1
|
Dierig A, Hoelscher M, Schultz S, Hoffmann L, Jarchow-MacDonald A, Svensson EM, Te Brake L, Aarnoutse R, Boeree M, McHugh TD, Wildner LM, Gong X, Phillips P, Minja LT, Ntinginya N, Mpagama S, Liyoyo A, Wallis RS, Sebe M, Mhimbira FA, Mbeya B, Rassool M, Geiter L, Cho YL, Heinrich N. A phase IIb, open-label, randomized controlled dose ranging multi-centre trial to evaluate the safety, tolerability, pharmacokinetics and exposure-response relationship of different doses of delpazolid in combination with bedaquiline delamanid moxifloxacin in adult subjects with newly diagnosed, uncomplicated, smear-positive, drug-sensitive pulmonary tuberculosis. Trials 2023; 24:382. [PMID: 37280643 DOI: 10.1186/s13063-023-07354-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin. METHODS Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course. DISCUSSION DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages. TRIAL REGISTRATION DECODE was registered in ClinicalTrials.gov before recruitment start on 22 October 2021 (NCT04550832).
Collapse
Affiliation(s)
- A Dierig
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - M Hoelscher
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - S Schultz
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - L Hoffmann
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - A Jarchow-MacDonald
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK
| | - E M Svensson
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - L Te Brake
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - R Aarnoutse
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Boeree
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - T D McHugh
- Division of Infection & Immunity, UCL Centre for Clinical Microbiology, University College of London, London, UK
| | - L M Wildner
- Division of Infection & Immunity, UCL Centre for Clinical Microbiology, University College of London, London, UK
| | - X Gong
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - Ppj Phillips
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of California San Francisco, San Francisco, USA
| | - L T Minja
- National Institute for Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - N Ntinginya
- National Institute for Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - S Mpagama
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - A Liyoyo
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - R S Wallis
- The Aurum Institute, Tembisa, South Africa
| | - M Sebe
- The Aurum Institute, Tembisa, South Africa
| | - F A Mhimbira
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - B Mbeya
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - M Rassool
- Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, Helen Joseph Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - L Geiter
- LegoChem Biosciences, Daejeon, South Korea
| | - Y L Cho
- LegoChem Biosciences, Daejeon, South Korea
| | - N Heinrich
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
2
|
Autologous Cytokine-Induced Killer Cell Immunotherapy Enhances Chemotherapy Efficacy against Multidrug-Resistant Tuberculosis. J Immunol Res 2022; 2022:2943113. [PMID: 35340584 PMCID: PMC8947923 DOI: 10.1155/2022/2943113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Multidrug-resistant tuberculosis (MDR-TB) causes persistent infection and challenges tuberculosis control worldwide. T cell-mediated immunity plays a critical role in controlling Mycobacterium tuberculosis (Mtb) infection, and therefore, enhancing Mtb-specific T cell immune responses represents a promising therapeutic strategy against TB. Cytokine-induced killer (CIK) immunotherapy is based on autologous infusion of in vitro expanded bulk T cells, which include both pathogen-specific and nonspecific T cells from patient peripheral blood mononuclear cells (PBMC) into TB patients. Preclinical mouse studies have shown that the adoptive T cell therapy inhibited Mtb infection. However, the efficacy of CIK immunotherapy in the treatment of MDR-TB infection has not been evaluated in clinical trials. Methods We performed a retrospective study of MDR-TB patients who received CIK immunotherapy in combination with anti-TB chemotherapy and those who had standard chemotherapy. Results Our results showed that CIK immunotherapy in combination with anti-TB chemotherapy treatment increased the conversion rate of sputum smear and Mtb culture, alleviated symptoms, improved lesion absorption, and increased recovery. The kinetics of serology and immunology index monitoring data showed good safety profiles for the CIK treatment. Conclusion Our study has provided strong evidence that CIK immunotherapy in combination with anti-TB chemotherapy is beneficial for MDR-TB patients. A multicenter clinical trial is warranted to evaluate CIK as a new immune therapy for MDR-TB.
Collapse
|
3
|
Wakjira MK, Sandy PT, Mavhandu-Mudzusi AH. Treatment outcomes of patients with MDR-TB and its determinants at referral hospitals in Ethiopia. PLoS One 2022; 17:e0262318. [PMID: 35176035 PMCID: PMC8853509 DOI: 10.1371/journal.pone.0262318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is limited empirical evidence in Ethiopia on the determinants of treatment outcomes of patients with multidrug-resistant tuberculosis (MDR-TB) who were enrolled to second-line anti-tuberculosis drugs. Thus, this study investigated the determinants of treatment outcomes in patients with MDR-TB at referral hospitals in Ethiopia. DESIGN AND METHODS This study was underpinned by a cross-sectional quantitative research design that guided both data collection and analysis. Data is collected using structured questionnaire and data analyses was performed using the Statistical Package for Social Sciences. Multi-variable logistic regression was used to control for confounders in determining the association between treatment outcomes of patients with MDR-TB and selected predictor variables, such as co-morbidity with MDR-TB and body mass index. RESULTS From the total of 136 patients with MDR-TB included in this study, 31% had some co-morbidity with MDR-TB at baseline, and 64% of the patients had a body mass index of less than 18.5 kg/m2. At 24 months after commencing treatment, 76 (69%), n = 110), of the patients had successfully completed treatment, while 30 (27%) died of the disease. The odds of death was significantly higher among patients with low body mass index (AOR = 2.734, 95% CI: 1.01-7.395; P<0.048) and those with some co-morbidity at baseline (AOR = 4.260, 95%CI: 1.607-11.29; p<0.004). CONCLUSION The higher proportion of mortality among patients treated for MDR-TB at Adama and Nekemte Hospitals, central Ethiopia, is attributable to co-morbidities with MDR-TB, including HIV/AIDS and malnutrition. Improving socio-economic and nutritional support and provision of integrated care for MDR-TB and HIV/AIDS is recommended to mitigate the higher level of death among patients treated for MDR-TB.
Collapse
Affiliation(s)
| | - Peter T. Sandy
- Buckinghamshire New University, Uxbridge Campus, Uxbridge, London, United Kingdom
| | - A. H. Mavhandu-Mudzusi
- University of South Africa, College of Human Sciences, Office of Graduate Studies and Research, Pretoria, South Africa
| |
Collapse
|
4
|
Mbelele PM, Utpatel C, Sauli E, Mpolya EA, Mutayoba BK, Barilar I, Dreyer V, Merker M, Sariko ML, Swema BM, Mmbaga BT, Gratz J, Addo KK, Pletschette M, Niemann S, Houpt ER, Mpagama SG, Heysell SK. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac042. [PMID: 35465240 PMCID: PMC9021016 DOI: 10.1093/jacamr/dlac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rifampicin- or multidrug-resistant (RR/MDR) Mycobacterium tuberculosis complex (MTBC) strains account for considerable morbidity and mortality globally. WGS-based prediction of drug resistance may guide clinical decisions, especially for the design of RR/MDR-TB therapies. Methods We compared WGS-based drug resistance-predictive mutations for 42 MTBC isolates from MDR-TB patients in Tanzania with the MICs of 14 antibiotics measured in the Sensititre™ MycoTB assay. An isolate was phenotypically categorized as resistant if it had an MIC above the epidemiological-cut-off (ECOFF) value, or as susceptible if it had an MIC below or equal to the ECOFF. Results Overall, genotypically non-wild-type MTBC isolates with high-level resistance mutations (gNWT-R) correlated with isolates with MIC values above the ECOFF. For instance, the median MIC value (mg/L) for rifampicin-gNWT-R strains was >4.0 (IQR 4.0–4.0) compared with 0.5 (IQR 0.38–0.50) in genotypically wild-type (gWT-S, P < 0.001); isoniazid-gNWT-R >4.0 (IQR 2.0–4.0) compared with 0.25 (IQR 0.12–1.00) among gWT-S (P = 0.001); ethionamide-gNWT-R 15.0 (IQR 10.0–20.0) compared with 2.50 (IQR; 2.50–5.00) among gWT-S (P < 0.001). WGS correctly predicted resistance in 95% (36/38) and 100% (38/38) of the rifampicin-resistant isolates with ECOFFs >0.5 and >0.125 mg/L, respectively. No known resistance-conferring mutations were present in genes associated with resistance to fluoroquinolones, aminoglycosides, capreomycin, bedaquiline, delamanid, linezolid, clofazimine, cycloserine, or p-amino salicylic acid. Conclusions WGS-based drug resistance prediction worked well to rule-in phenotypic drug resistance and the absence of second-line drug resistance-mediating mutations has the potential to guide the design of RR/MDR-TB regimens in the future.
Collapse
Affiliation(s)
- Peter M. Mbelele
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Corresponding author. E-mail:
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Emmanuel A. Mpolya
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Beatrice K. Mutayoba
- Ministry of Health, National AIDS Control Program, Department of Preventive Services, Dodoma, Tanzania
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | | | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kennedy K. Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michel Pletschette
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah G. Mpagama
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
ESAT-6 and Ag85A Synthetic Peptides as Candidates for an Immunodiagnostic Test in Children with a Clinical Suspicion of Tuberculosis. DISEASE MARKERS 2021; 2021:6673250. [PMID: 34306256 PMCID: PMC8279849 DOI: 10.1155/2021/6673250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
Background Tuberculosis (TB) is being underdetected in children as most are smear-negative. This work was aimed at evaluating ESAT-6 and Ag85A synthetic peptides' serodiagnostic potential for diagnosing children having a clinical suspicion of TB. Methods The study involved 438 children: 77 Creole nonindigenous (13 suspected of having TB and 64 healthy ones) and 361 Warao indigenous children (39 suspected of TB and 322 healthy children). The approach's diagnostic information was compared using operational characteristics and receiver-operating characteristic (ROC) curves. Results Ag85A P-29879 had 94.6% sensitivity (AUC = 0.741: 0.651 to 0.819 95% CI) in indigenous children. ESAT-6 P-12036 and P-12037 had 100% and 92.3% of sensitivity (AUC = 0.929: 0.929: 0.846 to 0.975 95% CI and 0.791: 63.9 to 98.7 95% CI, respectively) in Creole children. ESAT-6 peptides also allowed a differentiation between children with TB and healthy ones. Conclusions Further validation of this approach could lead to developing a complementary tool for rapid TB diagnosis in children.
Collapse
|
6
|
Kassa GM, Merid MW, Muluneh AG. Khat Chewing and Clinical Conditions Determine the Epidemiology of Primary Drug Resistance Tuberculosis in Amhara Region of Ethiopia: A Multicenter Study. Infect Drug Resist 2021; 14:2449-2460. [PMID: 34234475 PMCID: PMC8255900 DOI: 10.2147/idr.s316268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Rifampicin and/or multidrug-resistant tuberculosis (RR/MDR-TB) remains an uncontrolled public health emergency that has been synergized by the recently increased person-to-person transmission in the community as primary RR/MDR-TB, which is defined as RR/MDR-TB in new TB patients with no prior exposure to anti-TB treatment for more than one month. This study aimed to measure the prevalence and associated factors of primary drug-resistance among drug-resistant tuberculosis patients, as evidenced by the Amhara region treatment initiating centers. METHODS An institutional-based multicenter cross-sectional study was conducted from September 2010 to December 2017, among 580 RR/MDR-TB patients on the second-line anti-TB drug in the Amhara regional state. Data were collected from patient charts and registration books using a standardized data abstraction sheet. The data were entered using Epi-data 4.2.0.0 and transferred to Stata 14 software for further data management and analysis. A bivariable and multivariable binary logistic model was run subsequently, and finally, a p-value of less than 0.05 with a 95% confidence interval (CI) was used to declare the significance of the explanatory variable. RESULTS The magnitude of primary drug resistance among drug-resistant tuberculosis patients was 15.69% (95% CI: 12.94, 18.89). Alcohol drinking (adjusted odds ratio [AOR] = 0.31, 95% CI: 0.12-0.82), khat chewing (AOR = 4.43; 95% CI: 1.67-11.76), ambulatory and bedridden functional status (AOR = 0.43; 95% CI: 0.24-0.76) and (AOR = 0.41; 95% CI: 0.19-0.91), respectively, positive sputum smear result (AOR = 0.48; 95% CI: 0.26-0.90), and HIV coinfection (AOR= 2.31; 95% CI: 1.31-4.06) remained statistically significant associated factors of primary RR/MDR-TB. CONCLUSION Primary drug resistance is a public health problem in the study setting. Different behavioral and clinical conditions were significant factors of primary drug-resistant development. Mitigation strategies targeted on the patient's clinical condition, substance-related behaviors, and universal DST coverage might be very important for early detection and treatment of RR/MDR-TB to prevent community-level transmission.
Collapse
Affiliation(s)
- Getahun Molla Kassa
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences and Specialized Comprehensive Hospitals, University of Gondar, Gondar, Ethiopia
| | - Mehari Woldemariam Merid
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences and Specialized Comprehensive Hospitals, University of Gondar, Gondar, Ethiopia
| | - Atalay Goshu Muluneh
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences and Specialized Comprehensive Hospitals, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Wei H, Duan X. Application of KTH-integrated nursing model in care of patients with multi-drug resistant tuberculosis. Am J Transl Res 2021; 13:6855-6863. [PMID: 34306436 PMCID: PMC8290726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To evaluate the effect of the KTH-integrated nursing model of the knowledge-attitude-belief-practice model (KABP)-transtheoretical model (TTM)-as a health belief model (HBM) in nursing care of patients with multi-drug resistant tuberculosis (MDR-TB). METHODS Using a prospective study method, 102 patients with MDR-TB were randomly divided into two groups according to a random number table. The control group (n=51) received conventional nursing care, and the study group (n=51) received a KTH-integrated nursing model. The sputum negative conversion rate, effective rate of lesion absorption, level of disease cognition, compliance, self-efficacy (general self-efficacy scale, GSES score), healthy behavior (health-promoting lifestyle profile, HPLP), and quality of life (GQOL-74 scale score) were compared between the two groups. RESULTS Six months after enrollment, the sputum-negative conversion rate, total effective rate of lesion absorption, and total compliance rate of the study group were significantly higher than those of the control group (80.39% vs. 62.75%, 84.31% vs. 66.67%, 96.08% vs. 78.43%, P<0.05). 6 months after enrollment, the treatment plan, etiopathogenesis and harm, precautions, importance of treatment compliance, observation and follow-up, and total score of the study were all significantly higher than those of the control group (P<0.05). Six months after enrollment, the scores of GSES, HPLP and GQOL-74 in the study group were significantly higher than those of the control group (P<0.05). CONCLUSION The implementation of a KTH integrated nursing model for patients with MDR-TB was beneficial to promote sputum-negative conversion and lesion absorption, and improved disease awareness, medication compliance, self-efficacy, healthy behavior, and quality of life.
Collapse
Affiliation(s)
- Hanfen Wei
- The Five Tuberculosis Endemic Areas, The Public Health Clinical Center of ChengduChengdu, Sichuan Province, China
| | - Xiaoqian Duan
- Department of Psychosomatic Medicine, Xijing Hospital, Air Force Military Medical UniversityXi’an, Shaanxi Province, China
| |
Collapse
|
8
|
Mignani S, Tripathi VD, Soam D, Tripathi RP, Das S, Singh S, Gandikota R, Laurent R, Karpus A, Caminade AM, Steinmetz A, Dasgupta A, Srivastava KK, Majoral JP. Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of Mycobacterium tuberculosis: A New Therapy to Take Down Tuberculosis. Biomacromolecules 2021; 22:2659-2675. [PMID: 33970615 DOI: 10.1021/acs.biomac.1c00355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The long-term treatment of tuberculosis (TB) sometimes leads to nonadherence to treatment, resulting in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. Inadequate bioavailability of the drug is the main factor for therapeutic failure, which leads to the development of drug-resistant cases. Therefore, there is an urgent need to design and develop novel antimycobacterial agents minimizing the period of treatment and reducing the propagation of resistance at the same time. Here, we report the development of original and noncytotoxic polycationic phosphorus dendrimers essentially of generations 0 and 1, but also of generations 2-4, with pyrrolidinium, piperidinium, and related cyclic amino groups on the surface, as new antitubercular agents active per se, meaning with intrinsic activity. The strategy is based on the phenotypic screening of a newly designed phosphorus dendrimer library (generations 0-4) against three bacterial strains: attenuated Mycobacterium tuberculosis H37Ra, virulent M. tuberculosis H37Rv, and Mangora bovis BCG. The most potent polycationic phosphorus dendrimers 1G0,HCl and 2G0,HCl are active against all three strains with minimum inhibitory concentrations (MICs) between 3.12 and 25.0 μg/mL. Both are irregularly shaped nanoparticles with highly mobile branches presenting a radius of gyration of 7 Å, a diameter of maximal 25 Å, and a solvent-accessible surface area of dominantly positive potential energy with very localized negative patches arising from the central N3P3 core, which steadily interacts with water molecules. The most interesting is 2G0,HCl, showing relevant efficacy against single-drug-resistant (SDR) M. tuberculosis H37Rv, resistant to rifampicin, isoniaid, ethambutol, or streptomycin. Importantly, 2G0,HCl displayed significant in vivo efficacy based on bacterial counts in lungs of infected Balb/C mice at a dose of 50 mg/kg oral administration once a day for 2 weeks and superior efficacy in comparison to ethambutol and rifampicin. This series of polycationic phosphorus dendrimers represents first-in-class drugs to treat TB infection, could fulfill the clinical candidate pipe of this high burden of infectious disease, and play a part in addressing the continuous demand for new drugs.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, PRES Sorbonne Paris Cité, CNRS UMR 860, Université Paris Descartes, 45, rue des Saints Pères, 75006 Paris, France.,CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Vishwa Deepak Tripathi
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Dheerj Soam
- Microbiology Division, CSIR-Central Drug Research Institute, 226031 Lucknow, India
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR-CDRI, 226031 Lucknow, India
| | - Swetarka Das
- Microbiology Division, CSIR-Central Drug Research Institute, 226031 Lucknow, India
| | - Shriya Singh
- Microbiology Division, CSIR-Central Drug Research Institute, 226031 Lucknow, India
| | - Ramakrishna Gandikota
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Regis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Anke Steinmetz
- Sanofi R&D, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, 94403 Vitry-sur-Seine Cedex, France
| | - Arunava Dasgupta
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Janakipuram Extension, Sitapur Road, 226031 Lucknow, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Janakipuram Extension, Sitapur Road, 226031 Lucknow, India
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
9
|
Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Pharmaceutics 2021; 13:pharmaceutics13050592. [PMID: 33919204 PMCID: PMC8143172 DOI: 10.3390/pharmaceutics13050592] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
Control of Mycobacterium tuberculosis infection continues to be an issue, particularly in countries with a high tuberculosis (TB) burden in the tropical and sub-tropical regions. The effort to reduce the catastrophic cost of TB with the WHO’s End TB Strategy in 2035 is still obstructed by the emergence of drug-resistant TB (DR-TB) cases as result of various mutations of the MTB strain. In the approach to combat DR-TB, several potential antitubercular agents were discovered as inhibitors for various existing and novel targets. Host-directed therapy and immunotherapy also gained attention as the drug-susceptibility level of the pathogen can be reduced due to the pathogen’s evolutionary dynamics. This review is focused on the current progress and challenges in DR-TB treatment. We briefly summarized antitubercular compounds that are under development and trials for both DR-TB drug candidates and host-directed therapy. We also highlighted several problems in DR-TB diagnosis, the treatment regimen, and drug discovery that have an impact on treatment adherence and treatment failure.
Collapse
|
10
|
Han WM, Mahikul W, Pouplin T, Lawpoolsri S, White LJ, Pan-Ngum W. Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach. PLoS One 2021; 16:e0248846. [PMID: 33770104 PMCID: PMC7997007 DOI: 10.1371/journal.pone.0248846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/07/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the transmission of TB and the MDR-TB situation in the Southeast Asia region. The population-level impacts of short-course treatment regimens were compared with the impacts of conventional regimens. Multi-way analysis was used to evaluate the impact by varying programmatic factors (eligibility for short-course MDR-TB treatment, treatment initiation, and drug susceptibility test (DST) coverage). The model predicted that overall TB incidence will be reduced from 246 (95% credible intervals (CrI), 221–275) per 100,000 population in 2020 to 239 (95% CrI, 215–267) per 100,000 population in 2035, with a modest reduction of 2.8% (95% CrI, 2.7%–2.9%). Despite the slight reduction in overall TB infections, the model predicted that the MDR-TB percentage among newly notified TB infections will remain steady, with 2.4% (95% CrI, 2.1–2.9) in 2020 and 2.5% (95% CrI, 2.3–3.1) in 2035, using conventional MDR-TB treatment. With the introduction of short-course regimens to treat MDR-TB, the development of resistance can be slowed by 38.6% (95% confidence intervals (CI), 35.9–41.3) reduction in MDR-TB case number, and 37.6% (95% CI, 34.9–40.3) reduction in MDR-TB percentage among new TB infections over the 30-year period compared with the baseline using the standard treatment regimen. The multi-way analysis showed eligibility for short-course treatment and treatment initiation greatly influenced the impacts of short-course treatment regimens on reductions in MDR-TB cases and percentage resistance among new infections. Policies which promote the expansion of short-course regimens and early MDR-TB treatment initiation should be considered along with other interventions to tackle antimicrobial resistance in the region.
Collapse
Affiliation(s)
- Win Min Han
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Wiriya Mahikul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thomas Pouplin
- Pharmacology Department, Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lisa J. White
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Wirichada Pan-Ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mathematical and Economics Modelling (MAEMOD) Research Group, Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- * E-mail:
| |
Collapse
|
11
|
Weerasuriya CK, Harris RC, McQuaid CF, Bozzani F, Ruan Y, Li R, Li T, Rade K, Rao R, Ginsberg AM, Gomez GB, White RG. The epidemiologic impact and cost-effectiveness of new tuberculosis vaccines on multidrug-resistant tuberculosis in India and China. BMC Med 2021; 19:60. [PMID: 33632218 PMCID: PMC7908776 DOI: 10.1186/s12916-021-01932-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Despite recent advances through the development pipeline, how novel tuberculosis (TB) vaccines might affect rifampicin-resistant and multidrug-resistant tuberculosis (RR/MDR-TB) is unknown. We investigated the epidemiologic impact, cost-effectiveness, and budget impact of hypothetical novel prophylactic prevention of disease TB vaccines on RR/MDR-TB in China and India. METHODS We constructed a deterministic, compartmental, age-, drug-resistance- and treatment history-stratified dynamic transmission model of tuberculosis. We introduced novel vaccines from 2027, with post- (PSI) or both pre- and post-infection (P&PI) efficacy, conferring 10 years of protection, with 50% efficacy. We measured vaccine cost-effectiveness over 2027-2050 as USD/DALY averted-against 1-times GDP/capita, and two healthcare opportunity cost-based (HCOC), thresholds. We carried out scenario analyses. RESULTS By 2050, the P&PI vaccine reduced RR/MDR-TB incidence rate by 71% (UI: 69-72) and 72% (UI: 70-74), and the PSI vaccine by 31% (UI: 30-32) and 44% (UI: 42-47) in China and India, respectively. In India, we found both USD 10 P&PI and PSI vaccines cost-effective at the 1-times GDP and upper HCOC thresholds and P&PI vaccines cost-effective at the lower HCOC threshold. In China, both vaccines were cost-effective at the 1-times GDP threshold. P&PI vaccine remained cost-effective at the lower HCOC threshold with 49% probability and PSI vaccines at the upper HCOC threshold with 21% probability. The P&PI vaccine was predicted to avert 0.9 million (UI: 0.8-1.1) and 1.1 million (UI: 0.9-1.4) second-line therapy regimens in China and India between 2027 and 2050, respectively. CONCLUSIONS Novel TB vaccination is likely to substantially reduce the future burden of RR/MDR-TB, while averting the need for second-line therapy. Vaccination may be cost-effective depending on vaccine characteristics and setting.
Collapse
Affiliation(s)
- Chathika K Weerasuriya
- TB Modelling Group, TB Centre and Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Rebecca C Harris
- TB Modelling Group, TB Centre and Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, UK.,Currently employed at Sanofi Pasteur, Singapore, Singapore
| | - C Finn McQuaid
- TB Modelling Group, TB Centre and Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiammetta Bozzani
- Department of Global Health and Development, Faculty of Public Health & Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Yunzhou Ruan
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Renzhong Li
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Tao Li
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | | | - Raghuram Rao
- National Tuberculosis Elimination Programme, New Delhi, India
| | - Ann M Ginsberg
- International AIDS Vaccine Initiative, New York, USA.,Current Affiliation: Bill and Melinda Gates Foundation, Washington DC, USA
| | - Gabriela B Gomez
- Department of Global Health and Development, Faculty of Public Health & Policy, London School of Hygiene and Tropical Medicine, London, UK.,Currently employed at Sanofi Pasteur, Lyon, France
| | - Richard G White
- TB Modelling Group, TB Centre and Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
12
|
Georghiou SB, Schumacher SG, Rodwell TC, Colman RE, Miotto P, Gilpin C, Ismail N, Rodrigues C, Warren R, Weyer K, Zignol M, Arafah S, Cirillo DM, Denkinger CM. Guidance for Studies Evaluating the Accuracy of Rapid Tuberculosis Drug-Susceptibility Tests. J Infect Dis 2020; 220:S126-S135. [PMID: 31593599 DOI: 10.1093/infdis/jiz106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development and implementation of rapid molecular diagnostics for tuberculosis (TB) drug-susceptibility testing is critical to inform treatment of patients and to prevent the emergence and spread of resistance. Optimal trial planning for existing tests and those in development will be critical to rapidly gather the evidence necessary to inform World Health Organization review and to support potential policy recommendations. The evidence necessary includes an assessment of the performance for TB and resistance detection as well as an assessment of the operational characteristics of these platforms. The performance assessment should include analytical studies to confirm the limit of detection and assay ability to detect mutations conferring resistance across globally representative strains. The analytical evaluation is typically followed by multisite clinical evaluation studies to confirm diagnostic performance in sites and populations of intended use. This paper summarizes the considerations for the design of these analytical and clinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Nazir Ismail
- University of Pretoria, South Africa.,National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,University Hospital Heidelberg, Division of Tropical Medicine, Centre of Infectious Diseases, Germany
| | | | - Rob Warren
- SAMRC Centre for Tuberculosis Research, Stellenbosch University, Tygerberg, South Africa
| | - Karin Weyer
- World Health Organization, Geneva, Switzerland
| | | | | | | | - Claudia M Denkinger
- FIND, Geneva, Switzerland.,University of Heidelberg, Centre of Infectious Diseases, Germany
| |
Collapse
|
13
|
Jun YK, Chun J, Kang EA, Lee HJ, Im JP, Kim JS. Multidrug-resistant Disseminated Tuberculosis Related to Infliximab in a Patient with Ulcerative Colitis and Negative Evaluation for Latent Tuberculosis. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 74:168-174. [PMID: 31554033 DOI: 10.4166/kjg.2019.74.3.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/06/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Anti-tumor necrosis factor (anti-TNF) is an effective biological agent for the treatment of moderate-to-severe active ulcerative colitis (UC) refractory to conventional therapy. On the other hand, anti-TNF therapy is strongly associated with a potential risk of tuberculosis (TB). Active TB is a critical complication that makes it difficult to treat patients who require anti-TNF for the treatment of UC refractory to conventional therapy. Based on the clinical guidelines, patients with inflammatory bowel disease (IBD) are strongly recommended to screen for latent TB before anti-TNF administration. Considering the possibility of active or reactivated TB related to anti-TNF therapy, all patients with IBD should be monitored closely for TB during anti-TNF therapy, irrespective of the screening results for latent TB. In particular, the risk of anti-TNF-related multidrug-resistant TB (MDR-TB) in patients with IBD has not been elucidated. This paper reports the first case of disseminated MDR-TB that developed in a UC patient receiving infliximab despite the negative evaluation for latent TB screening.
Collapse
Affiliation(s)
- Yu Kyung Jun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ae Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Nathavitharana RR, Lederer P, Tierney DB, Nardell E. Treatment as prevention and other interventions to reduce transmission of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2020; 23:396-404. [PMID: 31064617 DOI: 10.5588/ijtld.18.0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) represents a major programmatic challenge at the national and global levels. Only ∼30% of patients with multidrug-resistant TB (MDR-TB) were diagnosed, and ∼25% were initiated on treatment for MDR-TB in 2016. Increasing evidence now points towards primary transmission of DR-TB, rather than inadequate treatment, as the main driver of the DR-TB epidemic. The cornerstone of DR-TB transmission prevention should be earlier diagnosis and prompt initiation of effective treatment for all patients with DR-TB. Despite the extensive scale-up of Xpert® MTB/RIF testing, major implementation barriers continue to limit its impact. Although there is longstanding evidence in support of the rapid impact of treatment on patient infectiousness, delays in the initiation of effective DR-TB treatment persist, resulting in ongoing transmission. However, it is also imperative to address the burden of latent drug-resistant tuberculous infection because it is estimated that many DR-TB patients will become infectious before seeking care and encounter various diagnostic delays before treatment. Addressing latent DR-TB primarily consists of identifying, treating and following the contacts of patients with MDR-TB, typically through household contact evaluation. Adjunctive measures, such as improved ventilation and use of germicidal ultraviolet technology can further reduce TB transmission in high-risk congregate settings. Although many gaps remain in our biological understanding of TB transmission, implementation barriers to early diagnosis and rapid initiation of effective DR-TB treatment can and must be overcome if we are to impact DR-TB incidence in the short and long term.
Collapse
Affiliation(s)
- R R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - P Lederer
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts
| | - D B Tierney
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Nardell
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Distribution of Antibiotic Resistance Genes in Three Different Natural Water Bodies-A Lake, River and Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020552. [PMID: 31952235 PMCID: PMC7014431 DOI: 10.3390/ijerph17020552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/21/2023]
Abstract
Currently, due to abuse in the use of human antibiotics and the weak regulatory control that the authorities have over sewage discharge and manure management, antibiotic resistance genes (ARGs) have become a new type of environmental pollutant. Three different natural water bodies (Poyang Lake, Haihe River and Qingdao No.1 Bathing Beach seawater) were sampled during the same periods to conduct a longitudinal comparison of distribution. The distribution and expression of 11 ARGs in 20 species were studied, and the correlations between the expression and the distribution of time and space of the ARGs in different water bodies were also analyzed. With the exception of ermA, blaNDM-1 and vanA, which were not detected in seawater, the other ARGs could be detected in all three water bodies. Tetracycline resistance genes (tetC, tetM and tetQ) in the seawater and Haihe River had even reached 100%, and sulfa ARGs (sul1 and sul2) in the seawater and Poyang Lake, as well as sul2 and sul3 in the Haihe River, had also reached 100%. The ARG pollution in Haihe River was much more serious, since 14 and 17 of 20 ARG species were significantly higher compared with seawater and Poyang Lake, respectively. Some ARGs also had a high absolute abundance. The absolute abundance of macrolide resistance genes (ermB) in seawater was as high as 8.61 × 107 copies/L, and the anti-tuberculosis resistant genes (rpoB and katG) in the Haihe River Basin were highly abundant at 1.32 × 106 copies/L and 1.06 × 107 copies/L, respectively. This indicates that ARGs have gradually become more diverse and extensive in natural water bodies. The results of a redundancy analysis (RDA) of the three water bodies showed that although each water body is affected by different factors in space and time, overall, the presence of AGRs is closely related to the production and life of human beings and the migration of animals.
Collapse
|
16
|
Heterogeneous infectiousness in mathematical models of tuberculosis: A systematic review. Epidemics 2019; 30:100374. [PMID: 31685416 DOI: 10.1016/j.epidem.2019.100374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 11/20/2022] Open
Abstract
TB mathematical models employ various assumptions and approaches in dealing with the heterogeneous infectiousness of persons with active TB. We reviewed existing approaches and considered the relationship between them and existing epidemiological evidence. We searched the following electronic bibliographic databases from inception to 9 October 2018: MEDLINE, EMBASE, Biosis, Global Health and Scopus. Two investigators extracted data using a standardised data extraction tool. We included in the review any transmission dynamic model of M. tuberculosis transmission explicitly simulating heterogeneous infectiousness of person with active TB. We extracted information including: study objective, model structure, number of active TB compartments, factors used to stratify the active TB compartment, relative infectiousness of each active TB compartment and any intervention evaluated in the model. Our search returned 1899 unique references, of which the full text of 454 records were assessed for eligibility, and 99 studies met the inclusion criteria. Of these, 89 used compartmental models implemented with ordinary differential equations, while the most common approach to stratification of the active TB compartment was to incorporate two levels of infectiousness. However, various clinical characteristics were used to stratify the active TB compartments, and models differed as to whether they permitted transition between these states. Thirty-four models stratified the infectious compartment according to sputum smear status or pulmonary involvement, while 18 models stratified based on health care-related factors. Variation in infectiousness associated with drug-resistant M. tuberculosis was the rationale for stratifying active TB in 33 models, with these models consistently assuming that drug-resistant active TB cases were less infectious. Given the evidence of extensive heterogeneity in infectiousness of individuals with active TB, an argument exists for incorporating heterogeneous infectiousness, although this should be considered in light of the objectives of the study and the research question. PROSPERO Registration: CRD42019111936.
Collapse
|
17
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
18
|
Kwon BE, Ahn JH, Park EK, Jeong H, Lee HJ, Jung YJ, Shin SJ, Jeong HS, Yoo JS, Shin E, Yeo SG, Chang SY, Ko HJ. B Cell-Based Vaccine Transduced With ESAT6-Expressing Vaccinia Virus and Presenting α-Galactosylceramide Is a Novel Vaccine Candidate Against ESAT6-Expressing Mycobacterial Diseases. Front Immunol 2019; 10:2542. [PMID: 31736965 PMCID: PMC6830241 DOI: 10.3389/fimmu.2019.02542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Early secretory antigenic target-6 (ESAT6) is a potent immunogenic antigen expressed in Mycobacterium tuberculosis as well as in some non-tuberculous mycobacteria (NTM), such as M. kansasii. M. kansasii is one of the most clinically relevant species of NTM that causes mycobacterial lung disease, which is clinically indistinguishable from tuberculosis. In the current study, we designed a novel cell-based vaccine using B cells that were transduced with vaccinia virus expressing ESAT6 (vacESAT6), and presenting α-galactosylceramide (αGC), a ligand of invariant NKT cells. We found that B cells loaded with αGC had increased levels of CD80 and CD86 after in vitro stimulation with NKT cells. Immunization of mice with B/αGC/vacESAT6 induced CD4+ T cells producing TNF-α and IFN-γ in response to heat-killed M. tuberculosis. Immunization of mice with B/αGC/vacESAT6 ameliorated severe lung inflammation caused by M. kansasii infection. We also confirmed that immunization with B/αGC/vacESAT6 reduced M. kansasii bacterial burden in the lungs. In addition, therapeutic administration of B/αGC/vacESAT6 increased IFN-γ+ CD4+ T cells and inhibited the progression of lung pathology caused by M. kansasii infection. Thus, B/αGC/vacESAT6 could be a potent vaccine candidate for the prevention and treatment of ESAT6-expressing mycobacterial infection caused by M. kansasii.
Collapse
Affiliation(s)
- Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Eun-Kyoung Park
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Sook Jeong
- Division of Vaccine Research, Center for Infectious Disease Research, Korea National Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), Cheongju, South Korea
| | - Jung Sik Yoo
- Division of Vaccine Research, Center for Infectious Disease Research, Korea National Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), Cheongju, South Korea
| | - EunKyoung Shin
- Division of Vaccine Research, Center for Infectious Disease Research, Korea National Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), Cheongju, South Korea
| | - Sang-Gu Yeo
- Sejong Institute of Health and Environment, Sejong, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
19
|
Hicks ND, Carey AF, Yang J, Zhao Y, Fortune SM. Bacterial Genome-Wide Association Identifies Novel Factors That Contribute to Ethionamide and Prothionamide Susceptibility in Mycobacterium tuberculosis. mBio 2019; 10:e00616-19. [PMID: 31015328 PMCID: PMC6479004 DOI: 10.1128/mbio.00616-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
In Mycobacterium tuberculosis, recent genome-wide association studies have identified a novel constellation of mutations that are correlated with high-level drug resistances. Interpreting the functional importance of the new resistance-associated mutations has been complicated, however, by a lack of experimental validation and a poor understanding of the epistatic factors influencing these correlations, including strain background and programmatic variation in treatment regimens. Here we perform a genome-wide association analysis in a panel of Mycobacterium tuberculosis strains from China to identify variants correlated with resistance to the second-line prodrug ethionamide (ETH). Mutations in a bacterial monooxygenase, Rv0565c, are significantly associated with ETH resistance. We demonstrate that Rv0565c is a novel activator of ETH, independent of the two known activators, EthA and MymA. Clinically prevalent mutations abrogate Rv0565c function, and deletion of Rv0565c confers a consistent fitness benefit on M. tuberculosis in the presence of partially inhibitory doses of ETH. Interestingly, Rv0565c activity affects susceptibility to prothionamide (PTH), the ETH analog used in China, to a greater degree. Further, clinical isolates vary in their susceptibility to both ETH and PTH, to an extent that correlates with the total expression of ETH/PTH activators (EthA, MymA, and Rv0565c). These results suggest that clinical strains considered susceptible to ETH/PTH are not equally fit during treatment due to both Rv0565c mutations and more global variation in the expression of the prodrug activators.IMPORTANCE Phenotypic antibiotic susceptibility testing in Mycobacterium tuberculosis is slow and cumbersome. Rapid molecular diagnostics promise to help guide therapy, but such assays rely on complete knowledge of the molecular determinants of altered antibiotic susceptibility. Recent genomic studies of antibiotic-resistant M. tuberculosis have identified several candidate loci beyond those already known to contribute to antibiotic resistance; however, efforts to provide experimental validation have lagged. Our study identifies a gene (Rv0565c) that is associated with resistance to the second-line antibiotic ethionamide at a population level. We then use bacterial genetics to show that the variants found in clinical strains of M. tuberculosis improve bacterial survival after ethionamide exposure.
Collapse
Affiliation(s)
- Nathan D Hicks
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Allison F Carey
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
|
21
|
Abstract
Immunoglobulin A nephropathy (IgAN) is the most frequent pathological diagnosis of tuberculosis (TB)-associated glomerulonephritis. Diagnosing TB-associated IgAN (TB-IgAN) is difficult because of its non-specific and insidious symptoms. An inaccurate diagnosis of TB-IgAN could result in the spread of TB and reduced renal function. Haematuria and proteinuria in conjunction with TB should be assessed because of the potential for diagnosis of IgAN. Renal biopsy is important in securing an accurate diagnosis prior to initiating treatment. Detection of Mycobacterium tuberculosis DNA and assessment of early secreted antigenic target of 6 kDa in renal biopsy tissues may have great potential diagnostic value in patients with TB-IgAN. Anti-TB therapy can effectively alleviate TB and TB-IgAN.
Collapse
Affiliation(s)
- Yamei Wang
- 1 Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, China.,2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Yuhong Tao
- 1 Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, China
| |
Collapse
|
22
|
Xu S, Yang J, Yin C, Zhao X. The dominance of bacterial genotypes leads to susceptibility variations under sublethal antibiotic pressure. Future Microbiol 2017; 13:165-185. [PMID: 29260580 DOI: 10.2217/fmb-2017-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM To investigate the collective resistance of the bacteria population with resistant horizontal gene transfer under sublethal bactericide pressure. MATERIALS & METHODS By employing qualitative analysis of ordinary differential equations, particularly bifurcation theory and several numerical simulations, a modified 4D ordinary differential equation model describing antibiotic susceptibility variations induced by sublethal antibiotic pressure is analyzed in detail. RESULTS The long-term behaviors and collective resistance of different bacterial genotype populations in different sublethal bactericide concentration subintervals exhibit high levels of heterogeneity and are determined by the protection provided by resistant genes on chromosome or plasmid, their fitness costs, plasmid segregation rate and sublethal bactericide pressure. CONCLUSION First, the possible mechanism of antibiotic susceptibility variations is the dominance of different bacterial genotypes under sublethal bactericide pressure, rather than persistence, tolerance or resistance. Additionally, the combination of vertical genetic transfer, horizontal genetic transfer and plasmid segregation can lead to unique switch between two states of different bacterial genotypes.
Collapse
Affiliation(s)
- Shilian Xu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia.,Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaru Yang
- Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan Province 650500, China.,Macrophage-pathogen Interaction Lab, Infection & Immunity program, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Chong Yin
- Bone Metabolism Lab, Key Laboratory for Space Bioscience & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaohua Zhao
- Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
23
|
Tuberculosis Treatment Adherence of Patients in Kosovo. Tuberc Res Treat 2017; 2017:4850324. [PMID: 29230326 PMCID: PMC5694566 DOI: 10.1155/2017/4850324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Setting The poor patient adherence in tuberculosis (TB) treatment is considered to be one of the most serious challenges which reflect the decrease of treatment success and emerging of the Multidrug Resistance-TB (MDR-TB). To our knowledge, the data about patients' adherence to anti-TB treatment in our country are missing. Objective This study was aimed to investigate the anti-TB treatment adherence rate and to identify factors related to eventual nonadherence among Kosovo TB patients. Design This study was conducted during 12 months, and the survey was a descriptive study using the standardized questionnaires with total 324 patients. Results The overall nonadherence for TB patient cohort was 14.5%, 95% CI (0.109–0.188). Age and place of residence are shown to have an effect on treatment adherence. Moreover, the knowledge of the treatment prognosis, daily dosage, side effects, and length of treatment also play a role. This was also reflected in knowledge regarding compliance with regular administration of TB drugs, satisfaction with the treatment, interruption of TB therapy, and the professional monitoring in the administration of TB drugs. Conclusion The level of nonadherence TB treatment in Kosovar patients is not satisfying, and more health care worker's commitments need to be addressed for improvement.
Collapse
|