1
|
Trinca V, Carli S, Uliana JVC, Garbelotti CV, Mendes da Silva M, Kunes V, Meleiro LP, Brancini GTP, Menzel F, Andrioli LPM, Torres TT, Ward RJ, Monesi N. Biocatalytic potential of Pseudolycoriella CAZymes (Sciaroidea, Diptera) in degrading plant and fungal cell wall polysaccharides. iScience 2023; 26:106449. [PMID: 37020966 PMCID: PMC10068558 DOI: 10.1016/j.isci.2023.106449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Soil biota has a crucial impact on soil ecology, global climate changes, and effective crop management and studying the diverse ecological roles of dipteran larvae deepens the understanding of soil food webs. A multi-omics study of Pseudolycoriella hygida comb. nov. (Diptera: Sciaroidea: Sciaridae) aimed to characterize carbohydrate-active enzymes (CAZymes) for litter degradation in this species. Manual curation of 17,881 predicted proteins in the Psl. hygida genome identified 137 secreted CAZymes, of which 33 are present in the saliva proteome, and broadly confirmed by saliva CAZyme catalytic profiling against plant cell wall polysaccharides and pNP-glycosyl substrates. Comparisons with two other sciarid species and the outgroup Lucilia cuprina (Diptera: Calliphoridae) identified 42 CAZyme families defining a sciarid CAZyme profile. The litter-degrading potential of sciarids corroborates their significant role as decomposers, yields insights to the evolution of insect feeding habits, and highlights the importance of insects as a source of biotechnologically relevant enzymes.
Collapse
Affiliation(s)
- Vitor Trinca
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Mariana Mendes da Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Vitor Kunes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Guilherme Thomaz Pereira Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Frank Menzel
- Senckenberg Deutsches Entomologisches Institut (SDEI), 15374 Müncheberg, Germany
| | - Luiz Paulo Moura Andrioli
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, São Paulo 03828-000, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
- Corresponding author
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Corresponding author
| |
Collapse
|
2
|
Yu MM, Wang R, Xia JQ, Li C, Xu QH, Cang J, Wang YY, Zhang D. JA-induced TaMPK6 enhanced the freeze tolerance of Arabidopsis thaliana through regulation of ICE-CBF-COR module and antioxidant enzyme system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111621. [PMID: 36736462 DOI: 10.1016/j.plantsci.2023.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in the stress response of plants. However, the function of MPK proteins in freeze-resistance in wheat remains unclear. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with a strong freezing resistance at extremely low temperature. In this study, we demonstrated that TaMPK6 is induced by JA signaling and is involved in the modulation of Dn1 freeze resistance. Overexpression of TaMPK6 in Arabidopsis increased the survival rate of plant at -10 ℃. The scavenging ability of reactive oxygen species (ROS) and the expression of cold-responsive genes CBFs and CORs were significantly enhanced in TaMPK6-overexpressed Arabidopsis, suggesting a role of TaMPK6 in activating the ICE-CBF-COR module and antioxidant enzyme system to resist freezing stress. Furthermore, TaMPK6 is localized in the nucleus and TaMPK6 interacts with TaICE41, TaCBF14, and TaMYC2 proteins, the key components in JA signaling and the ICE-CBF-COR pathway. These results suggest that JA-induced TaMPK6 may regulate freezing-resistance in wheat by interacting with the TaICE41, TaCBF14, and TaMYC2 proteins, which in turn enhances the ICE-CBF-COR pathway. Our study revealed the molecular mechanism of TaMPK6 involvement in the cold resistance pathway in winter wheat under cold stress, which provides a basis for enriching the theory of wheat cold resistance.
Collapse
Affiliation(s)
- Meng-Meng Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Rui Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing-Qiu Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Chang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Qing-Hua Xu
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yu-Ying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Da Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
3
|
Synthesis of N-(2'S)-methylbutanoyl-2-methylbutylamide (Frianol), sex pheromone of sugarcane rhizome borer Migdolus fryanus, from renewable sources. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Liang Y, Xia J, Jiang Y, Bao Y, Chen H, Wang D, Zhang D, Yu J, Cang J. Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 ( TabZIP96) under Freezing Stress in Wheat ( Triticum aestivum). Int J Mol Sci 2022; 23:2351. [PMID: 35216467 PMCID: PMC8874521 DOI: 10.3390/ijms23042351] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
The basic leucine zipper (bZIP) regulates plant growth and responds to stress as a key transcription factor of the Abscisic acid (ABA) signaling pathway. In this study, TabZIP genes were identified in wheat and the gene structure, physicochemical properties, cis-acting elements, and gene collinearity were analyzed. RNA-Seq and qRT-PCR analysis showed that ABA and abiotic stress induced most TabZIP genes expression. The ectopic expression of TaABI5 up-regulated the expression of several cold-responsive genes in Arabidopsis. Physiological indexes of seedlings of different lines under freezing stress showed that TaABI5 enhanced the freezing tolerance of plants. Subcellular localization showed that TaABI5 is localized in the nucleus. Furthermore, TaABI5 physically interacted with cold-resistant transcription factor TaICE1 in yeast two-hybrid system. In conclusion, this study identified and analyzed members of the TabZIP gene family in wheat. It proved for the first time that the gene TaABI5 affected the cold tolerance of transgenic plants and was convenient for us to understand the cold resistance molecular mechanism of TaABI5. These results will provide a new inspiration for further study on improving plant abiotic stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (J.X.); (Y.J.); (Y.B.); (H.C.); (D.W.); (D.Z.); (J.Y.)
| |
Collapse
|
5
|
Trujillo-Montenegro JH, Rodríguez Cubillos MJ, Loaiza CD, Quintero M, Espitia-Navarro HF, Salazar Villareal FA, Viveros Valens CA, González Barrios AF, De Vega J, Duitama J, Riascos JJ. Unraveling the Genome of a High Yielding Colombian Sugarcane Hybrid. FRONTIERS IN PLANT SCIENCE 2021; 12:694859. [PMID: 34484261 PMCID: PMC8414525 DOI: 10.3389/fpls.2021.694859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
Recent developments in High Throughput Sequencing (HTS) technologies and bioinformatics, including improved read lengths and genome assemblers allow the reconstruction of complex genomes with unprecedented quality and contiguity. Sugarcane has one of the most complicated genomes among grassess with a haploid length of 1Gbp and a ploidies between 8 and 12. In this work, we present a genome assembly of the Colombian sugarcane hybrid CC 01-1940. Three types of sequencing technologies were combined for this assembly: PacBio long reads, Illumina paired short reads, and Hi-C reads. We achieved a median contig length of 34.94 Mbp and a total genome assembly of 903.2 Mbp. We annotated a total of 63,724 protein coding genes and performed a reconstruction and comparative analysis of the sucrose metabolism pathway. Nucleotide evolution measurements between orthologs with close species suggest that divergence between Saccharum officinarum and Saccharum spontaneum occurred <2 million years ago. Synteny analysis between CC 01-1940 and the S. spontaneum genome confirms the presence of translocation events between the species and a random contribution throughout the entire genome in current sugarcane hybrids. Analysis of RNA-Seq data from leaf and root tissue of contrasting sugarcane genotypes subjected to water stress treatments revealed 17,490 differentially expressed genes, from which 3,633 correspond to genes expressed exclusively in tolerant genotypes. We expect the resources presented here to serve as a source of information to improve the selection processes of new varieties of the breeding programs of sugarcane.
Collapse
Affiliation(s)
- Jhon Henry Trujillo-Montenegro
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
- Research Group in Bioinformatics, Department of Computer Science, Faculty of Engineering, Universidad Del Valle,Cali, Colombia
| | - María Juliana Rodríguez Cubillos
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Faculty of Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Manuel Quintero
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| | | | | | | | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Faculty of Engineering, Universidad de los Andes, Bogotá, Colombia
| | - José De Vega
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - John J. Riascos
- Centro de Investigación de la Caña de Azúcar de Colombia (CENICAÑA), Cali, Colombia
| |
Collapse
|
6
|
Azzollini D, van Iwaarden A, Lakemond CMM, Fogliano V. Mechanical and Enzyme Assisted Fractionation Process for a Sustainable Production of Black Soldier Fly (Hermetia illucens) Ingredients. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Almeida Garcia R, Lima Pepino Macedo L, Cabral do Nascimento D, Gillet FX, Moreira-Pinto CE, Faheem M, Moreschi Basso AM, Mattar Silva MC, Grossi-de-Sa MF. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLoS One 2017; 12:e0189600. [PMID: 29261729 PMCID: PMC5738047 DOI: 10.1371/journal.pone.0189600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.
Collapse
Affiliation(s)
- Rayssa Almeida Garcia
- Brasilia Federal University (UnB), Brasília - CEP, Brasília, Federal District, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
| | | | | | | | - Clidia Eduarda Moreira-Pinto
- Brasilia Federal University (UnB), Brasília - CEP, Brasília, Federal District, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
| | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
| | | | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
- Catholic University of Brasília, CEP, Brasília, Federal District, Brazil
- * E-mail:
| |
Collapse
|