1
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Kircali MF, Turanli B. Idiopathic Pulmonary Fibrosis Molecular Substrates Revealed by Competing Endogenous RNA Regulatory Networks. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:381-392. [PMID: 37540140 DOI: 10.1089/omi.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic disease of the lung with poor prognosis. Fibrosis results from remodeling of the interstitial tissue. A wide range of gene expression changes are observed, but the role of micro RNAs (miRNAs) and circular RNAs (circRNA) is still unclear. Therefore, this study aimed to establish an messenger RNA (mRNA)-miRNA-circRNA competing endogenous RNA (ceRNA) regulatory network to uncover novel molecular signatures using systems biology tools. Six datasets were used to determine differentially expressed genes (DEGs) and miRNAs (DEmiRNA). Accordingly, protein-protein, mRNA-miRNA, and miRNA-circRNA interactions were constructed. Modules were determined and further analyzed in the Drug Gene Budger platform to identify potential therapeutic compounds. We uncovered common 724 DEGs and 278 DEmiRNAs. In the protein-protein interaction network, TMPRSS4, ESR2, TP73, CLEC4E, and TP63 were identified as hub protein coding genes. The mRNA-miRNA interaction network revealed two modules composed of ADRA1A, ADRA1B, hsa-miR-484 and CDH2, TMPRSS4, and hsa-miR-543. The DEmiRNAs in the modules further analyzed to propose potential circRNA regulators in the ceRNA network. These results help deepen the understanding of the mechanisms of IPF. In addition, the molecular leads reported herein might inform future innovations in diagnostics and therapeutics research and development for IPF.
Collapse
Affiliation(s)
- Muhammed Fatih Kircali
- School of Medicine, Marmara University, Istanbul, Türkiye
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| |
Collapse
|
3
|
Personalizing Care for Critically Ill Adults Using Omics: A Concise Review of Potential Clinical Applications. Cells 2023; 12:cells12040541. [PMID: 36831207 PMCID: PMC9954497 DOI: 10.3390/cells12040541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Current guidelines for critically ill patients use broad recommendations to promote uniform protocols for the management of conditions such as acute kidney injury, acute respiratory distress syndrome, and sepsis. Although these guidelines have enabled the substantial improvement of care, mortality for critical illness remains high. Further outcome improvement may require personalizing care for critically ill patients, which involves tailoring management strategies for different patients. However, the current understanding of disease heterogeneity is limited. For critically ill patients, genomics, transcriptomics, proteomics, and metabolomics have illuminated such heterogeneity and unveiled novel biomarkers, giving clinicians new means of diagnosis, prognosis, and monitoring. With further engineering and economic development, omics would then be more accessible and affordable for frontline clinicians. As the knowledge of pathophysiological pathways mature, targeted treatments can then be developed, validated, replicated, and translated into clinical practice.
Collapse
|
4
|
Tao Z, Jie Y, Mingru Z, Changping G, Fan Y, Haifeng W, Yuelan W. The Elk1/MMP-9 axis regulates E-cadherin and occludin in ventilator-induced lung injury. Respir Res 2021; 22:233. [PMID: 34425812 PMCID: PMC8382112 DOI: 10.1186/s12931-021-01829-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
Background Ventilator-induced lung injury (VILI) is a common complication in the treatment of respiratory diseases with high morbidity and mortality. ETS-domain containing protein (Elk1) and Matrix metalloproteinase (MMP) 9 are involved in VILI, but the roles have not been fully elucidated. This study examined the mechanisms of the activation of MMP-9 and Elk1 regulating barrier function in VILI in vitro and in vivo. Methods For the in vitro study, Mouse lung epithelial cells (MLE-12) were pre-treated with Elk1 siRNA or MMP-9 siRNA for 48 h prior to cyclic stretch at 20% for 4 h. For the in vivo study, C57BL/6 mice were pre-treated with Elk1 siRNA or MMP-9 siRNA for 72 h prior to 4 h of mechanical ventilation. The expressions of Elk1, MMP-9, Tissue inhibitor of metalloproteinase 1 (TIMP-1), E-cadherin, and occludin were measured by Western blotting. The intracellular distribution of E-cadherin and occludin was shown by immunofluorescence. The degree of pulmonary edema and lung injury were evaluated by Hematoxylin–eosin (HE) staining, lung injury scores, Wet/Dry (W/D) weight ratio, total cell counts, and Evans blue dye. Results 20% cyclic stretch and high tidal volume increases the expressions of Elk1, MMP-9, and TIMP-1, increases the ratio of MMP-9/TIMP-1, decreases the E-cadherin and occludin level. Elk1 siRNA or MMP-9 siRNA reverses the degradations of E-cadherin, occludin, and the ratio of MMP-9/TIMP-1 caused by cyclic stretch. Elk1 siRNA decreases the MMP-9 level with or not 20% cyclic stretch and high tidal volume. Conclusions The results demonstrate mechanical stretch damages the tight junctions and aggravates the permeability in VILI, Elk1 plays an important role in affecting the tight junctions and permeability by regulating the balance of MMP-9 and TIMP-1, thus indicating the therapeutic potential of Elk1 to treat VILI.
Collapse
Affiliation(s)
- Zhao Tao
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology, People's Hospital of Rizhao, Jining Medical University, No. 126 Tai'an Road, Rizhao, 276826, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Yan Jie
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Zhang Mingru
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Gu Changping
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Yang Fan
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Wu Haifeng
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Wang Yuelan
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China. .,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
5
|
Histone Deacetylase 7 Inhibition in a Murine Model of Gram-Negative Pneumonia-Induced Acute Lung Injury. Shock 2021; 53:344-351. [PMID: 31083049 DOI: 10.1097/shk.0000000000001372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulmonary infections remain the most common cause of Acute Respiratory Distress Syndrome (ARDS), a pulmonary inflammatory disease with high mortality, for which no targeted therapy currently exists. We have previously demonstrated an ameliorated syndrome with early, broad spectrum Histone Deacetylase (HDAC) inhibition in a murine model of gram-negative pneumonia-induced Acute Lung Injury (ALI), the underlying pulmonary pathologic phenotype leading to ARDS. With the current project we aim to determine if selective inhibition of a specific HDAC leads to a similar pro-survival phenotype, potentially pointing to a future therapeutic target. METHODS C57Bl/6 mice underwent endotracheal instillation of 30×10Escherichia coli (strain 19138) versus saline (n = 24). Half the infected mice were administered Trichostatin A (TSA) 30 min later. All animals were sacrificed 6 h later for tissue sampling and HDAC quantification, while another set of animals (n = 24) was followed to determine survival. Experiments were repeated with selective siRNA inhibition of the HDAC demonstrating the greatest inhibition versus scrambled siRNA (n = 24). RESULTS TSA significantly ameliorated the inflammatory phenotype and improved survival in infected-ALI mice, and HDAC7 was the HDAC with the greatest transcription and protein translation suppression. Similar results were obtained with selective HDAC7 siRNA inhibition compared with scrambled siRNA. CONCLUSION HDAC7 appears to play a key role in the inflammatory response that leads to ALI after gram-negative pneumonia in mice.
Collapse
|
6
|
Bossardi Ramos R, Adam AP. Molecular Mechanisms of Vascular Damage During Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:95-107. [PMID: 34019265 DOI: 10.1007/978-3-030-68748-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of pulmonary and systemic insults promote an inflammatory response causing increased vascular permeability, leading to the development of acute lung injury (ALI), a condition necessitating hospitalization and intensive care, or the more severe acute respiratory distress syndrome (ARDS), a disease with a high mortality rate. Further, COVID-19 pandemic-associated ARDS is now a major cause of mortality worldwide. The pathogenesis of ALI is explained by injury to both the vascular endothelium and the alveolar epithelium. The disruption of the lung endothelial and epithelial barriers occurs in response to both systemic and local production of pro-inflammatory cytokines. Studies that evaluate the association of genetic polymorphisms with disease risk did not yield many potential therapeutic targets to treat and revert lung injury. This failure is probably due in part to the phenotypic complexity of ALI/ARDS, and genetic predisposition may be obscured by the multiple environmental and behavioral risk factors. In the last decade, new research has uncovered novel epigenetic mechanisms that control ALI/ARDS pathogenesis, including histone modifications and DNA methylation. Enzyme inhibitors such as DNMTi and HDACi may offer new alternative strategies to prevent or reverse the vascular damage that occurs during lung injury. This review will focus on the latest findings on the molecular mechanisms of vascular damage in ALI/ARDS, the genetic factors that might contribute to the susceptibility for developing this disease, and the epigenetic changes observed in humans, as well as in experimental models of ALI/ADRS.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA. .,Department of Ophthalmology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
7
|
Suberoylanilide Hydroxamic Acid Alleviates Acute Lung Injury Induced by Severe Hemorrhagic Shock and Resuscitation in Rats. Shock 2019; 54:474-481. [DOI: 10.1097/shk.0000000000001505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2019; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Gouda MM, Shaikh SB, Bhandary YP. Inflammatory and Fibrinolytic System in Acute Respiratory Distress Syndrome. Lung 2018; 196:609-616. [PMID: 30121847 DOI: 10.1007/s00408-018-0150-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the most advanced form of acute lung injury (ALI). This is characterized by bilateral pulmonary infiltrates and severe hypoxemia. According to Berlin definition of ARDS, this is defined based on the timings, radiographic changes, edema formation, and severity on the PaO2/FiO2 ratio. During ARDS, the loss of integrity of the epithelium causes the septic shock. The degree of epithelial injury is the major prognostic marker of ARDS. In addition to this, inflammatory cell migration, fibro-proliferation, and activation of apoptosis also play an important role in the pathophysiology of ARDS. The alveolar epithelial cell is the prime target during injury where this cell either undergo apoptosis or epithelial-mesenchymal transition (EMT). Injury to the AECs triggers the changes in the DNA fragmentation and activation of certain apoptotic markers such as caspases at the same time some cells undergo biochemical changes and loses its epithelial morphology as well epithelial biomarkers and gain mesenchymal biomarkers and morphology. In both the cases, the fibrinolytic system plays an important role in maintaining the integrity of the disease process efficiently. This review highlights the research evidence of apoptosis and EMT in lung development, injury and its prognosis in ARDS thereby to develop an effective strategy for the treatment of ARDS.
Collapse
Affiliation(s)
- Mahesh Manjunath Gouda
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | | |
Collapse
|
11
|
Moheimani F, Koops J, Williams T, Reid AT, Hansbro PM, Wark PA, Knight DA. Influenza A virus infection dysregulates the expression of microRNA-22 and its targets; CD147 and HDAC4, in epithelium of asthmatics. Respir Res 2018; 19:145. [PMID: 30068332 PMCID: PMC6090696 DOI: 10.1186/s12931-018-0851-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background Specific microRNAs (miRNAs) play essential roles in airway remodeling in asthma. Infection with influenza A virus (IAV) may also magnify pre-existing airway remodeling leading to asthma exacerbation. However, these events remain to be fully defined. We investigated the expression of miRNAs with diverse functions including proliferation (miR-20a), differentiation (miR-22) or innate/adaptive immune responses (miR-132) in primary bronchial epithelial cells (pBECs) of asthmatics following infection with the H1N1 strain of IAV. Methods pBECs from subjects (n = 5) with severe asthma and non-asthmatics were cultured as submerged monolayers or at the air-liquid-interface (ALI) conditions and incubated with IAV H1N1 (MOI 5) for up to 24 h. Isolated miRNAs were subjected to Taqman miRNAs assays. We confirmed miRNA targets using a specific mimic and antagomir. Taqman mRNAs assays and immunoblotting were used to assess expression of target genes and proteins, respectively. Results At baseline, these miRNAs were expressed at the same level in pBECs of asthmatics and non-asthmatics. After 24 h of infection, miR-22 expression increased significantly which was associated with the suppression of CD147 mRNA and HDAC4 mRNA and protein expression in pBECs from non-asthmatics, cultured in ALI. In contrast, miR-22 remained unchanged while CD147 expression increased and HDAC4 remained unaffected in cells from asthmatics. IAV H1N1 mediated increases in SP1 and c-Myc transcription factors may underpin the induction of CD147 in asthmatics. Conclusion The different profile of miR-22 expression in differentiated epithelial cells from non-asthmatics may indicate a self-defense mechanism against aberrant epithelial responses through suppressing CD147 and HDAC4, which is compromised in epithelial cells of asthmatics. Electronic supplementary material The online version of this article (10.1186/s12931-018-0851-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.
| | - Jorinke Koops
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Zhao Y, Wu T. Histone deacetylase inhibition inhibits brachial plexus avulsion-induced neuropathic pain. Muscle Nerve 2018; 58:434-440. [PMID: 29742796 DOI: 10.1002/mus.26160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/29/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neuropathic pain induced by brachial plexus avulsion (BPA) is a pathological condition. We hypothesized that inhibition of histone deacetylase (HDAC) could suppress BPA-induced neuropathic pain through inhibition of transient reception potential (TRP) overexpression and protein kinase B (Akt)-mediated mammalian target of rapamycin (mTOR) activation. METHODS We generated a rat BPA model; administered HDAC inhibitor tricostatin A (TSA) for 7 days postsurgery; and assessed the effects on HDAC expression, Akt phosphorylation, neuroinflammation, and mTOR activation. RESULTS TSA treatment alleviated BPA-induced mechanical hyperalgesia, suppressed Akt phosphorylation, and increased HDAC. We found suppressed proinflammatory cytokine levels, TRPV1 and TRPM8 expression, and mTOR activity in TSA-treated BPA rats. DISCUSSION Our results suggest that altered HDAC and Akt signaling are involved in BPA-induced neuropathic pain and that inhibition of HDAC could be an effective therapeutic approach in reducing neuropathic pain. Muscle Nerve 58: 434-440, 2018.
Collapse
Affiliation(s)
- Yingbo Zhao
- Department of Orthopedics, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Tianjian Wu
- Department of Hand & Foot Surgery, Gaotang People's Hospital, Liaocheng, China
| |
Collapse
|
13
|
Fang CX, Ma CM, Jiang L, Wang XM, Zhang N, Ma JN, Wu TH, Zhang ZH, Zhao GD, Zhao YD. p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. Curr Med Sci 2018; 38:473-481. [DOI: 10.1007/s11596-018-1903-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/25/2018] [Indexed: 12/18/2022]
|
14
|
Kainthola A, Haritwal T, Tiwari M, Gupta N, Parvez S, Tiwari M, Prakash H, Agrawala PK. Immunological Aspect of Radiation-Induced Pneumonitis, Current Treatment Strategies, and Future Prospects. Front Immunol 2017; 8:506. [PMID: 28512460 PMCID: PMC5411429 DOI: 10.3389/fimmu.2017.00506] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Delivery of high doses of radiation to thoracic region, particularly with non-small cell lung cancer patients, becomes difficult due to subsequent complications arising in the lungs of the patient. Radiation-induced pneumonitis is an early event evident in most radiation exposed patients observed within 2-4 months of treatment and leading to fibrosis later. Several cytokines and inflammatory molecules interplay in the vicinity of the tissue developing radiation injury leading to pneumonitis and fibrosis. While certain cytokines may be exploited as biomarkers, they also appear to be a potent target of intervention at transcriptional level. Initiation and progression of pneumonitis and fibrosis thus are dynamic processes arising after few months to year after irradiation of the lung tissue. Currently, available treatment strategies are challenged by the major dose limiting complications that curtails success of the treatment as well as well being of the patient's future life. Several approaches have been in practice while many other are still being explored to overcome such complications. The current review gives a brief account of the immunological aspects, existing management practices, and suggests possible futuristic approaches.
Collapse
Affiliation(s)
- Anup Kainthola
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Teena Haritwal
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Mrinialini Tiwari
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Noopur Gupta
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manisha Tiwari
- Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Hrideysh Prakash
- School of Life Sciences, Science complex, University of Hyderabad, Hyderabad, India
| | - Paban K. Agrawala
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|