1
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Papazoglou A, Henseler C, Weickhardt S, Daubner J, Schiffer T, Broich K, Hescheler J, Ehninger D, Scholl C, Haenisch B, Sachinidis A, Weiergräber M. Whole genome transcriptome data from the WT cortex and hippocampus of female and male control and APP/PS1 Alzheimer's disease mice. Data Brief 2023; 50:109594. [PMID: 37767130 PMCID: PMC10520298 DOI: 10.1016/j.dib.2023.109594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
A variety of Alzheimer disease (AD) mouse models has been established and characterized within the last decades. These models are generated to meet the principal criteria of AD isomorphism, homology and predictability to a maximum extent. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome data analysis turns out to be indispensable. Here, we present a microarray-based transcriptome data collection based on RNA extracted from the retrosplenial (RS) cortex and the hippocampus of APP/PS1 AD mice and control animals. Experimental animals were age matched and importantly, both sexes were considered separately. Isolated RNA was purified, quantified und quality controlled prior to the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8 × 60K microarrays. Following immunofluorescent measurement und preprocessing/extraction of image data, raw transcriptome data were uploaded including differentially expressed gene candidates and related fold changes in APP/PS1 AD mice and controls. Our data allow further insight into alterations in gene transcript levels in APP/PS1 AD mice compared to controls and enable the reader/user to carry out complex transcriptome analysis to characterize potential age-, sex- and brain-region-specific alterations in e.g., neuroinflammatory, immunological, neurodegenerative and ion channel pathways.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
3
|
van Heusden FC, van Nifterick AM, Souza BC, França ASC, Nauta IM, Stam CJ, Scheltens P, Smit AB, Gouw AA, van Kesteren RE. Neurophysiological alterations in mice and humans carrying mutations in APP and PSEN1 genes. Alzheimers Res Ther 2023; 15:142. [PMID: 37608393 PMCID: PMC10464047 DOI: 10.1186/s13195-023-01287-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. METHODS We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. RESULTS APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. CONCLUSIONS Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.
Collapse
Affiliation(s)
- Fran C van Heusden
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Bryan C Souza
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands
| | - Arthur S C França
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| | - Ilse M Nauta
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands.
| |
Collapse
|
4
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
5
|
Papazoglou A, Arshaad MI, Siwek ME, Henseler C, Daubner J, Ehninger D, Hescheler J, Broich K, Weiergräber M. Spontaneous long-term and urethane induced hippocampal EEG power, activity and temperature data from mice lacking the Ca v3.2 voltage-gated Ca 2+ channel. Data Brief 2021; 36:107027. [PMID: 33948455 PMCID: PMC8080467 DOI: 10.1016/j.dib.2021.107027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
This article provides raw relative electroencephalographic (EEG) power, temperature and activity data from controls and Cav3.2 deficient mice. Radiotransmitter implantation was carried out in male experimental mice under ketamine/xylazine narcosis. Following a recovery period, radiotelemetric EEG recordings from the hippocampal CA1 region were obtained under spontaneous 24 h long-term conditions and post urethane injection. Relative EEG power values (%) for 2 s epochs were analysed for the following frequency ranges: delta 1 (δ1, 0.5–4 Hz), delta 2 (δ2, 1–4 Hz), theta 1 (θ1, 4–8 Hz), theta 2 (θ2, 4–12 Hz), alpha (α, 8–12 Hz), sigma (σ, 12–16 Hz), beta 1 (β1, 12–30 Hz), beta 2 (β2, 16–24 Hz), beta 3 (β3, 16–30 Hz), gamma low (γlow, 30–50 Hz), gamma mid (γmid, 50–70 Hz), gamma high (γhigh, 70–100 Hz), gamma ripples (γripples, 80–200 Hz), and gamma fast ripples (γfastripples, 200–500 Hz). In addition, subcutaneous temperature and relative activity data were analysed for both the light and dark cycle of two long-term recordings. The same type of data was obtained post urethane injection. Detailed information is provided for the age and body weight of the experimental animals, the technical specifications of the radiofrequency transmitter, the stereotaxic coordinates for the intracerebral, deep and epidural, surface EEG electrodes, the electrode features, the filtering and sampling characteristics, the analysed EEG frequency bands and the data acquisition parameters. EEG power data, temperature and activity data are available at MENDELEY DATA (doi:10.17632/x53km5sby6.1, URL: http://dx.doi.org/10.17632/x53km5sby6.1). Raw EEG data are available at zenodo (https://zenodo.org/).
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Magdalena Elisabeth Siwek
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, Bonn 53127, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne 50931, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
- Corresponding author.
| |
Collapse
|
6
|
Arshaad MI, Siwek ME, Henseler C, Daubner J, Ehninger D, Hescheler J, Sachinidis A, Broich K, Papazoglou A, Weiergräber M. Enhanced hippocampal type II theta activity AND altered theta architecture in mice lacking the Ca v3.2 T-type voltage-gated calcium channel. Sci Rep 2021; 11:1099. [PMID: 33441788 PMCID: PMC7806756 DOI: 10.1038/s41598-020-79763-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
T-type Ca2+ channels are assumed to contribute to hippocampal theta oscillations. We used implantable video-EEG radiotelemetry and qPCR to unravel the role of Cav3.2 Ca2+ channels in hippocampal theta genesis. Frequency analysis of spontaneous long-term recordings in controls and Cav3.2-/- mice revealed robust increase in relative power in the theta (4-8 Hz) and theta-alpha (4-12 Hz) ranges, which was most prominent during the inactive stages of the dark cycles. Urethane injection experiments also showed enhanced type II theta activity and altered theta architecture following Cav3.2 ablation. Next, gene candidates from hippocampal transcriptome analysis of control and Cav3.2-/- mice were evaluated using qPCR. Dynein light chain Tctex-Type 1 (Dynlt1b) was significantly reduced in Cav3.2-/- mice. Furthermore, a significant reduction of GABA A receptor δ subunits and GABA B1 receptor subunits was observed in the septohippocampal GABAergic system. Our results demonstrate that ablation of Cav3.2 significantly alters type II theta activity and theta architecture. Transcriptional changes in synaptic transporter proteins and GABA receptors might be functionally linked to the electrophysiological phenotype.
Collapse
Affiliation(s)
- Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Magdalena Elisabeth Siwek
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
7
|
What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 2020; 85:58-73. [DOI: 10.1016/j.neurobiolaging.2019.09.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
|
8
|
Fu Y, Li L, Wang Y, Chu G, Kong X, Wang J. Role of GABAA receptors in EEG activity and spatial recognition memory in aged APP and PS1 double transgenic mice. Neurochem Int 2019; 131:104542. [DOI: 10.1016/j.neuint.2019.104542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
9
|
Jin N, Lipponen A, Koivisto H, Gurevicius K, Tanila H. Increased cortical beta power and spike-wave discharges in middle-aged APP/PS1 mice. Neurobiol Aging 2018; 71:127-141. [PMID: 30138766 DOI: 10.1016/j.neurobiolaging.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
Amyloid plaque-forming transgenic mice display neuronal hyperexcitability, epilepsy, and sudden deaths in early adulthood. However, it is unknown whether hyperexcitability persists until middle ages when memory impairment manifests. We recorded multichannel video electroencephalography (EEG), local field potentials, and auditory evoked potentials in transgenic mice carrying mutated human amyloid precursor protein (APP) and presenilin-1 (PS1) genes and wild-type littermates at 14-16 months and compared the results with data we have earlier collected from 4-month-old mice. Furthermore, we monitored acoustic startle responses in other APP/PS1 and wild-type mice from 3 to 11 months of age. Independent of the age APP/PS1 mice demonstrated increased cortical power at 8-60 Hz. They also displayed over 5-fold increase in the occurrence of spike-wave discharges and augmented auditory evoked potentials compared with nontransgenic littermates. In contrast to evoked potentials, APP/PS1 mice showed normalization of acoustic startle responses with aging. Increased cortical power and spike-wave discharges provide powerful new biomarkers to monitor progression of amyloid pathology in preclinical intervention studies.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|