1
|
Christ A, Maas SL, Jin H, Lu C, Legein B, Wijnands E, Temmerman L, Otten J, Isaacs A, Zenke M, Stoll M, Biessen EAL, van der Vorst EPC. In situ lipid-loading activates peripheral dendritic cell subsets characterized by cellular ROS accumulation but compromises their capacity to prime naïve T cells. Free Radic Biol Med 2024; 210:406-415. [PMID: 38061606 DOI: 10.1016/j.freeradbiomed.2023.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND AND AIMS Dendritic cells (DCs), professional antigen-presenting cells, play an important role in pathologies by controlling adaptive immune responses. However, their adaptation to and functionality in hypercholesterolemia, a driving factor in disease onset and progression of atherosclerosis remains to be established. METHODS In this study, we addressed the immediate impact of high fat diet-induced hypercholesterolemia in low-density lipoprotein receptor deficient (Ldlr-/-) mice on separate DC subsets, their compartmentalization and functionality. RESULTS While hypercholesterolemia induced a significant rise in bone marrow myeloid and dendritic cell progenitor (MDP) frequency and proliferation rate after high fat diet feeding, it did not affect DC subset numbers in lymphoid tissue. Hypercholesterolemia led to almost immediate and persistent augmentation in granularity of conventional DCs (cDCs), in particular cDC2, reflecting progressive lipid accumulation by these subsets. Plasmacytoid DCs were only marginally and transiently affected. Lipid loading increased co-stimulatory molecule expression and ROS accumulation by cDC2. Despite this hyperactivation, lipid-laden cDC2 displayed a profoundly reduced capacity to stimulate naïve CD4+ T cells. CONCLUSION Our data provide evidence that in hypercholesterolemic conditions, peripheral cDC2 subsets engulf lipids in situ, leading to a more activated status characterized by cellular ROS accumulation while, paradoxically, compromising their T cell priming ability. These findings will have repercussions not only for lipid driven cardiometabolic disorders like atherosclerosis, but also for adaptive immune responses to pathogens and/or endogenous (neo) antigens under conditions of hyperlipidemia.
Collapse
Affiliation(s)
- Anette Christ
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Health Office Frankfurt/Main, Frankfurt/Main, Germany.
| | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Han Jin
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bart Legein
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Erwin Wijnands
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jeroen Otten
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany; Department of Hematology, Oncology and Stem Cell Transplantation, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Monika Stoll
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Genetic Epidemiology, Institute for Human Genetics, Westfälische Wilhelms-University, Münster, Germany
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Emiel P C van der Vorst
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
2
|
Castellan FS, Irie N. Postnatal depletion of maternal cells biases T lymphocytes and natural killer cells' profiles toward early activation in the spleen. Biol Open 2022; 11:bio059334. [PMID: 36349799 PMCID: PMC9672855 DOI: 10.1242/bio.059334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/11/2022] [Indexed: 08/27/2023] Open
Abstract
The maternal cells transferred into the fetus during gestation persist long after birth in the progeny. These maternal cells have been hypothesized to promote the maturation of the fetal immune system in utero but there are still significant gaps in our knowledge of their potential roles after birth. To provide insights into these maternal cells' postnatal functional roles, we set up a transgenic mouse model to specifically eliminate maternal cells in the neonates by diphtheria toxin injection and confirmed significant depletion in the spleens. We then performed immunophenotyping of the spleens of two-week-old pups by mass cytometry to pinpoint the immune profile differences driven by the depletion of maternal cells in early postnatal life. We observed a heightened expression of markers related to activation and maturation in some natural killer and T cell populations. We hypothesize these results to indicate a potential postnatal regulation of lymphocytic responses by maternal cells. Together, our findings highlight an immunological influence of maternal microchimeric cells postnatally, possibly protecting against adverse hypersensitivity reactions of the neonate at a crucial time of new encounters with self and environmental antigens.
Collapse
Affiliation(s)
- Flore S. Castellan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
hMRP8-ATTAC Mice: A New Model for Conditional and Reversible Neutrophil Ablation. Cells 2022; 11:cells11152346. [PMID: 35954190 PMCID: PMC9367557 DOI: 10.3390/cells11152346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are not only crucial immune cells for the neutralization of pathogens during infections, but they are also key players in tissue repair and cancer. Several methods are available to investigate the in vivo role of neutrophils in these conditions, including the depletion of neutrophils with neutralizing antibodies against Ly6G, or the blockade of neutrophil recruitment with CXCR2 inhibitors. A limited number of transgenic mouse models were generated that rely on the disruption of genes important for neutrophil development or on the injection of diphtheria toxin to induce neutrophil ablation. However, these methods have various limitations, including a lack of neutrophil specificity, a lack of long-term efficacy, or a lack of the ability to conditionally deplete neutrophils. Therefore, we generated a transgenic mouse model for the inducible and reversible ablation of neutrophils using the ATTAC (Apoptosis Through Targeted Activation of Caspase 8) approach. With the ATTAC strategy, which relies on the expression of the caspase 8-FKBP fusion protein, apoptosis is induced upon administration of a chemical dimerizer (FK506 analogue) that facilitates the dimerization and activation of caspase 8. In order to achieve specific neutrophil depletion, we cloned the ATTAC construct under the human migration inhibitory factor-related protein 8 (hMRP8) promotor. The newly generated hMRP8-ATTAC mice expressed high levels of the transgene in neutrophils, and, as a consequence, dimerizer injection induced an efficient reduction of neutrophil levels in all the organs analyzed under homeostatic conditions. In situations with extensive pressure on the bone marrow to mobilize neutrophils, for instance in the context of cancer, effective neutrophil depletion in this model requires further optimization. In conclusion, we here describe the generation and characterization of a new transgenic model for conditional neutrophil ablation and highlight the need to improve the ATTAC strategy for the depletion of large numbers of rapidly generated short-lived cells, such as neutrophils.
Collapse
|
4
|
Yousif AS, Ronsard L, Shah P, Omatsu T, Sangesland M, Bracamonte Moreno T, Lam EC, Vrbanac VD, Balazs AB, Reinecker HC, Lingwood D. The persistence of interleukin-6 is regulated by a blood buffer system derived from dendritic cells. Immunity 2020; 54:235-246.e5. [PMID: 33357409 PMCID: PMC7836640 DOI: 10.1016/j.immuni.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.
Collapse
Affiliation(s)
- Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Pankaj Shah
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Tatsushi Omatsu
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Evan C Lam
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vladimir D Vrbanac
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Hans-Christian Reinecker
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; The Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Sun L, Zhang W, Zhao Y, Wang F, Liu S, Liu L, Zhao L, Lu W, Li M, Xu Y. Dendritic Cells and T Cells, Partners in Atherogenesis and the Translating Road Ahead. Front Immunol 2020; 11:1456. [PMID: 32849502 PMCID: PMC7403484 DOI: 10.3389/fimmu.2020.01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic process associated with arterial inflammation, the accumulation of lipids, plaque formation in vessel walls, and thrombosis with late mortal complications such as myocardial infarction and ischemic stroke. Immune and inflammatory responses have significant effects on every phase of atherosclerosis. Increasing evidence has shown that both innate and adaptive “arms” of the immune system play important roles in regulating the progression of atherosclerosis. Accumulating evidence suggests that a unique type of innate immune cell, termed dendritic cells (DCs), play an important role as central instigators, whereas adaptive immune cells, called T lymphocytes, are crucial as active executors of the DC immunity in atherogenesis. These two important immune cell types work in pairs to establish pro-atherogenic or atheroprotective immune responses in vascular tissues. Therefore, understanding the role of DCs and T cells in atherosclerosis is extremely important. Here, in this review, we will present a complete overview, based on existing knowledge of these two cell types in the atherosclerotic microenvironment, and discuss some of the novel means of targeting DCs and T cells as therapeutic tactics for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Shan Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Wei Lu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Minghui Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Vozenilek AE, Navratil AR, Green JM, Coleman DT, Blackburn CMR, Finney AC, Pearson BH, Chrast R, Finck BN, Klein RL, Orr AW, Woolard MD. Macrophage-Associated Lipin-1 Enzymatic Activity Contributes to Modified Low-Density Lipoprotein-Induced Proinflammatory Signaling and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 38:324-334. [PMID: 29217509 DOI: 10.1161/atvbaha.117.310455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis. Lipin-1, a key enzyme in the glycerolipid synthesis pathway, contributes to modLDL-elicited macrophage proinflammatory responses in vitro. The objective of this study was to determine whether macrophage-associated lipin-1 contributes to atherogenesis and to assess its role in modLDL-mediated signaling in macrophages. APPROACH AND RESULTS We developed mice lacking lipin-1 in myeloid-derived cells and used adeno-associated viral vector 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (adeno-associated viral vector 8-proprotein convertase subtilisin/kexin type 9) to induce hypercholesterolemia and plaque formation. Mice lacking myeloid-associated lipin-1 had reduced atherosclerotic burden compared with control mice despite similar plasma lipid levels. Stimulation of bone marrow-derived macrophages with modLDL activated a persistent protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributed to macrophage proinflammatory responses that was dependent on lipin-1 enzymatic activity. CONCLUSIONS Our data demonstrate that macrophage-associated lipin-1 is atherogenic, likely through persistent activation of a protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributes to foam cell proinflammatory responses. Taken together, these results suggest that modLDL-induced foam cell formation and modLDL-induced macrophage proinflammatory responses are not independent consequences of modLDL stimulation but rather are both directly influenced by enhanced lipid synthesis.
Collapse
Affiliation(s)
- Aimee E Vozenilek
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Aaron R Navratil
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Jonette M Green
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - David T Coleman
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Cassidy M R Blackburn
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Alexandra C Finney
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brenna H Pearson
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Roman Chrast
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brian N Finck
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Ronald L Klein
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - A Wayne Orr
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Matthew D Woolard
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.).
| |
Collapse
|
8
|
Gil-Pulido J, Zernecke A. Antigen-presenting dendritic cells in atherosclerosis. Eur J Pharmacol 2017; 816:25-31. [DOI: 10.1016/j.ejphar.2017.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
|
9
|
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play a pivotal role in the pathogenesis of periodontitis. The use of animal models to study the role of DCs in periodontitis has been limited by lack of a method for sustained depletion of DCs. Hence, the objectives of this study were to validate the zDC-DTR knockin mouse model of conventional DCs (cDCs) depletion, as well as to investigate whether this depletion could be sustained long enough to induce alveolar bone loss in this model. zDC-DTR mice were treated with different dose regimens of diphtheria toxin (DT) to determine survival rate. A loading DT dose of 20ng/bw, followed and maintained with doses of 10ng/bm every 3days for up to 4weeks demonstrated 80% survival. Animals were weighed weekly and peripheral blood was obtained to confirm normal neutrophil counts. Five animals per group were euthanized at baseline, 24h, 1 and 4weeks. Bone marrow (BM), spleen (SP) and gingival tissue (GT) were harvested, and cells were isolated, separated and stained for Pre-DCs precursors (CD45R-MHCII+CD11c+Flt3+CD172a+) in BM, cDCs (CD11c+MHCII+CD209+) in spleen, and DCs in GT (CD45R+MHCII+CD11c+ DC-SIGN/CD209+). Pre-DCs in BM were significantly depleted at 24h and depletion maintained for up to 4weeks, as compared to blank (PBS) controls. Circulating cDCs in spleen demonstrated a non-significant trend to deplete in 1week with high variability among mice. GT also showed a similar non-significant trend to deplete in 24h. The zDC-DTR model seems to be viable for evaluating the role of DCs immune homeostasis disruption and alveolar bone loss pathogenesis in response to long-term oral infection.
Collapse
|