1
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Larrea Murillo L, Sugden CJ, Ozsvari B, Moftakhar Z, Hassan GS, Sotgia F, Lisanti MP. ALDH High Breast Cancer Stem Cells Exhibit a Mesenchymal-Senescent Hybrid Phenotype, with Elevated Metabolic and Migratory Activities. Cells 2024; 13:2059. [PMID: 39768151 PMCID: PMC11674378 DOI: 10.3390/cells13242059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential. Cells that undergo an EMT process have shown to be more resistant to conventional chemo/radiotherapies. In this context, aldehyde dehydrogenase (ALDH) enzymes, known for their role in the cellular detoxification of aldehydes and enhancement of cell survival, are often upregulated in cancer cells, promoting their resistance to conventional cancer treatments. Indeed, high ALDH levels have become a hallmark biomarker of CSCs and are often used to isolate this sub-population from the more abundant cancer cell populations. Herein, we isolated human breast cancer epithelial cells with higher ALDH abundance (ALDHHigh) and compared them to those with low ALDH abundance (ALDHLow). ALDHHigh sub-populations exhibited more characteristic EMT biomarkers by adopting a more mesenchymal phenotype with increased stemness and enhanced migratory potential. Furthermore, ALDHHigh sub-populations displayed elevated senescent markers. Moreover, these cells also demonstrated higher levels of mitochondria DNA/mass, as well as greater mitochondrial and glycolytic metabolic function. Conversely, ALDHLow sub-populations showed a higher efficiency of mammosphere/colony formation and an increased proliferative capacity. Therefore, we demonstrated that these ALDH sub-populations have distinct characteristics, underscoring their role in EMT, the formation of tumors and the mechanisms of metastasis.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Conor J. Sugden
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Bela Ozsvari
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Zahra Moftakhar
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Ghada S. Hassan
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
3
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
4
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Narendra G, Raju B, Verma H, Kumar M, Jain SK, Tung GK, Thakur S, Kaur R, Kaur S, Sapra B, Silakari O. Scaffold hopping based designing of selective ALDH1A1 inhibitors to overcome cyclophosphamide resistance: synthesis and biological evaluation. RSC Med Chem 2024; 15:309-321. [PMID: 38283216 PMCID: PMC10809718 DOI: 10.1039/d3md00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is an isoenzyme that catalyzes the conversion of aldehydes to acids. However, the overexpression of ALDH1A1 in a variety of malignancies is the major cause of resistance to an anti-cancer drug, cyclophosphamide (CP). CP is a prodrug that is initially converted into 4-hydroxycyclophosphamide and its tautomer aldophosphamide, in the liver. These compounds permeate into the cell and are converted as active metabolites, i.e., phosphoramide mustard (PM), through spontaneous beta-elimination. On the other hand, the conversion of CP to PM is diverted at the level of aldophosphamide by converting it into inactive carboxyphosphamide using ALDH1A1, which ultimately leads to high drug inactivation and CP resistance. Hence, in combination with our earlier work on the target of resistance, i.e., ALDH1A1, we hereby report selective ALDH1A1 inhibitors. Herein, we selected a lead molecule from our previous virtual screening and implemented scaffold hopping analysis to identify a novel scaffold that can act as an ALDH1A1 inhibitor. This results in the identification of various novel scaffolds. Among these, on the basis of synthetic feasibility, the benzimidazole scaffold was selected for the design of novel ALDH1A1 inhibitors, followed by machine learning-assisted structure-based virtual screening. Finally, the five best compounds were selected and synthesized. All synthesized compounds were evaluated using in vitro enzymatic assay against ALDH1A1, ALDH2, and ALDH3A1. The results disclosed that three molecules A1, A2, and A3 showed significant selective ALDH1A1 inhibitory potential with an IC50 value of 0.32 μM, 0.55 μM, and 1.63 μM, respectively, and none of the compounds exhibits potency towards the other two ALDH isoforms i.e. ALDH2 and ALDH3A1. Besides, the potent compounds (A1, A2, and A3) have been tested for in vitro cell line assay in combination with mafosfamide (analogue of CP) on two cell lines i.e. A549 and MIA-PaCa-2. All three compounds show significant potency to reverse mafosfamide resistance by inhibiting ALDH1A1 against these cell lines.
Collapse
Affiliation(s)
- Gera Narendra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Baddipadige Raju
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Himanshu Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Manoj Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar India
| | - Gurleen Kaur Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University Amritsar India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar India
| | - Rasdeep Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University Amritsar India
| | - Satwinderjeet Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University Amritsar India
| | - Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| |
Collapse
|
6
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
7
|
Narendra G, Raju B, Verma H, Kumar M, Jain SK, Tung GK, Thakur S, Kaur R, Kaur S, Sapra B, Singh PK, Silakari O. Raloxifene and bazedoxifene as selective ALDH1A1 inhibitors to ameliorate cyclophosphamide resistance: A drug repurposing approach. Int J Biol Macromol 2023; 242:124749. [PMID: 37160174 DOI: 10.1016/j.ijbiomac.2023.124749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Cyclophosphamide (CP) is one of the most widely used anticancer drugs for various malignancies. However, its long-term use leads to ALDH1A1-mediated inactivation and subsequent resistance which necessitates the development of potential ALDH1A1 inhibitors. Currently, ALDH1A1 inhibitors from different chemical classes have been reported, but these failed to reach the market due to safety and efficacy problems. Developing a new treatment from the ground requires a huge amount of time, effort, and money, therefore it is worthwhile to improve CP efficacy by proposing better adjuvants as ALDH1A1 inhibitors. Herein, the database constituting the FDA-approved drugs with well-established safety and toxicity profiles was screened through already reported machine learning models by our research group. This model is validated for discriminating the ALDH1A1 inhibitors and non-inhibitors. Virtual screening protocol (VS) from this model identified four FDA-approved drugs, raloxifene, bazedoxifene, avanafil, and betrixaban as selective ALDH1A1 inhibitors. The molecular docking, dynamics, and water swap analysis also suggested these drugs to be promising ALDH1A1 inhibitors which were further validated for their CP resistance reversal potential by in-vitro analysis. The in-vitro enzymatic assay results indicated that raloxifene and bazedoxifene selectively inhibited the ALDH1A1 enzyme with IC50 values of 2.35 and 4.41 μM respectively, whereas IC50 values of both the drugs against ALDH2 and ALDH3A1 was >100 μM. Additional in-vitro stu = dies with well-reported ALDH1A1 overexpressing A549 and MIA paCa-2 cell lines suggested that mafosfamide sensitivity was further ameliorated by the combination of both raloxifene and bazedoxifene. Collectively, in-silico and in-vitro studies indicate raloxifene and bazedoxifene act as promising adjuvants with CP that may improve the quality of treatment for cancer patients with minimal toxicities.
Collapse
Affiliation(s)
- Gera Narendra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Baddipadige Raju
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Himanshu Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Manoj Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurleen Kaur Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rasdeep Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
8
|
Laraba L, Hillson L, de Guibert JG, Hewitt A, Jaques MR, Tang TT, Post L, Ercolano E, Rai G, Yang SM, Jagger DJ, Woznica W, Edwards P, Shivane AG, Hanemann CO, Parkinson DB. Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain 2023; 146:1697-1713. [PMID: 36148553 PMCID: PMC10115179 DOI: 10.1093/brain/awac342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.
Collapse
Affiliation(s)
- Liyam Laraba
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Lily Hillson
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Julio Grimm de Guibert
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Amy Hewitt
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Maisie R Jaques
- Department of Life Sciences, University of Bath, Bath, Somerset BA2 7AY, UK
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA 94403, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA 94403, USA
| | - Emanuela Ercolano
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Daniel J Jagger
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Waldemar Woznica
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - Philip Edwards
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, Devon PL6 8DH, UK
| | - Aditya G Shivane
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth NHS Trust, Derriford, Plymouth, Devon PL6 8DH, UK
| | - C Oliver Hanemann
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| | - David B Parkinson
- Faculty of Heath: Medicine, Dentistry and Human Sciences, Derriford Research Facility, University of Plymouth, Plymouth, Devon PL6 8BU, UK
| |
Collapse
|
9
|
Son J, Du W, Esposito M, Shariati K, Ding H, Kang Y, Accili D. Genetic and pharmacologic inhibition of ALDH1A3 as a treatment of β-cell failure. Nat Commun 2023; 14:558. [PMID: 36732513 PMCID: PMC9895451 DOI: 10.1038/s41467-023-36315-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with β-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) is a marker of β-cell dedifferentiation and correlates with T2D progression. However, it is unknown whether ALDH1A3 activity contributes to β-cell failure, and whether the decrease of ALDH1A3-positive β-cells (A+) following pair-feeding of diabetic animals is due to β-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic β-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature β-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Characterization of β-cells following ALDH1A3 inhibition shows reactivation of differentiation as well as regeneration pathways. We conclude that ALDH1A3 inhibition offers a therapeutic strategy against β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Jinsook Son
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Wen Du
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Mark Esposito
- Kayothera Inc, Seattle, WA, USA
- Department of Molecular Biology, Princeton University, 08544, Princeton, NJ, USA
| | - Kaavian Shariati
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, 08544, Princeton, NJ, USA
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
10
|
Brown G. Targeting the Retinoic Acid Pathway to Eradicate Cancer Stem Cells. Int J Mol Sci 2023; 24:2373. [PMID: 36768694 PMCID: PMC9916838 DOI: 10.3390/ijms24032373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
All-trans retinoic acid is a morphogen during embryogenesis and a teratogen. Cancer is an error of development, and the retinoic acid receptors (RAR) for all-trans retinoic acid play a role in cancer. Expression of the cytosolic aldehyde dehydrogenases, which mediate the last step to the synthesis of all-trans retinoic acid, is deregulated in various human cancers. Inhibiting these enzymes using a variety of agents reduced the proliferation of lung cancer cells, reduced the proliferation and induced apoptosis of ovarian, prostate, squamous, and uterine cancer cells, and sensitised breast, colorectal and ovarian cancer cells to chemotherapeutic agents. RARγ is an oncogene within some cases of AML, cholangiocarcinoma, colorectal cancer, clear cell renal cell carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma, prostate cancer, and ovarian cancer. Pan-RAR and RARγ antagonist inhibition of the action of RARγ led to necroptosis of human prostate and pediatric brain tumour cancer stem cells. Treatment of hepatocellular carcinoma cells with the flavenoid acacetin, which interferes with the action of RARγ, decreased cell growth and induced apoptosis. Targeting the retinoic acid pathway is promising regarding the development of new drugs to eradicate cancer stem cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Baker NC, Pierro JD, Taylor LW, Knudsen TB. Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity. ALTEX 2022; 40:217–236. [PMID: 35796328 PMCID: PMC10765368 DOI: 10.14573/altex.2202231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound’s developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.
Collapse
Affiliation(s)
| | - Jocylin D. Pierro
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Laura W. Taylor
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Verma H, Narendra G, Raju B, Kumar M, Jain SK, Tung GK, Singh PK, Silakari O. 3D-QSAR and scaffold hopping based designing of benzo[d]ox-azol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective aldehyde dehydrogenase 1A1 inhibitors: Synthesis and biological evaluation. Arch Pharm (Weinheim) 2022; 355:e2200108. [PMID: 35618489 DOI: 10.1002/ardp.202200108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1A1), an oxidoreductase class of enzymes, is overexpressed in various types of cancer cell lines and is the major cause of resistance to the Food and Drug Administration (FDA)-approved drug, cyclophosphamide (CP). In cancer conditions, CP undergoes a sequence of biotransformations to form an active metabolite, aldophosphamide, which further biotransforms to its putative cytotoxic metabolite, phosphoramide mustard. However, in resistant cancer conditions, aldophosphamide is converted into its inactive metabolite, carboxyphosphamide, via oxidation with ALDH1A1. Herein, to address the issue of ALDH1A1 mediated CP resistance, we report a series of benzo[d]oxazol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective ALDH1A1 inhibitors. These inhibitors were designed using a validated 3D-quantitative structure activity relationship (3D-QSAR) model coupled with scaffold hopping. The 3D-QSAR model was developed using reported indole-2,3-diones based ALDH1A1 inhibitors, which provided field points in terms of electrostatic, van der Waals and hydrophobic potentials required for selectively inhibiting ALDH1A1. The most selective indole-2,3-diones-based compound, that is, cmp 3, was further considered for scaffold hopping. Two top-ranked bioisosteres, that is, benzo[d]oxazol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one, were selected for designing new inhibitors by considering the field pattern of 3D-QSAR. All designed molecules were mapped perfectly on the 3D-QSAR model and found to be predictive with good inhibitory potency (pIC50 range: 7.5-6.8). Molecular docking was carried out for each designed molecule to identify key interactions that are required for ALDH1A1 inhibition and to authenticate the 3D-QSAR result. The top five inhibitor-ALDH1A1 complexes were also submitted for molecular dynamics simulations to access their stability. In vitro enzyme assays of 21 compounds suggested that these compounds are selective toward ALDH1A1 over the other two isoforms, that is, ALDH2 and ALDH3A1. All the compounds were found to be at least three and two times more selective toward ALDH1A1 over ALDH2 and ALDH3A1, respectively. All the compounds showed an IC50 value in the range of 0.02-0.80 μM, which indicates the potential for these to be developed as adjuvant therapy for CP resistance.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Baddipadige Raju
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Manoj Kumar
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Subheet K Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurleen K Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pankaj K Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
13
|
Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep 2022; 49:3321-3331. [PMID: 35028852 DOI: 10.1007/s11033-021-07073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of enzymes that belong to the aldehyde dehydrogenases is a characteristic of both normal and malignant stem cells. ALDH1A1 is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-initiating cells from a number of antineoplastic agents, which include inhibitors of protein tyrosine kinases. Furthermore, ALDH1A1 proves vital for the establishment of human AML xenografts in mice. We review here important studies characterizing the role of ALDH1A1 in AML and its potential as a therapeutic target. We also analyze datasets from leading studies, and show that decreased ALDH1A1 RNA expression consistently characterizes the AML patient risk group with a favorable prognosis, while there is a consistent association of high ALDH1A1 RNA expression with high risk and poor overall survival. Our review and analysis reinforces the notion to employ both novel as well as existing inhibitors of the ALDH1A1 protein against AML.
Collapse
|
14
|
Genetic Profiling in Children With Acute Lymphoblastic Leukemia Referred for Allogeneic Hematopoietic Stem Cell Transplantation. Cancer Control 2022; 29:10732748211064776. [PMID: 35470705 PMCID: PMC9052811 DOI: 10.1177/10732748211064776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Hematopoietic stem cell transplantation (HSCT) is the essential and often the
only curative therapeutic option in high risk and relapsed pediatric acute
lymphoblastic leukemia (ALL). Methods The objective of the study was to investigate whole-genome expression in
children with high risk or relapsed ALL referred for HSCT. Gene expression
was assessed in 18 children with ALL referred for HSCT (10 high risk, 8
relapsed; median age of 9.4 years) and in a control group of 38 obese
children (median age of 14.1 years). Whole-genome expression was assessed in
leukocytes using GeneChip® HumanGene 1.0 ST microarray. Results The analysis of genomic profiles revealed a significantly lower expression of
21 genes with a defined function, involved in immunoglobulin production,
lymphocyte function, or regulation of DNA processing in ALL patients
referred for HSCT compared with the control group. Conclusion Genome expression of patients with ALL in remission referred to HSCT revealed
deep immunosuppression of both B-cell and T-cell lineages, which may
increase the probability of donor cell engraftment.
Collapse
|
15
|
He M, Long P, Chen T, Li K, Wei D, Zhang Y, Wang W, Hu Y, Ding Y, Wen A. ALDH2/SIRT1 Contributes to Type 1 and Type 2 Diabetes-Induced Retinopathy through Depressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1641717. [PMID: 34725563 PMCID: PMC8557042 DOI: 10.1155/2021/1641717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
Clinical observations found vision-threatening diabetic retinopathy (DR) occurs in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients, but T1DM may perform more progressive retinal abnormalities at the same diabetic duration with or without clinical retinopathy. In the present study, T1DM and T2DM patients without manifestations of DR were included in our preliminary clinical retrospective observation study to investigate the differentiated retinal function at the preclinical stage. Then, T1DM and T2DM rat models with 12-week diabetic duration were constructed to explore the potential mechanism of the discrepancy in retinal disorders. Our data demonstrated T1DM patients presented a poor retinal function, a higher allele frequency for ALDH2GA/AA, and a depressed aldehyde dehydrogenase 2 (ALDH2) activity and silent information regulator 1 (SIRT1) level, compared to T2DM individuals. In line with this, higher amplitudes of neurovascular function-related waves of electroretinograms were found in T2DM rats. Furthermore, the retinal outer nuclear layers were reduced in T1DM rats. The levels of retinal oxidative stress biomarkers including total reactive oxygen species, NADPH oxidase 4 and mitochondrial DNA damage, and inflammatory indicators covering inducible/endothelial nitric acid synthase ratio, interleukin-1, and interleukin-6 were obviously elevated. Notably, the level of retinal ALDH2 and SIRT1 in T1DM rats was significantly diminished, while the expression of neovascularization factors was dramatically enhanced compared to T2DM. Together, our data indicated that the ALDH2/SIRT1 deficiency resulted in prominent oxidative stress and was in association with DR progression. Moreover, a differentiating ALDH2/SIRT1 expression may be responsible for the dissimilar severity of DR pathological processes in chronic inflammatory-related T1DM and T2DM.
Collapse
MESH Headings
- Adult
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetic Retinopathy/enzymology
- Diabetic Retinopathy/etiology
- Diabetic Retinopathy/genetics
- Disease Models, Animal
- Disease Progression
- Female
- Humans
- Male
- Middle Aged
- Oxidative Stress
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Retina/enzymology
- Retina/pathology
- Retrospective Studies
- Sirtuin 1/metabolism
- Rats
Collapse
Affiliation(s)
- Mengshan He
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610083 Sichuan, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Kaifeng Li
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Yufei Zhang
- The Air Force Hospital from Northern Theater PLA, Shenyang, 110092 Liaoning, China
| | - Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Yonghe Hu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, 610081 Sichuan, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| |
Collapse
|
16
|
Ma Z, Jiang L, Li B, Liang D, Feng Y, Liu L, Jiang C. Discovery of benzimidazole derivatives as potent and selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with glucose consumption improving activity. Bioorg Med Chem 2021; 46:116352. [PMID: 34403955 DOI: 10.1016/j.bmc.2021.116352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) plays vital physiological and toxicological functions in many areas, such as CNS, inflammation, metabolic disorders, and cancers. Overexpression of ALDH1A1 has been disclosed to play an important role in obesity, diabetes and other diseases, indicating the potential need for the identification and development of small molecule ALDH1A1 inhibitors. Herein, a series of benzimidazole derivatives was designed, synthesized and evaluated. Among them, compounds 21, 27, 29, 61 and 65 exhibited excellent inhibitory activity against ALDH1A1 with IC50 values in the low micromolar range and high selectivity over ALDH1A2, ALDH1A3, ALDH2 and ALDH3A1. Moreover, an in vitro study demonstrated that all five compounds effectively improved glucose consumption in HepG2 cells, of which, 61 and 65 at 10 µM produced nearly equal glucose consumption with positive control Metformin (Met) at 1 mM. Furthermore, 61 and 65 showed desirable metabolic stability in human liver microsomes. All these results suggest that 61 and 65 are suitable for further studies.
Collapse
Affiliation(s)
- Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| | - Ling Jiang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Bingyan Li
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Yu Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China
| | - Li Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China.
| |
Collapse
|
17
|
Su YK, Lin JW, Shih JW, Chuang HY, Fong IH, Yeh CT, Lin CM. Targeting BC200/miR218-5p Signaling Axis for Overcoming Temozolomide Resistance and Suppressing Glioma Stemness. Cells 2020; 9:cells9081859. [PMID: 32784466 PMCID: PMC7463574 DOI: 10.3390/cells9081859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Glioblastoma (GB) is one of the most common (~30%) and lethal cancers of the central nervous system. Although new therapies are emerging, chemoresistance to treatment is one of the major challenges in cancer treatment. Brain cytoplasmic 200 (BC200) RNA, also known as BCYRN1, is a long noncoding RNA (lncRNA) that has recently emerged as one of the crucial members of the lncRNA family. BC200 atypical expression is observed in many human cancers. BC200 expression is higher in invasive cancers than in benign tumors. However, the clinical significance of BC200 and its effect on GB multiforme is still unexplored and remains unclear. Methods: BC200 expression in GB patients and cell lines were investigated through RT-qPCR, immunoblotting, and immunohistochemistry analysis. The biological importance of BC200 was investigated in vitro and in vivo through knockdown and overexpression. Bioinformatic analysis was performed to determine miRNAs associated with BC200 RNA. Results: Our findings revealed that in GB patients, BC200 RNA expression was higher in blood and tumor tissues than in normal tissues. BC200 RNA expression have a statistically significant difference between the IDH1 and P53 status. Moreover, the BC200 RNA expression was higher than both p53, a prognostic marker of glioma, and Ki-67, a reliable indicator of tumor cell proliferation activity. Overexpression and silencing of BC200 RNA both in vitro and in vivo significantly modulated the proliferation, self-renewal, pluripotency, and temozolomide (TMZ) chemo-resistance of GB cells. It was found that the expressions of BC200 were up-regulated and that of miR-218-5p were down-regulated in GB tissues and cells. miR-218-5p inhibited the expression of BC200. Conclusions: This study is the first to show that the molecular mechanism of BC200 promotes GB oncogenicity and TMZ resistance through miR-218-5p expression modulation. Thus, the noncoding RNA BC200/miR-218-5p signaling circuit is a potential clinical biomarker or therapeutic target for GB.
Collapse
Affiliation(s)
- Yu-Kai Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Jia Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Jing-Wen Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hao-Yu Chuang
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan 70965, Taiwan;
| | - Iat-Hang Fong
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chien-Min Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; (Y.-K.S.); (J.W.L.); (C.-T.Y.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: ; Tel.:+886-2-2490088 (ext. 8881)
| |
Collapse
|
18
|
Ma Z, Jiang L, Li G, Liang D, Li L, Liu L, Jiang C. Design, synthesis of 1,3-dimethylpyrimidine-2,4-diones as potent and selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with glucose consumption improving activity. Bioorg Chem 2020; 101:103971. [DOI: 10.1016/j.bioorg.2020.103971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 11/27/2022]
|
19
|
Muralikrishnan V, Hurley TD, Nephew KP. Targeting Aldehyde Dehydrogenases to Eliminate Cancer Stem Cells in Gynecologic Malignancies. Cancers (Basel) 2020; 12:E961. [PMID: 32295073 PMCID: PMC7225959 DOI: 10.3390/cancers12040961] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers cause over 600,000 deaths annually in women worldwide. The development of chemoresistance after initial rounds of chemotherapy contributes to tumor relapse and death due to gynecologic malignancies. In this regard, cancer stem cells (CSCs), a subpopulation of stem cells with the ability to undergo self-renewal and clonal evolution, play a key role in tumor progression and drug resistance. Aldehyde dehydrogenases (ALDH) are a group of enzymes shown to be robust CSC markers in gynecologic and other malignancies. These enzymes also play functional roles in CSCs, including detoxification of aldehydes, scavenging of reactive oxygen species (ROS), and retinoic acid (RA) signaling, making ALDH an attractive therapeutic target in various clinical scenarios. In this review, we discuss the critical roles of the ALDH in driving stemness in different gynecologic malignancies. We review inhibitors of ALDH, both general and isoform-specific, which have been used to target CSCs in gynecologic cancers. Many of these inhibitors have been shown to be effective in preclinical models of gynecologic malignancies, supporting further development in the clinic. Furthermore, ALDH inhibitors, including 673A and CM037, synergize with chemotherapy to reduce tumor growth. Thus, ALDH-targeted therapies hold promise for improving patient outcomes in gynecologic malignancies.
Collapse
Affiliation(s)
| | - Thomas D. Hurley
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive Medical Science, Indianapolis, IN 46202, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA;
- Department of Anatomy, Cell Biology and Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Koenders STA, van Rooden EJ, van den Elst H, Florea BI, Overkleeft HS, van der Stelt M. STA-55, an Easily Accessible, Broad-Spectrum, Activity-Based Aldehyde Dehydrogenase Probe. Chembiochem 2020; 21:1911-1917. [PMID: 31985142 DOI: 10.1002/cbic.201900771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) convert aldehydes into carboxylic acids and are often upregulated in cancer. They have been linked to therapy resistance and are therefore potential therapeutic targets. However, only a few selective and potent inhibitors are currently available for this group of enzymes. Competitive activity-based protein profiling (ABPP) would aid the development and validation of new selective inhibitors. Herein, a broad-spectrum activity-based probe that reports on several ALDHs is presented. This probe was used in a competitive ABPP protocol against three ALDH inhibitors in lung cancer cells to determine their selectivity profiles and establish their target engagement.
Collapse
Affiliation(s)
- Sebastiaan T A Koenders
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hans van den Elst
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
21
|
Koenders SA, Wijaya LS, Erkelens MN, Bakker AT, van der Noord VE, van Rooden EJ, Burggraaff L, Putter PC, Botter E, Wals K, van den Elst H, den Dulk H, Florea BI, van de Water B, van Westen GJP, Mebius RE, Overkleeft HS, Le Dévédec SE, van der Stelt M. Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells. ACS CENTRAL SCIENCE 2019; 5:1965-1974. [PMID: 31893226 PMCID: PMC6936097 DOI: 10.1021/acscentsci.9b01022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 05/13/2023]
Abstract
Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.
Collapse
Affiliation(s)
- Sebastiaan
T. A. Koenders
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Lukas S. Wijaya
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Martje N. Erkelens
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Vera E. van der Noord
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Eva J. van Rooden
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Lindsey Burggraaff
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Pasquale C. Putter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Else Botter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Kim Wals
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Hans van den Elst
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bob van de Water
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gerard J. P. van Westen
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Reina E. Mebius
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sylvia E. Le Dévédec
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
- E-mail:
| |
Collapse
|
22
|
Liang D, Fan Y, Yang Z, Zhang Z, Liu M, Liu L, Jiang C. Discovery of coumarin-based selective aldehyde dehydrogenase 1A1 inhibitors with glucose metabolism improving activity. Eur J Med Chem 2019; 187:111923. [PMID: 31816557 DOI: 10.1016/j.ejmech.2019.111923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
Overexpression of aldehyde dehydrogenase 1A1 (ALDH1A1) is associated with the occurrence and development of obesity and insulin resistance. Herein, a series of coumarin-based ALDH1A1 inhibitors were designed, synthesized and evaluated. Among them, compounds 10, 14 and 26 exhibited potent inhibitory activity against ALDH1A1 and high selectivity over ALDH1A2, ALDH1A3, ALDH2 and ALDH3A1. Optimized compound 10 showed markedly improved pharmacokinetic characters and ADME profiles comparing to the lead compound 1. In vitro study demonstrated that 10 alleviated palmitic acid-induced impairment of glucose consumption in HepG2 cells.
Collapse
Affiliation(s)
- Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Yazhou Fan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Zhou Yang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Zhenguo Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Meiyang Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Li Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| |
Collapse
|
23
|
Karki S, Maksimainen MM, Lehtiö L, Kajander T. Inhibitor screening assay for neurexin-LRRTM adhesion protein interaction involved in synaptic maintenance and neurological disorders. Anal Biochem 2019; 587:113463. [PMID: 31574254 DOI: 10.1016/j.ab.2019.113463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022]
Abstract
Synaptic adhesion molecules, including presynaptic neurexins (NRXNs) and post-synaptic leucine-rich repeat transmembrane (LRRTM) proteins are important for development and maintenance of brain neuronal networks. NRXNs are probably the best characterized synaptic adhesion molecules, and one of the major presynaptic organizer proteins. The LRRTMs were found as ligands for NRXNs. Many of the synaptic adhesion proteins have been linked to neurological cognitive disorders, such as schizophrenia and autism spectrum disorders, making them targets of interest for both biological studies, and towards drug development. Therefore, we decided to develop a screening method to target the adhesion proteins, here the LRRTM-NRXN interaction, to find small molecule probes for further studies in cellular settings. To our knowledge, no potent small molecule compounds against the neuronal synaptic adhesion proteins are available. We utilized the AlphaScreen technology, and developed an assay targeting the NRXN-LRRTM2 interaction. We carried out screening of 2000 compounds and identified hits with moderate IC50-values. We also established an orthogonal in-cell Western blot assay to validate hits. This paves way for future development of specific high affinity compounds by further high throughput screening of larger compound libraries using the methods established here. The method could also be applied to screening other NRXN-ligand interactions.
Collapse
Affiliation(s)
- Sudeep Karki
- Institute of Biotechnology, University of Helsinki, Finland
| | - Mirko M Maksimainen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu University of Oulu, Finland
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
24
|
Antrodia cinnamomea Enhances Chemo-Sensitivity of 5-FU and Suppresses Colon Tumorigenesis and Cancer Stemness via Up-Regulation of Tumor Suppressor miR-142-3p. Biomolecules 2019; 9:biom9080306. [PMID: 31349708 PMCID: PMC6723279 DOI: 10.3390/biom9080306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
5-Fluorouracil (5-FU) regimen remains the backbone of the first-line agent to treat colon cancer, but often these patients develop resistance. Cancer stem cells (CSC's) are considered as one of the key contributors in the development of drug resistance and tumor recurrence. We aimed to provide preclinical evidence for Antrodia cinnamomea (AC), as a potential in suppressing colon cancer CSC's to overcome 5-FU drug-resistant. In-vitro assays including cell viability, colony formation, AC + 5-FU drug combination index and tumor sphere generation were applied to determine the inhibitory effect of AC. Mouse xenograft models also incorporated to evaluate in vivo effect of AC. AC treatment significantly inhibited the proliferation, colony formation and tumor sphere generation. AC also inhibited the expression of oncogenic markers (NF-κB, and C-myc), EMT/metastasis markers (vimentin and MMP3) and stemness associated markers (β-catenin, SOX-2 and Nanog). Sequential treatment of AC and 5-FU synergized and reduces colon cancer viability both in vivo and in vitro. Mechanistically, AC mediated anti-tumor effect was associated with an increased level of tumor suppressor microRNAs especially, miR142-3p. AC can be a potent synergistic adjuvant, down-regulates cancer stemness genes and enhances the antitumor ability of 5-FU by stimulating apoptosis-associated genes, suppressing inflammation and metastasis genes through miR142-3p in colon cancer.
Collapse
|
25
|
Abstract
Multiple studies focused on tumor heterogeneity and cellular hierarchies have demonstrated the role of cancer stem cells (CSC) in tumor initiation and recurrence. Colorectal cancer is one of the leading causes of cancer-related death and is hierarchically organized, with the majority of tumor cells descending from a small population of colon cancer stem cells (CCSCs). Such a rare self-renewing population is marked by the acquisition of distinct chromatin regulation and transcriptional programs. Fundamental molecular deviations between CCSCs and bulk tumor cells as well as normal tissues represent a unique therapeutic access to develop novel, selective anticancer therapies.In this chapter, we describe a methodological pipeline to identify novel molecules to selectively target human CCSC. We present a point-by-point description of a typical phenotypic molecular screening experiment, aiming to identify selective modulators of human CCSCs vs. normal intestinal progenitor cells.
Collapse
Affiliation(s)
- Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
26
|
A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase. Sci Rep 2018; 8:9472. [PMID: 29930256 PMCID: PMC6013488 DOI: 10.1038/s41598-018-27834-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 11/15/2022] Open
Abstract
Assessment of the interactions between a drug and its protein target in a physiologically relevant cellular environment constitutes a major challenge in the pre-clinical drug discovery space. The Cellular Thermal Shift Assay (CETSA) enables such an assessment by quantifying the changes in the thermal stability of proteins upon ligand binding in intact cells. Here, we present the development and validation of a homogeneous, standardized, target-independent, and high-throughput (384- and 1536-well formats) CETSA platform that uses a split Nano Luciferase approach (SplitLuc CETSA). The broad applicability of the assay was demonstrated for diverse targets, and its performance was compared with independent biochemical and cell-based readouts using a set of well-characterized inhibitors. Moreover, we investigated the utility of the platform as a primary assay for high-throughput screening. The SplitLuc CETSA presented here enables target engagement studies for medium and high-throughput applications. Additionally, it provides a rapid assay development and screening platform for targets where phenotypic or other cell-based assays are not readily available.
Collapse
|
27
|
Yang SM, Martinez NJ, Yasgar A, Danchik C, Johansson C, Wang Y, Baljinnyam B, Wang AQ, Xu X, Shah P, Cheff D, Wang XS, Roth J, Lal-Nag M, Dunford JE, Oppermann U, Vasiliou V, Simeonov A, Jadhav A, Maloney DJ. Discovery of Orally Bioavailable, Quinoline-Based Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors with Potent Cellular Activity. J Med Chem 2018; 61:4883-4903. [PMID: 29767973 PMCID: PMC6004562 DOI: 10.1021/acs.jmedchem.8b00270] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Aldehyde
dehydrogenases (ALDHs) are responsible for the metabolism of aldehydes
(exogenous and endogenous) and possess vital physiological and toxicological
functions in areas such as CNS, inflammation, metabolic disorders,
and cancers. Overexpression of certain ALDHs (e.g., ALDH1A1) is an
important biomarker in cancers and cancer stem cells (CSCs) indicating
the potential need for the identification and development of small
molecule ALDH inhibitors. Herein, a newly designed series of quinoline-based
analogs of ALDH1A1 inhibitors is described. Extensive medicinal chemistry
optimization and biological characterization led to the identification
of analogs with significantly improved enzymatic and cellular ALDH
inhibition. Selected analogs, e.g., 86 (NCT-505) and 91 (NCT-506), demonstrated target engagement in a cellular
thermal shift assay (CETSA), inhibited the formation of 3D spheroid
cultures of OV-90 cancer cells, and potentiated the cytotoxicity of
paclitaxel in SKOV-3-TR, a paclitaxel resistant ovarian cancer cell
line. Lead compounds also exhibit high specificity over other ALDH
isozymes and unrelated dehydrogenases. The in vitro ADME profiles and pharmacokinetic evaluation of selected analogs
are also highlighted.
Collapse
Affiliation(s)
- Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Carina Danchik
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Catrine Johansson
- Centre for Translational Myeloma Research, Botnar Research Centre, Oxford NIHR BRU , University of Oxford , Oxford OX3 7LD , U.K
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Dorian Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Xinran S Wang
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Jacob Roth
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - James E Dunford
- Centre for Translational Myeloma Research, Botnar Research Centre, Oxford NIHR BRU , University of Oxford , Oxford OX3 7LD , U.K
| | - Udo Oppermann
- Centre for Translational Myeloma Research, Botnar Research Centre, Oxford NIHR BRU , University of Oxford , Oxford OX3 7LD , U.K
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences , Yale School of Public Health , 60 College Street , New Haven , Connecticut 06510 , United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive , Rockville , Maryland 20850 , United States
| |
Collapse
|
28
|
Yasgar A, Titus SA, Wang Y, Danchik C, Yang SM, Vasiliou V, Jadhav A, Maloney DJ, Simeonov A, Martinez NJ. Correction: A High-Content Assay Enables the Automated Screening and Identification of Small Molecules with Specific ALDH1A1-Inhibitory Activity. PLoS One 2018; 13:e0197292. [PMID: 29763427 PMCID: PMC5953492 DOI: 10.1371/journal.pone.0197292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0170937.].
Collapse
|