needed to validate these findings, and determine the role of ctDNA to assess burden of disease and treatment response in dogs with cancer.
Collapse
Affiliation(s)
- Patricia Filippsen Favaro
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel D Stewart
- Ethos Veterinary Health, Woburn, MA, USA
- Ethos Discovery, San Diego, CA, USA
| | - Bradon R McDonald
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob Cawley
- Ethos Veterinary Health, Woburn, MA, USA
- Ethos Discovery, San Diego, CA, USA
| | | | - Shukmei Wong
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | - Jeffrey M Trent
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Chand Khanna
- Ethos Veterinary Health, Woburn, MA, USA.
- Ethos Discovery, San Diego, CA, USA.
| | - Muhammed Murtaza
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Mohamadzaheri M, Cheraghi H, Shirani D, Hatamkhani A. Relationship between plasma cell-free DNA changes and lysyl oxidase during the treatment and prognosis of canine transmissible venereal tumors. BMC Vet Res 2022; 18:76. [PMID: 35189882 PMCID: PMC8862336 DOI: 10.1186/s12917-022-03173-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transmissible venereal tumors (TVT) are a wide range of canine tumors for which there are no effective markers to monitor the therapeutic response in real-time. Circulating biomarkers can be valuable in early cancer diagnosis and prognosis. Accordingly, this study aimed to investigate the significance of the cell-free DNA (cfDNA) and cfDNA integrity index to monitor the response of TVTs to vincristine and compare them with lysyl oxidase activity. Plasma and sera were collected from fifteen male dogs within four weeks before drug administration. The analytical method was mainly based on the quantitative polymerase chain reaction (qPCR) technique for short and long cfDNAs and lysyl oxidase activity was measured in serum. Results The results of the cfDNA integrity index showed a significant (p < 0.05) difference in the baseline concentration compared to the second and third weeks (with cut-off values of 1.118 and 93.33% specificity). The cfDNA integrity index increased over time due to the reduction of short cfDNAs in the first week after treatment. Lysyl oxidase activity increased during the fourth week (p < 0.001), but there were no significant differences in the other weeks compared to the baseline. The ROC analysis of lysyl oxidase revealed high sensitivity (100%) and specificity (90%) on the second and third weeks compared to the baseline. Multivariate analysis between cfDNA integrity index and lysyl oxidase showed significant correlation (p < 0.05) only in baseline results. Conclusions Overall, short cfDNA, the cfDNA integrity index, and lysyl oxidase activity can be proposed as diagnostic biomarkers and putative prognostic candidates in TVT patients. These biomarkers can be combined with cytology to quickly diagnose TVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03173-z.
Collapse
Affiliation(s)
- Mona Mohamadzaheri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Hadi Cheraghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Darioush Shirani
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
15
|
Pękacz M, Basałaj K, Kalinowska A, Klockiewicz M, Stopka D, Bąska P, Długosz E, Karabowicz J, Młocicki D, Wiśniewski M, Zawistowska-Deniziak A. Selection of new diagnostic markers for Dirofilaria repens infections with the use of phage display technology. Sci Rep 2022; 12:2288. [PMID: 35145147 PMCID: PMC8831495 DOI: 10.1038/s41598-022-06116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dirofilaria repens is a parasitic nematode causing vector-borne disease (dirofilariasis), considered an emerging problem in veterinary and human medicine. Although main hosts are carnivores, particularly dogs, D. repens shows high zoonotic potential. The disease spreads uncontrollably, affecting new areas. Since there is no vaccine against dirofilariasis, the only way to limit disease transmission is an early diagnosis. Currently, diagnosis depends on the detection of microfilariae in the host bloodstream using modified Knott's test or multiplex PCR. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable diagnostic test is required. Our study aimed to select new diagnostic markers for dirofilariasis with potential application in diagnostics. We focused on single epitopes to ensure high specificity of diagnosis and avoid cross-reactivity with the other parasite infections common in dogs. Using phage display technology and 12-mer peptides library, we selected epitopes highly reactive with IgG from sera of infected dogs. Additionally, our study presents the possibility of detecting D. repens specific cell-free DNA in dogs with no microfilaria but high IgG and IgM antibody levels against parasite somatic antigen.
Collapse
Affiliation(s)
- Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Diana Stopka
- Division of Pathology, Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Długosz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Justyna Karabowicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | |
Collapse
|
16
|
Kim J, Bae H, Ahn S, Shin S, Cho AR, Cho KW, Jung DI, Yu D. Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Dogs With Tumors. Front Vet Sci 2021; 8:735682. [PMID: 34604371 PMCID: PMC8481682 DOI: 10.3389/fvets.2021.735682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-free DNA (cfDNA) is derived from apoptosis/necrosis, active cellular secretion, and lysis of circulating cancer cells or micrometastases. In humans, cfDNA is widely used in cancer diagnosis, but veterinary research has yet to be actively conducted to establish it as a cancer biomarker. This retrospective study analyzed cfDNA levels in samples collected from dogs with neoplastic disease (n = 38), clinically ill dogs without neoplasia (n = 47), and healthy dogs (n = 35). cfDNA levels and clinical data were compared among groups, and prognostic analyses were performed within the neoplastic group. Furthermore, continual cfDNA measurements were performed during the chemotherapy of six dogs with lymphoma. Dogs with neoplasia showed significantly higher cfDNA concentrations than dogs without neoplasm, and the cfDNA oncentration in the lymphoid neoplasia group was significantly elevated among all neoplastic groups. Dogs with neoplasia and a plasma cfDNA concentration above 1,247.5 μg/L had shorter survival rates than those with levels below this threshold (26.5 vs. 86.1%, respectively, P < 0.05). In cases with complete remission in response to chemotherapy, the cfDNA concentration was significantly decreased compared with the first visit, whereas the cfDNA concentration was increased in cases with disease progression or death. Interestingly, a significant correlation was found between lymph node diameter and cfDNA concentration in dogs with multicentric lymphoma (R2 = 0.26, P < 0.01). These data suggest that changes in cfDNA concentration could be used as a diagnostic biomarker for canine neoplasia. Furthermore, increased plasma DNA levels might be associated with shorter survival time, and cfDNA concentrations may reflect the response to chemotherapy.
Collapse
Affiliation(s)
- Jihu Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Hyeona Bae
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Soomin Ahn
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sunwoo Shin
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - ARom Cho
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Kyu-Woan Cho
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Dong-In Jung
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - DoHyeon Yu
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Dolan C, Miller T, Jill J, Terrell J, Kelly TK, Bygott T, Wilson-Robles H. Characterizing circulating nucleosomes in the plasma of dogs with lymphoma. BMC Vet Res 2021; 17:276. [PMID: 34399763 PMCID: PMC8365961 DOI: 10.1186/s12917-021-02991-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nucleosomes consist of DNA wrapped around a histone octamer core like beads on a string so that DNA can be condensed as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death where chromatin is fragmentated and released as mononucleosomes into the blood. The Nu.Q™ H3.1 assay measures total nucleosome concentration in plasma of humans and has been used to detect and identify cancer even at early stages. The objectives of this study were to determine if nucleosome levels could be used to distinguish between healthy dogs and dogs with various stages of lymphoma (LSA) using the Nu.Q™ H3.1 assay. A total of 126 dogs diagnosed with LSA and 134 healthy controls were recruited for this study. Plasma was collected from each dog and stored in K2-EDTA tubes. The LSA patient samples were recruited from TAMU or purchased from various biobanks. All control cases were recruited from TAMU. RESULTS Dogs with LSA had an approximately 7-fold increase in their plasma nucleosome concentrations compared to controls (AUC 87.8%). Nucleosome concentrations increased with cancer stage and dogs with B cell lymphomas had significantly higher nucleosome concentrations than dogs with T cell lymphomas. CONCLUSIONS The Nu.Q™ H3.1 assay was able to reliably detect elevated nucleosome concentrations in the plasma of dogs with LSA. Furthermore, it appears that nucleosomes are useful for differentiating cancer from healthy individuals in canines.
Collapse
Affiliation(s)
- Christopher Dolan
- Small Animal Clinical Sciences Department, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA.
| | - Tasha Miller
- Small Animal Clinical Sciences Department, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA
| | - Jarvis Jill
- Small Animal Clinical Sciences Department, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA
| | - Jason Terrell
- Volition America LLC, 13215 Bee Cave Parkway, Galleria Oaks B, Suite 125, Austin, TX, 78738, USA
| | - Theresa Kathleen Kelly
- Volition America LLC, 13215 Bee Cave Parkway, Galleria Oaks B, Suite 125, Austin, TX, 78738, USA
| | - Thomas Bygott
- Volition Diagnostics UK Ltd, 93-95 Gloucester Place, London, W1U 6JQ, UK
| | - Heather Wilson-Robles
- Small Animal Clinical Sciences Department, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA
| |
Collapse
|
18
|
Chibuk J, Flory A, Kruglyak KM, Leibman N, Nahama A, Dharajiya N, van den Boom D, Jensen TJ, Friedman JS, Shen MR, Clemente-Vicario F, Chorny I, Tynan JA, Lytle KM, Holtvoigt LE, Murtaza M, Diaz LA, Tsui DWY, Grosu DS. Horizons in Veterinary Precision Oncology: Fundamentals of Cancer Genomics and Applications of Liquid Biopsy for the Detection, Characterization, and Management of Cancer in Dogs. Front Vet Sci 2021; 8:664718. [PMID: 33834049 PMCID: PMC8021921 DOI: 10.3389/fvets.2021.664718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of death in dogs, in part because many cases are identified at an advanced stage when clinical signs have developed, and prognosis is poor. Increased understanding of cancer as a disease of the genome has led to the introduction of liquid biopsy testing, allowing for detection of genomic alterations in cell-free DNA fragments in blood to facilitate earlier detection, characterization, and management of cancer through non-invasive means. Recent discoveries in the areas of genomics and oncology have provided a deeper understanding of the molecular origins and evolution of cancer, and of the "one health" similarities between humans and dogs that underlie the field of comparative oncology. These discoveries, combined with technological advances in DNA profiling, are shifting the paradigm for cancer diagnosis toward earlier detection with the goal of improving outcomes. Liquid biopsy testing has already revolutionized the way cancer is managed in human medicine - and it is poised to make a similar impact in veterinary medicine. Multiple clinical use cases for liquid biopsy are emerging, including screening, aid in diagnosis, targeted treatment selection, treatment response monitoring, minimal residual disease detection, and recurrence monitoring. This review article highlights key scientific advances in genomics and their relevance for veterinary oncology, with the goal of providing a foundational introduction to this important topic for veterinarians. As these technologies migrate from human medicine into veterinary medicine, improved awareness and understanding will facilitate their rapid adoption, for the benefit of veterinary patients.
Collapse
Affiliation(s)
| | | | | | - Nicole Leibman
- The Cancer Institute, Animal Medical Center, New York, NY, United States
| | | | | | | | | | | | - M. Richard Shen
- RS Technology Ventures LLC., Rancho Santa Fe, CA, United States
| | | | | | | | | | | | - Muhammed Murtaza
- Department of Surgery and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | |
Collapse
|
19
|
Prouteau A, Denis JA, De Fornel P, Cadieu E, Derrien T, Kergal C, Botherel N, Ulvé R, Rault M, Bouzidi A, François R, Dorso L, Lespagnol A, Devauchelle P, Abadie J, André C, Hédan B. Circulating tumor DNA is detectable in canine histiocytic sarcoma, oral malignant melanoma, and multicentric lymphoma. Sci Rep 2021; 11:877. [PMID: 33441840 PMCID: PMC7806858 DOI: 10.1038/s41598-020-80332-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has become an attractive biomarker in human oncology, and its use may be informative in canine cancer. Thus, we used droplet digital PCR or PCR for antigen receptor rearrangement, to explore tumor-specific point mutations, copy number alterations, and chromosomal rearrangements in the plasma of cancer-affected dogs. We detected ctDNA in 21/23 (91.3%) of histiocytic sarcoma (HS), 2/8 (25%) of oral melanoma, and 12/13 (92.3%) of lymphoma cases. The utility of ctDNA in diagnosing HS was explored in 133 dogs, including 49 with HS, and the screening of recurrent PTPN11 mutations in plasma had a specificity of 98.8% and a sensitivity between 42.8 and 77% according to the clinical presentation of HS. Sensitivity was greater in visceral forms and especially related to pulmonary location. Follow-up of four dogs by targeting lymphoma-specific antigen receptor rearrangement in plasma showed that minimal residual disease detection was concordant with clinical evaluation and treatment response. Thus, our study shows that ctDNA is detectable in the plasma of cancer-affected dogs and is a promising biomarker for diagnosis and clinical follow-up. ctDNA detection appears to be useful in comparative oncology research due to growing interest in the study of natural canine tumors and exploration of new therapies.
Collapse
Affiliation(s)
- Anaïs Prouteau
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Jérôme Alexandre Denis
- Sorbonne University, Paris, France.,INSERM UMR_S 938, Endocrinology and Oncology Biochemistry Department, APHP Pitié-Salpêtrière Hospital, Paris, France
| | | | - Edouard Cadieu
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Camille Kergal
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Nadine Botherel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Ronan Ulvé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Mélanie Rault
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | | | | | - Laetitia Dorso
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Alexandra Lespagnol
- Laboratory of Somatic Genetic of Cancers, Hospital of Rennes, Rennes, France
| | | | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Catherine André
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Benoît Hédan
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France.
| |
Collapse
|
20
|
Krogh AKH, Lyngby JG, Bjørnvad CR, Nielsen LN. Presence of nucleosomes in plasma and increased thrombin generation in dogs with acute and chronic gastroenteropathies. Res Vet Sci 2020; 135:504-510. [PMID: 33243453 DOI: 10.1016/j.rvsc.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Neutrophil extracellular traps (NETs) which contain nucleosomes protect the host by eliminating extracellular pathogens. However, any inflammatory stimuli can activate NETs and eventually lead to an immune overreaction leading to autoimmune diseases and thrombosis. Acute/chronic gastroenteropathies(aGE/cGE) are prevalent in dogs, and are associated with a strong inflammatory component. The aim of this study was to investigate if dogs with aGE and cGE have increased concentrations of nucleosomes indicative of NETs formation, and whether increased concentrations of nucleosomes are associated with hypercoagulability determined by increased thrombin generation. Twenty-six dogs were enrolled. The dogs were healthy (n = 11), or presented with aGE(n = 7) or cGE(n = 8). Minimum database including CRP, APTT, PT and fibrinogen, was obtained from all dogs. Citrated plasma was batched and used for subsequent analyses. Nucleosome concentration was analysed using a Cell-Death Detection ELISA-kit and thrombin generation by a calibrated automated thrombogram assay. No statistical differences in nucleosome concentrations were present between the groups. Although a numerically increased concentration of nucleosomes where seen in dogs with aGE(median;range) (0.019 AU;0.003-0.088) and cGE(0.023 AU;0.011-0.256) compared to controls(0.007 AU;0.003-0.042). One dog with GI-lymphoma demonstrated a markedly increased concentration of nucleosomes (0.256 AU). Dogs with aGE showed increased thrombin generation by increased peak (p = 0.03) and endogenous thrombin potential (p = 0.03); and increased CRP (p = 0.001), fibrinogen (p = 0.0002) and prolonged APTT (p = 0.03) compared to controls. This proof of concept study demonstrates that dogs with aGE and cGE have presence of nucleosomes with marked increase in one dog with GI-lymphoma. Nucleosomes might be linked to haemostatic alterations in dogs with inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- A K H Krogh
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - J G Lyngby
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - C R Bjørnvad
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - L N Nielsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Amirkhani Namagerdi A, d'Angelo D, Ciani F, Iannuzzi CA, Napolitano F, Avallone L, De Laurentiis M, Giordano A. Triple-Negative Breast Cancer Comparison With Canine Mammary Tumors From Light Microscopy to Molecular Pathology. Front Oncol 2020; 10:563779. [PMID: 33282730 PMCID: PMC7689249 DOI: 10.3389/fonc.2020.563779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Many similar characteristics in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression, and response to standard therapies have promoted the approval of this comparative model as an alternative to mice. Breast cancer represents the second most frequent neoplasm in humans after lung cancer. Triple-negative breast cancers (TNBC) constitute around 15% of all cases of breast cancer and do not express estrogen receptor (ER), progesterone receptor (PR), and do not overexpress human epidermal growth factor receptor 2 (HER2). As a result, they do not benefit from hormonal or trastuzumab-based therapy. Patients with TNBC have worse overall survival than patients with non-TNBC. Lehmann and collaborators described six different molecular subtypes of TNBC which further demonstrated its transcriptional heterogeneity. This six TNBC subtype classification has therapeutic implications. Breast cancer is the second most frequent neoplasm in sexually intact female dogs after skin cancer. Canine mammary tumors are a naturally occurring heterogeneous group of cancers that have several features in common with human breast cancer (HBC). These similarities include etiology, signaling pathway activation, and histological classification. Molecularly CMTs are more like TNBCs, and therefore dogs are powerful spontaneous models of cancer to test new therapeutic approaches, particularly for human TNBCs. More malignant tumors of the breast are more often ER and PR negative in both humans and dogs. Promising breast cancer biomarkers in both humans and canines are cancer-associated stroma (CAS), circulating tumor cells and tumor DNA (ctDNA), exosomes and miRNAs, and metabolites.
Collapse
Affiliation(s)
| | - Danila d'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,CCEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Michelino De Laurentiis
- Breast Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Antonio Giordano
- Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
22
|
Wilson-Robles H, Miller T, Jarvis J, Terrell J, Dewsbury N, Kelly T, Herzog M, Bygott T, Hardat N, Michel G. Evaluation of nucleosome concentrations in healthy dogs and dogs with cancer. PLoS One 2020; 15:e0236228. [PMID: 32866177 PMCID: PMC7458307 DOI: 10.1371/journal.pone.0236228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Nucleosomes consist of small fragments of DNA wrapped around a histone octamer core. Diseases such as cancer or inflammation lead to cell death, which causes fragmentation and release of nucleosomes into the blood. The Nu.Q™ technology measures circulating nucleosome levels and exploits the different compositions of cancer derived nucleosomes in blood to detect and identify cancer even at early stages. The objectives of this study are to identify the optimal sample type for the Nu.Q™ H3.1 assay and to determine if it can accurately detect nucleosomes in the blood of healthy canines as well as those with cancer. MATERIALS AND METHODS Blood samples from healthy canine volunteers as well as dogs newly diagnosed with lymphoma were used. The blood was processed at a variety of times under a variety of conditions to determine the most reliable sample type and conditions, and to develop an appropriate processing strategy to ensure reliably accurate results. RESULTS Nucleosomes could be detected using a variety of sample collection and processing protocols. Nucleosome signals were highest in EDTA plasma and serum samples and most consistent in plasma. Samples should be processed within an hour of collection. Experiments showed that samples were able to withstand several freeze thaw cycles. Processing time and tcollection tube type did affect nucleosome detection levels. Finally, significantly elevated concentrations of nucleosomes were seen in a small cohort of dogs that had been newly diagnosed with lymphoma. CONCLUSIONS When samples are collected and processed appropriately, the Nu.Q™ platform can reliably detect nucleosomes in the plasma of dogs. Further testing is underway to validate and optimize the Nu.Q™ platform for veterinary use.
Collapse
Affiliation(s)
- Heather Wilson-Robles
- Small Animal Clinical Sciences Department, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Tasha Miller
- Small Animal Clinical Sciences Department, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jill Jarvis
- Small Animal Clinical Sciences Department, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jason Terrell
- Volition America & Volition Veterinary Diagnostic Development, Austin, Texas, United States of America
| | - Nathan Dewsbury
- Volition America & Volition Veterinary Diagnostic Development, Austin, Texas, United States of America
| | - Terry Kelly
- Volition America & Volition Veterinary Diagnostic Development, Austin, Texas, United States of America
| | | | | | | | | |
Collapse
|
23
|
Liu Q, Ma J, Deng H, Huang SJ, Rao J, Xu WB, Huang JS, Sun SQ, Zhang L. Cardiac-specific methylation patterns of circulating DNA for identification of cardiomyocyte death. BMC Cardiovasc Disord 2020; 20:310. [PMID: 32600304 PMCID: PMC7322904 DOI: 10.1186/s12872-020-01587-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Correct detection of human cardiomyocyte death is essential for definitive diagnosis and appropriate management of cardiovascular diseases. Although current strategies have proven utility in clinical cardiology, they have some limitations. Our aim was to develop a new approach to monitor myocardial death using methylation patterns of circulating cell-free DNA (cf-DNA). METHODS We first examined the methylation status of FAM101A in heart tissue and blood of individual donors using quantitative methylation-sensitive PCR (qMS-PCR). The concentrations and kinetics of cardiac cf-DNA in plasma from five congenital heart disease (CHD) children before and after they underwent cardiac surgery at serial time points were then investigated. RESULTS We identified demethylated FAM101A specifically present in heart tissue. Importantly, our time course experiments demonstrated that the plasma cardiac cf-DNA level increased quickly during the early post-cardiac surgery phase, peaking at 4-6 h, decreased progressively (24 h) and returned to baseline (72 h). Moreover, cardiac cf-DNA concentrations pre- and post-operation were closely correlated with plasma troponin levels. CONCLUSIONS We proposed a novel strategy for the correct detection of cardiomyocyte death, based on analysis of plasma cf-DNA carrying the cardiac-specific methylation signature. Our pilot study may lead to new tests for human cardiac pathologies.
Collapse
Affiliation(s)
- Qin Liu
- Cardiac center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Jian Ma
- Translational medicine center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Hua Deng
- Translational medicine center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Shu-Jun Huang
- Translational medicine center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Jiao Rao
- Cardiac center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Wei-Bin Xu
- Cardiac center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Jing-Si Huang
- Cardiac center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Shan-Quan Sun
- Cardiac center, Guangdong Women and Children Hospital, Guangzhou, 511400, China.
| | - Liang Zhang
- Translational medicine center, Guangdong Women and Children Hospital, Guangzhou, 511400, China.
| |
Collapse
|
24
|
Quantitative analysis of the BRAF V595E mutation in plasma cell-free DNA from dogs with urothelial carcinoma. PLoS One 2020; 15:e0232365. [PMID: 32330187 PMCID: PMC7182225 DOI: 10.1371/journal.pone.0232365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022] Open
Abstract
Circulating tumor DNA (ctDNA), which carries tumor-specific mutations, is an emerging candidate biomarker for malignancies and for monitoring disease status in various human tumors. Recently, BRAF V595E mutation has been reported in 80% of dogs with urothelial carcinoma. This study investigates the BRAF V595E allele concentration in circulating cell-free DNA (cfDNA) and assesses the clinical significance of BRAF-mutated ctDNA levels in canines with urothelial carcinoma. A total of 15 dogs with urothelial carcinoma were included. cfDNA concentration was measured using a real-time polymerase chain reaction (PCR) of the LINE-1 gene. To measure the concentration of the mutated BRAF gene in cfDNA, allele-specific real-time PCR with a locked nucleic acid probe was performed. BRAF mutations were detected in 11 (73%) of the 15 tested tumor samples. BRAF-mutated ctDNA concentrations were significantly higher in dogs with the BRAF mutation (14.05 ± 13.51 ng/ml) than in wild-type dogs (0.21 ± 0.41 ng/ml) (p = 0.031). The amount of BRAF-mutated ctDNA in plasma increased with disease progression and responded to treatment. Our results show that BRAF-mutated ctDNA can be detected using allele-specific real-time PCR in plasma samples of canines with urothelial carcinoma with the BRAF V595E mutation. This ctDNA analysis may be a potentially useful tool for monitoring the progression of urothelial carcinoma and its response to treatment.
Collapse
|
25
|
Electrochemotherapy induces tumor regression and decreases the proliferative index in canine cutaneous squamous cell carcinoma. Sci Rep 2019; 9:15819. [PMID: 31676831 PMCID: PMC6825193 DOI: 10.1038/s41598-019-52461-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/13/2019] [Indexed: 12/29/2022] Open
Abstract
Canine cutaneous squamous cell carcinoma (cSCC) is the most common skin cancer in dogs, and, due to its low metastatic rate, local treatments, such as electrochemotherapy (ECT), promote disease control or even complete remission (CR). This study aimed to evaluate the gene and protein expression of Bcl-2 and Bcl-2 associated X protein (BAX), the proliferative index and clinical parameters in dogs with cSCC subjected to ECT. A prospective nonrandomized clinical study was performed using dogs with naturally occurring cSCC that was treated with ECT. Eighteen lesions from 11 dogs were selected. The tumor size at day 0 (D0) had no impact on survival or prognosis (P > 0.05). Tumor samples had a lower proliferative index after ECT (D21) than before ECT (P = 0.031). The survival of subjects with Ki67 values lower and higher than the Ki67 median value were not significantly different (P > 0.05). Regarding apoptotic markers, there were no significant differences in the gene and protein expression levels of BAX or Bcl-2 at D0 and D21 (P > 0.05) or in the overall survival of subjects with different levels of apoptotic markers. In conclusion, there was no change in BAX or Bcl-2 gene and protein expression in response to ECT at the time points evaluated, but ECT was able to reduce tumor volume and cellular proliferation in cSCC.
Collapse
|
26
|
Tagawa M, Shimbo G, Inokuma H, Miyahara K. Quantification of plasma cell-free DNA levels in dogs with various tumors. J Vet Diagn Invest 2019; 31:836-843. [PMID: 31585514 DOI: 10.1177/1040638719880245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) is extracellular DNA released into the bloodstream by apoptotic or necrotic tumor cells, with cfDNA determination proposed as a noninvasive, sensitive marker for the diagnosis of human cancer. We evaluated cfDNA quantification as a diagnostic and prognostic tool in dogs with various tumors. We quantified plasma cfDNA concentration by absolute real-time PCR of long interspersed nuclear elements in 50 dogs with malignant tumors, 13 dogs with benign tumors or nodules, and 11 healthy controls. Six patients with malignant tumors were followed-up, and plasma cfDNA was quantified throughout disease progression. We found that plasma cfDNA concentrations were significantly elevated in dogs with malignant tumors compared with dogs with benign nodules or healthy controls. The DNA integrity index (the ratio between long and short cfDNA fragments) was significantly lower in dogs with malignant tumors compared to healthy controls. Significantly higher cfDNA levels and a lower DNA integrity index were observed in dogs with lymphoma or leukemia, hemangiosarcoma, and distant metastasis; cfDNA levels correlated well with clinical stage and tended to increase during or before periods of disease progression, suggesting potential efficacy of cfDNA for the detection of distant metastasis and to monitor the clinical stage of neoplasia.
Collapse
Affiliation(s)
- Michihito Tagawa
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Genya Shimbo
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hisashi Inokuma
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kazuro Miyahara
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
27
|
Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-Extracellular Traps, Cell-Free DNA, and Immunothrombosis in Companion Animals: A Review. Vet Pathol 2019; 57:6-23. [PMID: 31342866 DOI: 10.1177/0300985819861721] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunothrombosis is a potentially beneficial physiological process that aids innate immunity and host defense against pathogen invasion. However, this process can also be damaging when it occurs to excess or in critical blood vessels. Formation of extracellular traps by leukocytes, particularly neutrophils, is central to our understanding of immunothrombosis. In addition to degranulation and phagocytosis, extracellular traps are the third mechanism by which neutrophils combat potential pathogens. These traps consist of extracellular DNA decorated with bactericidal cellular proteins, including elastase, myeloperoxidase, and cathepsins. Neutrophils can release these structures as part of a controlled cell-death process or via a process termed vital NETosis that enables the cells to extrude DNA but remain viable. There is accumulating evidence that NETosis occurs in companion animals, including dogs, horses, and cats, and that it actively contributes to pathogenesis. Numerous studies have been published detailing various methods for identification and quantification of extracellular trap formation, including cell-free DNA, measurements of histones and proteins such as high-mobility group box-1, and techniques involving microscopy and flow cytometry. Here, we outline the present understanding of these phenomena and the mechanisms of extracellular trap formation. We critically review the data regarding measurement of NETosis in companion animals, summarize the existing literature on NETosis in veterinary species, and speculate on what therapeutic options these insights might present to clinicians in the future.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Unity Jeffery
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ronald H L Li
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
28
|
Lee KH, Shin TJ, Kim WH, Cho JY. Methylation of LINE-1 in cell-free DNA serves as a liquid biopsy biomarker for human breast cancers and dog mammary tumors. Sci Rep 2019; 9:175. [PMID: 30655558 PMCID: PMC6336845 DOI: 10.1038/s41598-018-36470-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in both women and female dogs. Methylation changes of LINE-1 have been reported in human cancers. The aim of this study was to determine the hypomethylation of canine LINE-1 in liquid biopsies for canine mammary tumors (CMT) and to assess its diagnostic performance in human plasma. BC associated LINE-1 methylation was measured by methylation sensitive (HpaII) and insensitive (MspI) restriction enzyme digestion followed by real-time PCR using the cfDNA isolated from 300 µl of plasma. The relative level of methylated canine LINE-1 was less than 0.4 in the benign and malignant CMTs (0.29 ± 0.061 and 0.39 ± 0.066, respectively) when it was 0.92 ± 0.067 in the healthy controls. The area under the ROC curve (AUC) was significantly high in both benign and malignant tumors (0.97 and 0.93). Furthermore, this approach was also successfully implemented in a set of 26 human BCs with 10 healthy controls (AUC = 0.78). Altogether, our data suggest that the comparative approach using a dog model might be helpful to rapidly develop a new diagnostic biomarker and that the methylation of LINE-1 in cfDNA may be a good target as a diagnostic marker of both human BC and CMT.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Tae-Jin Shin
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Wan-Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
29
|
Andriamanampisoa CL, Bancaud A, Boutonnet-Rodat A, Didelot A, Fabre J, Fina F, Garlan F, Garrigou S, Gaudy C, Ginot F, Henaff D, Laurent-Puig P, Morin A, Picot V, Saias L, Taly V, Tomasini P, Zaanan A. BIABooster: Online DNA Concentration and Size Profiling with a Limit of Detection of 10 fg/μL and Application to High-Sensitivity Characterization of Circulating Cell-Free DNA. Anal Chem 2018; 90:3766-3774. [PMID: 29498256 DOI: 10.1021/acs.analchem.7b04034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe a technology to perform sizing and concentration analysis of double stranded DNA with a sensitivity of 10 fg/μL in an operating time of 20 min. The technology is operated automatically on a commercial capillary electrophoresis instrument using electro-hydrodynamic actuation. It relies on a new capillary device that achieves online concentration of DNA at the junction between two capillaries of different diameters, thanks to viscoelastic lift forces. Using a set of DNA ladders in the range of 100-1500 bp, we report a sizing accuracy and precision better than 3% and a concentration quantification precision of ∼20%. When the technology is applied to the analysis of clinical samples of circulating cell-free DNA (cfDNA), the measured cfDNA concentrations are in good correlation with those measured by digital PCR. Furthermore, the cfDNA size profiles indicate that the fraction of low molecular weight cfDNA in the range of 75-240 bp is a candidate biomarker to discriminate between healthy subjects and cancer patients. We conclude that our technology is efficient in analyzing highly diluted DNA samples and suggest that it will be helpful in translational and clinical research involving cfDNA.
Collapse
Affiliation(s)
| | - Aurélien Bancaud
- LAAS-CNRS , Université de Toulouse, CNRS , 7 Avenue du Colonel Roche , 31400 Toulouse , France
| | | | - Audrey Didelot
- INSERM UMR-S1147, CNRS SNC5014 , Paris Descartes University , 45 rue des Saints-Pères , Paris , France
| | - Jacques Fabre
- Picometrics Technologies , 478 rue de la Découverte , 31 670 Labège , France
| | - Frédéric Fina
- Laboratoire de Biologie Médicale, Unité de développement technologique , Timone, Assistance Publique Hôpitaux de Marseille , 13005 Marseille , France.,ID-Solutions , 310 rue Louis Pasteur , 34790 Grabels , France.,Service d'Anatomie Pathologique et Neuropathologie, Timone II , Assistance Publique Hôpitaux de Marseille , 13005 Marseille , France
| | - Fanny Garlan
- INSERM UMR-S1147, CNRS SNC5014 , Paris Descartes University , 45 rue des Saints-Pères , Paris , France
| | - Sonia Garrigou
- INSERM UMR-S1147, CNRS SNC5014 , Paris Descartes University , 45 rue des Saints-Pères , Paris , France
| | - Caroline Gaudy
- Service de Dermatologie, Vénéréologie et Cancérologie cutanée , Timone, Assistance Publique Hôpitaux de Marseille , 13005 Marseille , France
| | - Frédéric Ginot
- Picometrics Technologies , 478 rue de la Découverte , 31 670 Labège , France
| | - Daniel Henaff
- ID-Solutions , 310 rue Louis Pasteur , 34790 Grabels , France
| | - Pierre Laurent-Puig
- INSERM UMR-S1147, CNRS SNC5014 , Paris Descartes University , 45 rue des Saints-Pères , Paris , France.,Department of Digestive Oncology , European Georges Pompidou Hospital, AP-HP , 20 Rue Leblanc , 75015 Paris , France
| | - Arnaud Morin
- Picometrics Technologies , 478 rue de la Découverte , 31 670 Labège , France
| | - Vincent Picot
- Picometrics Technologies , 478 rue de la Découverte , 31 670 Labège , France
| | - Laure Saias
- Picometrics Technologies , 478 rue de la Découverte , 31 670 Labège , France
| | - Valérie Taly
- INSERM UMR-S1147, CNRS SNC5014 , Paris Descartes University , 45 rue des Saints-Pères , Paris , France
| | - Pascale Tomasini
- Multidisciplinary Oncology & Therapeutic Innovations Department , Aix Marseille University, Assistance Publique Hôpitaux de Marseille , Hôpital Nord, 13015 Marseille , France
| | - Aziz Zaanan
- INSERM UMR-S1147, CNRS SNC5014 , Paris Descartes University , 45 rue des Saints-Pères , Paris , France.,Department of Digestive Oncology , European Georges Pompidou Hospital, AP-HP , 20 Rue Leblanc , 75015 Paris , France
| |
Collapse
|
30
|
Hunt H, Cave N, Bridges J, Gedye K, Hill K. Plasma NT-proBNP and Cell-Free DNA Concentrations after Prolonged Strenuous Exercise in Working Farm Dogs. J Vet Intern Med 2018; 32:135-141. [PMID: 29197094 PMCID: PMC5787186 DOI: 10.1111/jvim.14835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/26/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration is increased in dogs with myocardial dysfunction, and cell-free DNA (cfDNA) increases in numerous disease states. In humans, both of these biomarkers can be altered after endurance exercise. OBJECTIVE To investigate the effect of prolonged strenuous exercise on circulating NT-proBNP and cfDNA concentrations in working farm dogs. ANIMALS Six healthy, privately owned working farm dogs (4 Huntaways and 2 heading dogs) from the same hill country farm in New Zealand. METHODS Prospective, nonrandomised cohort study. Venous blood samples were collected before and after the dogs worked over 4 days. Plasma NT-proBNP concentrations were measured by a commercially available ELISA assay and cfDNA concentrations were determined by fluorometry without prior DNA extraction. RESULTS The baseline (before work, Day 1) median plasma NT-proBNP concentration was 664 pmol/L. A linear mixed-effects model showed that work increased plasma NT-proBNP concentrations by 101 ± 9% (P < 0.001), but with each consecutive day of work, NT-proBNP concentrations declined by 16 ± 4% (P < 0.001). The baseline median plasma cfDNA concentration was 653 ng/mL, and plasma cfDNA concentrations increased by 138 ± 45 ng/mL after work (P = 0.004). CONCLUSIONS AND CLINICAL IMPORTANCE The plasma concentration of NT-proBNP in healthy Huntaways and heading dogs after work can exceed the upper limit of the reference range. Results in dogs sampled on the day of prolonged strenuous exercise should be interpreted with caution. Plasma concentrations of cfDNA also increase with exercise, but further studies are needed to establish reference ranges in healthy dogs.
Collapse
Affiliation(s)
- H. Hunt
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - N. Cave
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - J. Bridges
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - K. Gedye
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - K. Hill
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
31
|
Wilson IJ, Burchell RK, Worth AJ, Burton SE, Gedye KR, Clark KJ, Crosse KR, Jack M, Odom TF, De Grey SJ, McGlade KMS, Tomlin SC, Lopez-Villalobos N, Gal A. Kinetics of Plasma Cell-Free DNA and Creatine Kinase in a Canine Model of Tissue Injury. J Vet Intern Med 2017; 32:157-164. [PMID: 29230875 PMCID: PMC5787206 DOI: 10.1111/jvim.14901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Cell‐free DNA (cfDNA) comprises short, double‐stranded circulating DNA sequences released from damaged cells. In people, cfDNA concentrations correlate well with disease severity and tissue damage. No reports are available regarding cfDNA kinetics in dogs. Objectives/Hypothesis Cell‐free DNA will have a short biological half‐life and would be able to stratify mild, moderate, and severe tissue injury. Our study aims were to determine the kinetics and biological half‐life of cfDNA and to contrast them with those of creatine kinase (CK). Animals Three groups of 10 dogs undergoing open ovariohysterectomy, surgery for cranial cruciate ligament rupture (CCLR), or hemilaminectomy. Methods Plasma for cfDNA and CK analysis was collected at admission, at induction of anesthesia, postsurgery (time 0) and at 6, 12, 24, 36, 48, 60, and 72 hours after surgery. Results The biological half‐life of plasma cfDNA and CK were 5.64 hours (95% confidence interval [CI 95], 4.36–7.98 hours) and 28.7 hours (CI95, 25.3–33.3 hours), respectively. In the hemilaminectomy group, cfDNA concentrations differed significantly from admission at 6–12 hours after surgery. Creatine kinase activity differed among the surgical groups and reached a peak 6 hours after surgery. In the ovariohysterectomy and CCLR groups, plasma CK activity 72 hours after surgery did not differ from admission activity of the ovariohysterectomy group. In contrast, in the hemilaminectomy group, plasma CK activity after 72 hours did not return to the ovariohysterectomy group admission activity. Conclusions and Clinical Importance Plasma CK activity has a longer biological half‐life than previously thought. In contrast to plasma CK activity, cfDNA has a short half‐life and could be a useful marker for peracute severe tissue injury.
Collapse
Affiliation(s)
- I J Wilson
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - R K Burchell
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - A J Worth
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - S E Burton
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - K R Gedye
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - K J Clark
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - K R Crosse
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - M Jack
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - T F Odom
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - S J De Grey
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - K M S McGlade
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - S C Tomlin
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - N Lopez-Villalobos
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - A Gal
- School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|