1
|
Colgan LA, Parra-Bueno P, Holman HL, Tu X, Jain A, Calubag MF, Misler JA, Gary C, Oz G, Suponitsky-Kroyter I, Okaz E, Yasuda R. Dual Regulation of Spine-Specific and Synapse-to-Nucleus Signaling by PKCδ during Plasticity. J Neurosci 2023; 43:5432-5447. [PMID: 37277178 PMCID: PMC10376934 DOI: 10.1523/jneurosci.0208-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023] Open
Abstract
The activity-dependent plasticity of synapses is believed to be the cellular basis of learning. These synaptic changes are mediated through the coordination of local biochemical reactions in synapses and changes in gene transcription in the nucleus to modulate neuronal circuits and behavior. The protein kinase C (PKC) family of isozymes has long been established as critical for synaptic plasticity. However, because of a lack of suitable isozyme-specific tools, the role of the novel subfamily of PKC isozymes is largely unknown. Here, through the development of fluorescence lifetime imaging-fluorescence resonance energy transfer activity sensors, we investigate novel PKC isozymes in synaptic plasticity in CA1 pyramidal neurons of mice of either sex. We find that PKCδ is activated downstream of TrkB and DAG production, and that the spatiotemporal nature of its activation depends on the plasticity stimulation. In response to single-spine plasticity, PKCδ is activated primarily in the stimulated spine and is required for local expression of plasticity. However, in response to multispine stimulation, a long-lasting and spreading activation of PKCδ scales with the number of spines stimulated and, by regulating cAMP response-element binding protein activity, couples spine plasticity to transcription in the nucleus. Thus, PKCδ plays a dual functional role in facilitating synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity, or the ability to change the strength of the connections between neurons, underlies learning and memory and is critical for brain health. The protein kinase C (PKC) family is central to this process. However, understanding how these kinases work to mediate plasticity has been limited by a lack of tools to visualize and perturb their activity. Here, we introduce and use new tools to reveal a dual role for PKCδ in facilitating local synaptic plasticity and stabilizing this plasticity through spine-to-nucleus signaling to regulate transcription. This work provides new tools to overcome limitations in studying isozyme-specific PKC function and provides insight into molecular mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Lesley A Colgan
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Paula Parra-Bueno
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Heather L Holman
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Xun Tu
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Anant Jain
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Mariah F Calubag
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Jaime A Misler
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Chancellor Gary
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Goksu Oz
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Irena Suponitsky-Kroyter
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Elwy Okaz
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
2
|
Wester MJ, Schodt DJ, Mazloom-Farsibaf H, Fazel M, Pallikkuth S, Lidke KA. Robust, fiducial-free drift correction for super-resolution imaging. Sci Rep 2021; 11:23672. [PMID: 34880301 PMCID: PMC8655078 DOI: 10.1038/s41598-021-02850-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
We describe a robust, fiducial-free method of drift correction for use in single molecule localization-based super-resolution methods. The method combines periodic 3D registration of the sample using brightfield images with a fast post-processing algorithm that corrects residual registration errors and drift between registration events. The method is robust to low numbers of collected localizations, requires no specialized hardware, and provides stability and drift correction for an indefinite time period.
Collapse
Affiliation(s)
- Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David J Schodt
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Hanieh Mazloom-Farsibaf
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.,Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mohamadreza Fazel
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Sandeep Pallikkuth
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Zhang Z, Zhang J, Li J, Zhang J, Chen L, Li Y, Guo G. Ketamine Regulates Phosphorylation of CRMP2 To Mediate Dendritic Spine Plasticity. J Mol Neurosci 2019; 70:353-364. [PMID: 31808033 DOI: 10.1007/s12031-019-01419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023]
Abstract
Ketamine is widely used in infants and young children for anesthesia, and subanesthetic doses of ketamine make neurons form new protrusions and promote synapse formation. However, the precise pathological mechanisms remain to be elucidated. In this study, we demonstrated that ketamine administration significantly increased dendritic spine density and maturity in rat cortical neurons in vivo and in vitro. Western blot analysis showed that CRMP2 protein expression was significantly increased in cerebral cortex of ketamine group, and phosphorylation levels of CRMP at Thr514 and Ser522 were significantly reduced. Furthermore, overexpression of CRMP2 promoted the growth of cortical neuron processes and dendritic spines. Although the dendritic field was more complex after adding ketamine and the density of dendritic spines increased, there was no statistical difference and no obvious superposition effect was observed. Moreover, both Ser522 mutant construction of CRMP2, GFP-CRMP2-522D, and mcherry-CDK5 showed similar inhibitory effects on neurite outgrowth, which could be rescued by ketamine. The frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were significantly inhibited when GFP-CRMP2-522D and mCherry-CDK5 were transfected into cortical neurons and this trend could also be rescued by ketamine. In general, this study reveals a new mechanism by which ketamine promotes the growth and development of dendritic spines in developing cortical neurons.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Anesthesiology, Shunde Hospital of Southern Medical University, Foshan, 528308, Guangdong, China.,Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - JiFeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Neurology, The First Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China. .,Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
4
|
PKCα integrates spatiotemporally distinct Ca 2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Nat Neurosci 2018; 21:1027-1037. [PMID: 30013171 PMCID: PMC6100743 DOI: 10.1038/s41593-018-0184-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
The Protein Kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca2+-dependent PKC isozymes are activated in dendritic spines during plasticity, and if so, how this synaptic activity is encoded by PKC. Here, using newly-developed, isozyme-specific sensors, we demonstrate that classic isozymes are activated to varying degrees and with unique kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity, depends on a PDZ-binding domain present only in PKCα. The activation of PKCα during plasticity requires both NMDAR Ca2+-flux and autocrine BDNF-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampal-dependent learning.
Collapse
|
5
|
Smirnov MS, Garrett TR, Yasuda R. An open-source tool for analysis and automatic identification of dendritic spines using machine learning. PLoS One 2018; 13:e0199589. [PMID: 29975722 PMCID: PMC6033424 DOI: 10.1371/journal.pone.0199589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/11/2018] [Indexed: 11/19/2022] Open
Abstract
Synaptic plasticity, the cellular basis for learning and memory, is mediated by a complex biochemical network of signaling proteins. These proteins are compartmentalized in dendritic spines, the tiny, bulbous, post-synaptic structures found on neuronal dendrites. The ability to screen a high number of molecular targets for their effect on dendritic spine structural plasticity will require a high-throughput imaging system capable of stimulating and monitoring hundreds of dendritic spines in various conditions. For this purpose, we present a program capable of automatically identifying dendritic spines in live, fluorescent tissue. Our software relies on a machine learning approach to minimize any need for parameter tuning from the user. Custom thresholding and binarization functions serve to “clean” fluorescent images, and a neural network is trained using features based on the relative shape of the spine perimeter and its corresponding dendritic backbone. Our algorithm is rapid, flexible, has over 90% accuracy in spine detection, and bundled with our user-friendly, open-source, MATLAB-based software package for spine analysis.
Collapse
Affiliation(s)
- Michael S. Smirnov
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, United States of America
- * E-mail:
| | - Tavita R. Garrett
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, United States of America
- Neuroscience, Oregon Health and Science University School of Medicine, Portland, Oregon, United States of America
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, United States of America
| |
Collapse
|
6
|
Evans PR, Parra-Bueno P, Smirnov MS, Lustberg DJ, Dudek SM, Hepler JR, Yasuda R. RGS14 Restricts Plasticity in Hippocampal CA2 by Limiting Postsynaptic Calcium Signaling. eNeuro 2018; 5:ENEURO.0353-17.2018. [PMID: 29911178 PMCID: PMC6001268 DOI: 10.1523/eneuro.0353-17.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
Pyramidal neurons in hippocampal area CA2 are distinct from neighboring CA1 in that they resist synaptic long-term potentiation (LTP) at CA3 Schaffer collateral synapses. Regulator of G protein signaling 14 (RGS14) is a complex scaffolding protein enriched in CA2 dendritic spines that naturally blocks CA2 synaptic plasticity and hippocampus-dependent learning, but the cellular mechanisms by which RGS14 gates LTP are largely unexplored. A previous study has attributed the lack of plasticity to higher rates of calcium (Ca2+) buffering and extrusion in CA2 spines. Additionally, a recent proteomics study revealed that RGS14 interacts with two key Ca2+-activated proteins in CA2 neurons: calcium/calmodulin and CaMKII. Here, we investigated whether RGS14 regulates Ca2+ signaling in its host CA2 neurons. We found that the nascent LTP of CA2 synapses caused by genetic knockout (KO) of RGS14 in mice requires Ca2+-dependent postsynaptic signaling through NMDA receptors, CaMK, and PKA, revealing similar mechanisms to those in CA1. We report that RGS14 negatively regulates the long-term structural plasticity of dendritic spines of CA2 neurons. We further show that wild-type (WT) CA2 neurons display significantly attenuated spine Ca2+ transients during structural plasticity induction compared with the Ca2+ transients from CA2 spines of RGS14 KO mice and CA1 controls. Finally, we demonstrate that acute overexpression of RGS14 is sufficient to block spine plasticity, and elevating extracellular Ca2+ levels restores plasticity to RGS14-expressing neurons. Together, these results demonstrate for the first time that RGS14 regulates plasticity in hippocampal area CA2 by restricting Ca2+ elevations in CA2 spines and downstream signaling pathways.
Collapse
Affiliation(s)
- Paul R. Evans
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | - Daniel J. Lustberg
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - John R. Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458
| |
Collapse
|
7
|
Nanda S, Chen H, Das R, Bhattacharjee S, Cuntz H, Torben-Nielsen B, Peng H, Cox DN, De Schutter E, Ascoli GA. Design and implementation of multi-signal and time-varying neural reconstructions. Sci Data 2018; 5:170207. [PMID: 29360104 PMCID: PMC5779069 DOI: 10.1038/sdata.2017.207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022] Open
Abstract
Several efficient procedures exist to digitally trace neuronal structure from light microscopy, and mature community resources have emerged to store, share, and analyze these datasets. In contrast, the quantification of intracellular distributions and morphological dynamics is not yet standardized. Current widespread descriptions of neuron morphology are static and inadequate for subcellular characterizations. We introduce a new file format to represent multichannel information as well as an open-source Vaa3D plugin to acquire this type of data. Next we define a novel data structure to capture morphological dynamics, and demonstrate its application to different time-lapse experiments. Importantly, we designed both innovations as judicious extensions of the classic SWC format, thus ensuring full back-compatibility with popular visualization and modeling tools. We then deploy the combined multichannel/time-varying reconstruction system on developing neurons in live Drosophila larvae by digitally tracing fluorescently labeled cytoskeletal components along with overall dendritic morphology as they changed over time. This same design is also suitable for quantifying dendritic calcium dynamics and tracking arbor-wide movement of any subcellular substrate of interest.
Collapse
Affiliation(s)
- Sumit Nanda
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Hanbo Chen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ravi Das
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI), Frankfurt/Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main D-60438, Germany
| | | | - Hanchuan Peng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
8
|
SmartScope2: Simultaneous Imaging and Reconstruction of Neuronal Morphology. Sci Rep 2017; 7:9325. [PMID: 28839271 PMCID: PMC5571186 DOI: 10.1038/s41598-017-10067-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 11/12/2022] Open
Abstract
Quantitative analysis of neuronal morphology is critical in cell type classification and for deciphering how structure gives rise to function in the brain. Most current approaches to imaging and tracing neuronal 3D morphology are data intensive. We introduce SmartScope2, the first open source, automated neuron reconstruction machine integrating online image analysis with automated multiphoton imaging. SmartScope2 takes advantage of a neuron’s sparse morphology to improve imaging speed and reduce image data stored, transferred and analyzed. We show that SmartScope2 is able to produce the complex 3D morphology of human and mouse cortical neurons with six-fold reduction in image data requirements and three times the imaging speed compared to conventional methods.
Collapse
|
9
|
dal Maschio M, Donovan JC, Helmbrecht TO, Baier H. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging. Neuron 2017; 94:774-789.e5. [DOI: 10.1016/j.neuron.2017.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|