1
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Ahmed H, Wang Y, Griffiths WJ, Levey AI, Pikuleva I, Liang SH, Haider A. Brain cholesterol and Alzheimer's disease: challenges and opportunities in probe and drug development. Brain 2024; 147:1622-1635. [PMID: 38301270 PMCID: PMC11068113 DOI: 10.1093/brain/awae028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-β and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, 8093 Zurich, Switzerland
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - William J Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
4
|
Litvinchuk A, Suh JH, Guo JL, Lin K, Davis SS, Bien-Ly N, Tycksen E, Tabor GT, Remolina Serrano J, Manis M, Bao X, Lee C, Bosch M, Perez EJ, Yuede CM, Cashikar AG, Ulrich JD, Di Paolo G, Holtzman DM. Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron 2024; 112:384-403.e8. [PMID: 37995685 PMCID: PMC10922706 DOI: 10.1016/j.neuron.2023.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Apolipoprotein E (APOE) is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). APOE4 increases and APOE2 decreases risk relative to APOE3. In the P301S mouse model of tauopathy, ApoE4 increases tau pathology and neurodegeneration when compared with ApoE3 or the absence of ApoE. However, the role of ApoE isoforms and lipid metabolism in contributing to tau-mediated degeneration is unknown. We demonstrate that in P301S tau mice, ApoE4 strongly promotes glial lipid accumulation and perturbations in cholesterol metabolism and lysosomal function. Increasing lipid efflux in glia via an LXR agonist or Abca1 overexpression strongly attenuates tau pathology and neurodegeneration in P301S/ApoE4 mice. We also demonstrate reductions in reactive astrocytes and microglia, as well as changes in cholesterol biosynthesis and metabolism in glia of tauopathy mice in response to LXR activation. These data suggest that promoting efflux of glial lipids may serve as a therapeutic approach to ameliorate tau and ApoE4-linked neurodegeneration.
Collapse
Affiliation(s)
- Alexandra Litvinchuk
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jung H Suh
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Jing L Guo
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Karin Lin
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Nga Bien-Ly
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, St. Louis, MO 63110, USA
| | - G Travis Tabor
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Melissa Manis
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Xin Bao
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Choonghee Lee
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Megan Bosch
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Enmanuel J Perez
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Carla M Yuede
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Anil G Cashikar
- Department of Psychiatry, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
5
|
Ramaswami G, Yuva-Aydemir Y, Akerberg B, Matthews B, Williams J, Golczer G, Huang J, Al Abdullatif A, Huh D, Burkly LC, Engle SJ, Grossman I, Sehgal A, Sigova AA, Fremeau RT, Liu Y, Bumcrot D. Transcriptional characterization of iPSC-derived microglia as a model for therapeutic development in neurodegeneration. Sci Rep 2024; 14:2153. [PMID: 38272949 PMCID: PMC10810793 DOI: 10.1038/s41598-024-52311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation, a hallmark of neurodegenerative disorders. Inducible microglia-like cells have been developed as an in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there has been no systematic assessment of similarity of these cells to primary human microglia along with their responsiveness to external cues expected of primary cells in the brain. In this study, we performed transcriptional characterization of commercially available human inducible pluripotent stem cell (iPSC)-derived microglia-like (iMGL) cells by bulk and single cell RNA sequencing to assess their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia and express many key microglial transcription factors and functional and disease-associated genes. Notably, at the single-cell level, iMGL cells exhibit distinct transcriptional subpopulations, representing both homeostatic and activated states present in normal and diseased primary microglia. Treatment of iMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in responses between cell subpopulations in homeostatic and activated states and deconvolute bulk expression changes into their corresponding single cell states. In summary, our results demonstrate that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of in vivo microglia, and thus represent a promising model system for therapeutic development in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiaqi Huang
- CAMP4 Therapeutics Corporation, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | - Yuting Liu
- CAMP4 Therapeutics Corporation, Cambridge, MA, USA
| | | |
Collapse
|
6
|
Vacondio D, Nogueira Pinto H, Coenen L, Mulder IA, Fontijn R, van Het Hof B, Fung WK, Jongejan A, Kooij G, Zelcer N, Rozemuller AJ, de Vries HE, de Wit NM. Liver X receptor alpha ensures blood-brain barrier function by suppressing SNAI2. Cell Death Dis 2023; 14:781. [PMID: 38016947 PMCID: PMC10684660 DOI: 10.1038/s41419-023-06316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
In Alzheimer's disease (AD) more than 50% of the patients are affected by capillary cerebral amyloid-angiopathy (capCAA), which is characterized by localized hypoxia, neuro-inflammation and loss of blood-brain barrier (BBB) function. Moreover, AD patients with or without capCAA display increased vessel number, indicating a reactivation of the angiogenic program. The molecular mechanism(s) responsible for BBB dysfunction and angiogenesis in capCAA is still unclear, preventing a full understanding of disease pathophysiology. The Liver X receptor (LXR) family, consisting of LXRα and LXRβ, was reported to inhibit angiogenesis and particularly LXRα was shown to secure BBB stability, suggesting a major role in vascular function. In this study, we unravel the regulatory mechanism exerted by LXRα to preserve BBB integrity in human brain endothelial cells (BECs) and investigate its role during pathological conditions. We report that LXRα ensures BECs identity via constitutive inhibition of the transcription factor SNAI2. Accordingly, deletion of brain endothelial LXRα is associated with impaired DLL4-NOTCH signalling, a critical signalling pathway involved in vessel sprouting. A similar response was observed when BECs were exposed to hypoxia, with concomitant LXRα decrease and SNAI2 increase. In support of our cell-based observations, we report a general increase in vascular SNAI2 in the occipital cortex of AD patients with and without capCAA. Importantly, SNAI2 strongly associated with vascular amyloid-beta deposition and angiopoietin-like 4, a marker for hypoxia. In hypoxic capCAA vessels, the expression of LXRα may decrease leading to an increased expression of SNAI2, and consequently BECs de-differentiation and sprouting. Our findings indicate that LXRα is essential for BECs identity, thereby securing BBB stability and preventing aberrant angiogenesis. These results uncover a novel molecular pathway essential for BBB identity and vascular homeostasis providing new insights on the vascular pathology affecting AD patients.
Collapse
Affiliation(s)
- D Vacondio
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - H Nogueira Pinto
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L Coenen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Biomedical Primate Research Centre, Department of Neurobiology and Aging, Rijswijk, the Netherlands
| | - I A Mulder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - R Fontijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - B van Het Hof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - W K Fung
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - A Jongejan
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - G Kooij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - N Zelcer
- Amsterdam UMC location University of Amsterdam Department of Medical Biochemistry, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC location University of Amsterdam, Cardiovascular Sciences and Gastroenterology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - A J Rozemuller
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - N M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Martens N, Zhan N, Voortman G, Leijten FPJ, van Rheenen C, van Leerdam S, Geng X, Huybrechts M, Liu H, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Activation of Liver X Receptors and Peroxisome Proliferator-Activated Receptors by Lipid Extracts of Brown Seaweeds: A Potential Application in Alzheimer's Disease? Nutrients 2023; 15:3004. [PMID: 37447330 DOI: 10.3390/nu15133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The nuclear liver X receptors (LXRα/β) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/β- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Connor van Rheenen
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Suzanne van Leerdam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Michiel Huybrechts
- Department of Environmental Biology, Center for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
9
|
Staurenghi E, Leoni V, Lo Iacono M, Sottero B, Testa G, Giannelli S, Leonarduzzi G, Gamba P. ApoE3 vs. ApoE4 Astrocytes: A Detailed Analysis Provides New Insights into Differences in Cholesterol Homeostasis. Antioxidants (Basel) 2022; 11:2168. [PMID: 36358540 PMCID: PMC9686673 DOI: 10.3390/antiox11112168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 07/30/2023] Open
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is the presence of the ε4 allele of the apolipoprotein E (ApoE) gene, the major apolipoprotein involved in brain cholesterol homeostasis. Being astrocytes the main producers of cholesterol and ApoE in the brain, we investigated the impact of the ApoE genotype on astrocyte cholesterol homeostasis. Two mouse astrocytic cell lines expressing the human ApoE3 or ApoE4 isoform were employed. Gas chromatography-mass spectrometry (GC-MS) analysis pointed out that the levels of total cholesterol, cholesterol precursors, and various oxysterols are altered in ApoE4 astrocytes. Moreover, the gene expression analysis of more than 40 lipid-related genes by qRT-PCR showed that certain genes are up-regulated (e.g., CYP27A1) and others down-regulated (e.g., PPARγ, LXRα) in ApoE4, compared to ApoE3 astrocytes. Beyond confirming the significant reduction in the levels of PPARγ, a key transcription factor involved in the maintenance of lipid homeostasis, Western blotting showed that both intracellular and secreted ApoE levels are altered in ApoE4 astrocytes, as well as the levels of receptors and transporters involved in lipid uptake/efflux (ABCA1, LDLR, LRP1, and ApoER2). Data showed that the ApoE genotype clearly affects astrocytic cholesterol homeostasis; however, further investigation is needed to clarify the mechanisms underlying these differences and the consequences on neighboring cells. Indeed, drug development aimed at restoring cholesterol homeostasis could be a potential strategy to counteract AD.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital Pius XI of Desio, ASST-Brianza, University of Milano-Bicocca, 20126 Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| |
Collapse
|
10
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
11
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|
12
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
13
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Fitz NF, Wolfe CM, Playso BE, Biedrzycki RJ, Lu Y, Nam KN, Lefterov I, Koldamova R. Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Mol Neurodegener 2020; 15:41. [PMID: 32703241 PMCID: PMC7379780 DOI: 10.1186/s13024-020-00394-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder influenced by aging and genetic risk factors. The inheritance of APOEε4 and variants of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Recent studies showed that APOE binds to TREM2, thus raising the possibility of an APOE-TREM2 interaction that can modulate AD pathology. METHODS The aim of this study was to investigate this interaction using complex AD model mice - a crossbreed of Trem2ko and APP/PSEN1dE9 mice expressing human APOE3 or APOE4 isoforms (APP/E3 and APP/E4 respectively), and their WT littermates (E3 and E4), and evaluate cognition, steady-state amyloid load, plaque compaction, plaque growth rate, glial response, and brain transcriptome. RESULTS In both, APP/E3 and APP/E4 mice, Trem2 deletion reduced plaque compaction but did not significantly affect steady-state plaque load. Importantly, the lack of TREM2 increased plaque growth that negatively correlated to the diminished microglia barrier, an effect most pronounced at earlier stages of amyloid deposition. We also found that Trem2 deficiency significantly decreased plaque-associated APOE protein in APP/E4 but not in APP/E3 mice in agreement with RNA-seq data. Interestingly, we observed a significant decrease of Apoe mRNA expression in plaque-associated microglia of APP/E4/Trem2ko vs APP/E4 mice. The absence of TREM2, worsened cognitive performance in APP transgenic mice but not their WT littermates. Gene expression analysis identified Trem2 signature - a cluster of highly connected immune response genes, commonly downregulated as a result of Trem2 deletion in all genotypes including APP and WT littermates. Furthermore, we identified sets of genes that were affected in TREM2- and APOE isoform-dependent manner. Among them were Clec7a and Csf1r upregulated in APP/E4 vs APP/E3 mice, a result further validated by in situ hybridization analysis. In contrast, Tyrobp and several genes involved in the C1Q complement cascade had a higher expression level in APP/E3 versus their APP/E4 counterparts. CONCLUSIONS Our data demonstrate that lack of Trem2 differentially impacts the phenotype and brain transcriptome of APP mice expressing human APOE isoforms. The changes probably reflect the different effect of APOE isoforms on amyloid deposition.
Collapse
Affiliation(s)
- Nicholas F. Fitz
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Cody M. Wolfe
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Brittany E. Playso
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Richard J. Biedrzycki
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Yi Lu
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Kyong Nyon Nam
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Iliya Lefterov
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Radosveta Koldamova
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
15
|
Fitz NF, Nam KN, Koldamova R, Lefterov I. Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for Alzheimer's disease. Br J Pharmacol 2019; 176:3599-3610. [PMID: 30924124 PMCID: PMC6715597 DOI: 10.1111/bph.14668] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/18/2022] Open
Abstract
After 15 years of research into Alzheimer's disease (AD) therapeutics, including billions of US dollars provided by federal agencies, pharmaceutical companies, and private foundations, there are still no meaningful therapies that can delay the onset or slow the progression of AD. An understanding of the proteolytic processing of amyloid precursor protein (APP) and the hypothesis that pathogenic mechanisms in familial and sporadic forms of AD are very similar led to the assumption that pharmacological inhibition of secretases or immunological approaches to clear amyloid depositions in the brain would have been the core to drug discovery strategies and successful therapies. However, there are other understudied approaches including targeting genes, gene networks, and metabolic pathways outside the proteolytic processing of APP. The advancement of newly developed sequencing technologies and mass spectrometry, as well as the availability of animal models expressing human apolipoprotein E isoforms, has been critical in rationalizing additional AD therapeutics. The purpose of this review is to present one of those approaches, based on the role of ligand-activated nuclear liver X and retinoid X receptors in the brain. This therapeutic approach was initially proposed utilizing in vitro models 15 years ago and has since been examined in numerous studies using AD-like mouse models. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyong Nyon Nam
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Radosveta Koldamova
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iliya Lefterov
- Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Dou F, Chen J, Cao H, Jia Q, Shen D, Liu T, Chen C. Anti-atherosclerotic effects of LXRα agonist through induced conversion of M1 macrophage to M2. Am J Transl Res 2019; 11:3825-3840. [PMID: 31312392 PMCID: PMC6614608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Liver X receptor alpha (LXRα) plays important roles in lipid metabolism and inflammation. Therefore, it is essential for protection against atherosclerosis (AS). In AS plaques, the key cells involved in lipid metabolism and inflammation are macrophages. However, the mechanism by which LXRα regulates macrophage involvement in AS formation remains unclear. In this study, we first confirmed the effects of an LXRα agonist (T0901317) and antagonist (GSK2033) on foam cell formation and inflammation in vivo and in vitro. Indeed, T0901317 reduced the number of macrophages in AS plaques and decreased the number of migrated macrophages, as assessed using an in vitro transwell assay. Next, we investigated the relationship between the reduction in macrophages in AS plaques and cytokine levels or foam cell formation. The results show that T0901317 reduced the number of high cholesterol-induced M1 macrophages by converting them into M2 macrophages in vivo and in vitro. Due to this phenotypic transition of macrophages, the inflammatory response was alleviated, and lipid metabolism was enhanced in AS plaques. This effect was achieved by promoting the expression of reverse transporters (ATP-binding cassette transporter member 1 and ATP-binding cassette subfamily G member 1) and inhibiting the phosphorylation of nuclear factor-κB-mediated phosphorylation.
Collapse
Affiliation(s)
- Fangfang Dou
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Hui Cao
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Qingling Jia
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Dingzhu Shen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200031, China
| |
Collapse
|
17
|
Castranio EL, Wolfe CM, Nam KN, Letronne F, Fitz NF, Lefterov I, Koldamova R. ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms. Acta Neuropathol Commun 2018; 6:69. [PMID: 30049279 PMCID: PMC6062955 DOI: 10.1186/s40478-018-0569-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Expression of human Apolipoprotein E (APOE) modulates the inflammatory response in an isoform specific manner, with APOE4 isoform eliciting a stronger pro-inflammatory response, suggesting a possible mechanism for worse outcome following traumatic brain injury (TBI). APOE lipidation and stability is modulated by ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein that transports lipids and cholesterol onto APOE. We examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi followed by genome-wide differential gene expression analysis. We found that TBI significantly impacted unique transcripts within each group, however, the proportion of unique transcripts was highest in E4/Abca1+/- mice. Additionally, we found that Abca1 haplodeficiency increased the expression of microglia sensome genes among only APOE4 injured mice, a response not seen in injured APOE3 mice, nor in either group of sham-treated mice. To identify gene networks, or modules, correlated to TBI, APOE isoform and Abca1 haplodeficiency, we used weighted gene co-expression network analysis (WGCNA). The module that positively correlated to TBI groups was associated with immune response and featured hub genes that were microglia-specific, including Trem2, Tyrobp, Cd68 and Hexb. The modules positively correlated with APOE4 isoform and negatively to Abca1 haplodeficient mice represented "protein translation" and "oxidation-reduction process", respectively. Our results reveal E4/Abca1+/- TBI mice have a distinct response to injury, and unique gene networks are associated with APOE isoform, Abca1 insufficiency and injury.
Collapse
Affiliation(s)
- Emilie L Castranio
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Cody M Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kyong Nyon Nam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Florent Letronne
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
18
|
The Interplay Between Apolipoprotein E4 and the Autophagic–Endocytic–Lysosomal Axis. Mol Neurobiol 2018; 55:6863-6880. [DOI: 10.1007/s12035-018-0892-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|