1
|
Pérez JJ, González-Suárez A. How intramyocardial fat can alter the electric field distribution during Pulsed Field Ablation (PFA): Qualitative findings from computer modeling. PLoS One 2023; 18:e0287614. [PMID: 37917621 PMCID: PMC10621855 DOI: 10.1371/journal.pone.0287614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 11/04/2023] Open
Abstract
Even though the preliminary experimental data suggests that cardiac Pulsed Field Ablation (PFA) could be superior to radiofrequency ablation (RFA) in terms of being able to ablate the viable myocardium separated from the catheter by collagen and fat, as yet there is no formal physical-based analysis that describes the process by which fat can affect the electric field distribution. Our objective was thus to determine the electrical impact of intramyocardial fat during PFA by means of computer modeling. Computer models were built considering a PFA 3.5-mm blunt-tip catheter in contact with a 7-mm ventricular wall (with and without a scar) and a 2-mm epicardial fat layer. High voltage was set to obtain delivered currents of 19, 22 and 25 A. An electric field value of 1000 V/cm was considered as the lethal threshold. We found that the presence of fibrotic tissue in the scar seems to have a similar impact on the electric field distribution and lesion size to that of healthy myocardium only. However, intramyocardial fat considerably alters the electrical field distribution and the resulting lesion shape. The electric field tends to peak in zones with fat, even away from the ablation electrode, so that 'cold points' (i.e. low electric fields) appear around the fat at the current entry and exit points, while 'hot points' (high electric fields) occur in the lateral areas of the fat zones. The results show that intramyocardial fat can alter the electric field distribution and lesion size during PFA due to its much lower electrical conductivity than that of myocardium and fibrotic tissue.
Collapse
Affiliation(s)
- Juan J. Pérez
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Ana González-Suárez
- Translational Medical Device Lab, School of Engineering, University of Galway, Galway, Ireland
- Universidad Internacional de Valencia—VIU, Valencia, Spain
| |
Collapse
|
2
|
Qian S, Connolly A, Mendonca-Costa C, Campos F, Williams SE, Whitaker J, Rinaldi CA, Bishop MJ. An in-silico assessment of efficacy of two novel intra-cardiac electrode configurations versus traditional anti-tachycardia pacing therapy for terminating sustained ventricular tachycardia. Comput Biol Med 2021; 139:104987. [PMID: 34741904 PMCID: PMC8669079 DOI: 10.1016/j.compbiomed.2021.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/06/2022]
Abstract
The implanted cardioverter defibrillator (ICD) is an effective direct therapy for the treatment of cardiac arrhythmias, including ventricular tachycardia (VT). Anti-tachycardia pacing (ATP) is often applied by the ICD as the first mode of therapy, but is often found to be ineffective, particularly for fast VTs. In such cases, strong, painful and damaging backup defibrillation shocks are applied by the device. Here, we propose two novel electrode configurations: "bipolar" and "transmural" which both combine the concept of targeted shock delivery with the advantage of reduced energy required for VT termination. We perform an in silico study to evaluate the efficacy of VT termination by applying one single (low-energy) monophasic shock from each novel configuration, comparing with conventional ATP therapy. Both bipolar and transmural configurations are able to achieve a higher efficacy (93% and 85%) than ATP (45%), with energy delivered similar to and two orders of magnitudes smaller than conventional ICD defibrillation shocks, respectively. Specifically, the transmural configuration (which applies the shock vector directly across the scar substrate sustaining the VT) is most efficient, requiring typically less than 1 J shock energy to achieve a high efficacy. The efficacy of both bipolar and transmural configurations are higher when applied to slow VTs (100% and 97%) compared to fast VTs (57% and 29%). Both novel electrode configurations introduced are able to improve electrotherapy efficacy while reducing the overall number of required therapies and need for strong backup shocks.
Collapse
Affiliation(s)
- Shuang Qian
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Adam Connolly
- Invicro, Burlington Danes Building, Du Cane Rd, London, W12 0N, United Kingdom
| | - Caroline Mendonca-Costa
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Fernando Campos
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| |
Collapse
|
3
|
Roth BJ. Bidomain modeling of electrical and mechanical properties of cardiac tissue. BIOPHYSICS REVIEWS 2021; 2:041301. [PMID: 38504719 PMCID: PMC10903405 DOI: 10.1063/5.0059358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/15/2021] [Indexed: 03/21/2024]
Abstract
Throughout the history of cardiac research, there has been a clear need to establish mathematical models to complement experimental studies. In an effort to create a more complete picture of cardiac phenomena, the bidomain model was established in the late 1970s to better understand pacing and defibrillation in the heart. This mathematical model has seen ongoing use in cardiac research, offering mechanistic insight that could not be obtained from experimental pursuits. Introduced from a historical perspective, the origins of the bidomain model are reviewed to provide a foundation for researchers new to the field and those conducting interdisciplinary research. The interplay of theory and experiment with the bidomain model is explored, and the contributions of this model to cardiac biophysics are critically evaluated. Also discussed is the mechanical bidomain model, which is employed to describe mechanotransduction. Current challenges and outstanding questions in the use of the bidomain model are addressed to give a forward-facing perspective of the model in future studies.
Collapse
Affiliation(s)
- Bradley J. Roth
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
4
|
Tate JD, Pilcher TA, Aras KK, Burton BM, MacLeod RS. Validating defibrillation simulation in a human-shaped phantom. Heart Rhythm 2019; 17:661-668. [PMID: 31765807 DOI: 10.1016/j.hrthm.2019.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND We previously developed a computational model to aid clinicians in positioning implantable cardioverter-defibrillators (ICDs), especially in the case of abnormal anatomies that commonly arise in pediatric cases. We have validated the model clinically on the body surface; however, validation within the volume of the heart is required to establish complete confidence in the model and improve its use in clinical settings. OBJECTIVE The goal of this study was to use an animal model and thoracic phantom to record the ICD potential field within the heart and on the torso to validate our defibrillation simulation system. METHODS We recorded defibrillator shock potentials from an ICD suspended together with an animal heart in a human-shaped torso tank and compared them with simulated values. We also compared the scaled distribution threshold, an analog to the defibrillation threshold, calculated from the measured and simulated electric fields within the myocardium. RESULTS ICD potentials recorded on the tank and cardiac surface and within the myocardium agreed well with those predicted by the simulation. A quantitative comparison of the recorded and simulated potentials yielded a mean correlation of 0.94 and a relative error of 19.1%. The simulation can also predict scaled distribution thresholds similar to those calculated from the measured potential fields. CONCLUSION We found that our simulation could predict potential fields with high correlation with the measured values within the heart and on the torso surface. These results support the use of this model for the optimization of ICD placements.
Collapse
Affiliation(s)
- Jess D Tate
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| | - Thomas A Pilcher
- Division of Pediatric Cardiology, University of Utah, Salt Lake City, Utah
| | - Kedar K Aras
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Brett M Burton
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Rob S MacLeod
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Plancke AM, Connolly A, Gemmell PM, Neic A, McSpadden LC, Whitaker J, O'Neill M, Rinaldi CA, Rajani R, Niederer SA, Plank G, Bishop MJ. Generation of a cohort of whole-torso cardiac models for assessing the utility of a novel computed shock vector efficiency metric for ICD optimisation. Comput Biol Med 2019; 112:103368. [PMID: 31352217 PMCID: PMC6873640 DOI: 10.1016/j.compbiomed.2019.103368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022]
Abstract
Implanted cardiac defibrillators (ICDs) seek to automatically detect and terminate potentially lethal ventricular arrhythmias by applying strong internal electric shocks across the heart. However, the optimisation of the specific electrode design and configurations represents an intensive area of research in the pursuit of reduced shock strengths and fewer device complications and risks. Computational whole-torso simulations play an important role in this endeavour, although knowing which specific metric should be used to assess configuration efficacy and assessing the impact of different patient anatomies and pathologies, and the corresponding effect this may have on different metrics has not been investigated. We constructed a cohort of CT-derived high-resolution whole torso-cardiac computational models, including variants of cardiomyopathies and patients with differing torso dimensions. Simulations of electric shock application between electrode configurations corresponding to transveneous (TV-ICD) and subcutaneous (S-ICD) ICDs were modelled and conventional metrics such as defibrillation threshold (DFT) and impedance computed. In addition, we computed a novel metric termed the shock vector efficiency (η), which quantifies the fraction of electrical energy dissipated in the heart relative to the rest of the torso. Across the cohort, S-ICD configurations showed higher DFTs and impedances than TV-ICDs, as expected, although little consistent difference was seen between healthy and cardiomyopathy variants. η was consistently <2% for S-ICD configurations, becoming as high as 13% for TV-ICD setups. Simulations also suggested that a total torso height of approximately 20 cm is required for convergence in η. Overall, η was seen to be approximately negatively correlated with both DFT and impedance. However, important scenarios were identified in which certain values of DFT (or impedance) were associated with a range of η values, and vice-versa, highlighting the heterogeneity introduced by the different torsos and pathologies modelled. In conclusion, the shock vector efficiency represents a useful additional metric to be considered alongside DFT and impedance in the optimisation of ICD electrode configurations, particularly in the context of differing torso anatomies and cardiac pathologies, which can induce significant heterogeneity in conventional metrics of ICD efficacy.
Collapse
Affiliation(s)
- Anne-Marie Plancke
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Adam Connolly
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Philip M Gemmell
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Aurel Neic
- Institute of Biophysics, Medical University of Graz, Austria
| | | | - John Whitaker
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Mark O'Neill
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Christopher A Rinaldi
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Cardiology, Guy's and St Thomas' Hospitals, London, UK
| | - Ronak Rajani
- Cardiovascular Imaging Department, St Thomas' Hospital, London, UK
| | - Steven A Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Austria
| | - Martin J Bishop
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Bragard J, Sankarankutty AC, Sachse FB. Extended Bidomain Modeling of Defibrillation: Quantifying Virtual Electrode Strengths in Fibrotic Myocardium. Front Physiol 2019; 10:337. [PMID: 31001135 PMCID: PMC6456788 DOI: 10.3389/fphys.2019.00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/13/2019] [Indexed: 11/17/2022] Open
Abstract
Defibrillation is a well-established therapy for atrial and ventricular arrhythmia. Here, we shed light on defibrillation in the fibrotic heart. Using the extended bidomain model of electrical conduction in cardiac tissue, we assessed the influence of fibrosis on the strength of virtual electrodes caused by extracellular electrical current. We created one-dimensional models of rabbit ventricular tissue with a central patch of fibrosis. The fibrosis was incorporated by altering volume fractions for extracellular, myocyte and fibroblast domains. In our prior work, we calculated these volume fractions from microscopic images at the infarct border zone of rabbit hearts. An average and a large degree of fibrosis were modeled. We simulated defibrillation by application of an extracellular current for a short duration (5 ms). We explored the effects of myocyte-fibroblast coupling, intra-fibroblast conductivity and patch length on the strength of the virtual electrodes present at the borders of the normal and fibrotic tissue. We discriminated between effects on myocyte and fibroblast membranes at both borders of the patch. Similarly, we studied defibrillation in two-dimensional models of fibrotic tissue. Square and disk-like patches of fibrotic tissue were embedded in control tissue. We quantified the influence of the geometry and fibrosis composition on virtual electrode strength. We compared the results obtained with a square and disk shape of the fibrotic patch with results from the one-dimensional simulations. Both, one- and two-dimensional simulations indicate that extracellular current application causes virtual electrodes at boundaries of fibrotic patches. A higher degree of fibrosis and larger patch size were associated with an increased strength of the virtual electrodes. Also, patch geometry affected the strength of the virtual electrodes. Our simulations suggest that increased fibroblast-myocyte coupling and intra-fibroblast conductivity reduce virtual electrode strength. However, experimental data to constrain these modeling parameters are limited and thus pinpointing the magnitude of the reduction will require further understanding of electrical coupling of fibroblasts in native cardiac tissues. We propose that the findings from our computational studies are important for development of patient-specific protocols for internal defibrillators.
Collapse
Affiliation(s)
- Jean Bragard
- Department of Physics and Applied Mathematics, University of Navarra, Pamplona, Spain
| | - Aparna C. Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Frank B. Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Connolly A, Kelly A, Campos FO, Myles R, Smith G, Bishop MJ. Ventricular Endocardial Tissue Geometry Affects Stimulus Threshold and Effective Refractory Period. Biophys J 2018; 115:2486-2498. [PMID: 30503533 PMCID: PMC6301915 DOI: 10.1016/j.bpj.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding the biophysical processes by which electrical stimuli applied to cardiac tissue may result in local activation is important in both the experimental and clinical electrophysiology laboratory environments, as well as for gaining a more in-depth knowledge of the mechanisms of focal-trigger-induced arrhythmias. Previous computational models have predicted that local myocardial tissue architecture alone may significantly modulate tissue excitability, affecting both the local stimulus current required to excite the tissue and the local effective refractory period (ERP). In this work, we present experimental validation of this structural modulation of local tissue excitability on the endocardial tissue surface, use computational models to provide mechanistic understanding of this phenomena in relation to localized changes in electrotonic loading, and demonstrate its implications for the capture of afterdepolarizations. METHODS AND RESULTS Experiments on rabbit ventricular wedge preparations showed that endocardial ridges (surfaces of negative mean curvature) had a stimulus capture threshold that was 0.21 ± 0.03 V less than endocardial grooves (surfaces of positive mean curvature) for pairwise comparison (24% reduction, corresponding to 56.2 ± 6.4% of the energy). When stimulated at the minimal stimulus strength for capture, ridge locations showed a shorter ERP than grooves (n = 6, mean pairwise difference 7.4 ± 4.2 ms). When each site was stimulated with identical-strength stimuli, the difference in ERP was further increased (mean pairwise difference 15.8 ± 5.3 ms). Computational bidomain models of highly idealized cylindrical endocardial structures qualitatively agreed with these findings, showing that such changes in excitability are driven by structural modulation in electrotonic loading, quantifying this relationship as a function of surface curvature. Simulations further showed that capture of delayed afterdepolarizations was more likely in trabecular ridges than grooves, driven by this difference in loading. CONCLUSIONS We have demonstrated experimentally and explained mechanistically in computer simulations that the ability to capture tissue on the endocardial surface depends upon the local tissue architecture. These findings have important implications for deepening our understanding of excitability differences related to anatomical structure during stimulus application that may have important applications in the translation of novel experimental optogenetics pacing strategies. The uncovered preferential vulnerability to capture of afterdepolarizations of endocardial ridges, compared to grooves, provides important insight for understanding the mechanisms of focal-trigger-induced arrhythmias.
Collapse
Affiliation(s)
- Adam Connolly
- Department of Bioengineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernando O Campos
- Department of Bioengineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rachel Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin J Bishop
- Department of Bioengineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Pathmanathan P, Gray RA. Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology. Front Physiol 2018; 9:106. [PMID: 29497385 PMCID: PMC5818422 DOI: 10.3389/fphys.2018.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Computational models of cardiac electrophysiology have a long history in basic science applications and device design and evaluation, but have significant potential for clinical applications in all areas of cardiovascular medicine, including functional imaging and mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy optimisation or personalisation. For all stakeholders to be confident in model-based clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a computational model is primarily established by performing validation, in which model predictions are compared to experimental or clinical data. However, there are numerous challenges to performing validation for highly complex multi-scale physiological models such as CEP models. As a result, credibility of CEP model predictions is usually founded upon a wide range of distinct factors, including various types of validation results, underlying theory, evidence supporting model assumptions, evidence from model calibration, all at a variety of scales from ion channel to cell to organ. Consequently, it is often unclear, or a matter for debate, the extent to which a CEP model can be trusted for a given application. The aim of this article is to clarify potential rationale for the trustworthiness of CEP models by reviewing evidence that has been (or could be) presented to support their credibility. We specifically address the complexity and multi-scale nature of CEP models which makes traditional model evaluation difficult. In addition, we make explicit some of the credibility justification that we believe is implicitly embedded in the CEP modeling literature. Overall, we provide a fresh perspective to CEP model credibility, and build a depiction and categorisation of the wide-ranging body of credibility evidence for CEP models. This paper also represents a step toward the extension of model evaluation methodologies that are currently being developed by the medical device community, to physiological models.
Collapse
Affiliation(s)
- Pras Pathmanathan
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | |
Collapse
|
9
|
Lim H, Cun W, Wang Y, Gray RA, Glimm J. The role of conductivity discontinuities in design of cardiac defibrillation. CHAOS (WOODBURY, N.Y.) 2018; 28:013106. [PMID: 29390616 DOI: 10.1063/1.5019367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fibrillation is an erratic electrical state of the heart, of rapid twitching rather than organized contractions. Ventricular fibrillation is fatal if not treated promptly. The standard treatment, defibrillation, is a strong electrical shock to reinitialize the electrical dynamics and allow a normal heart beat. Both the normal and the fibrillatory electrical dynamics of the heart are organized into moving wave fronts of changing electrical signals, especially in the transmembrane voltage, which is the potential difference between the cardiac cellular interior and the intracellular region of the heart. In a normal heart beat, the wave front motion is from bottom to top and is accompanied by the release of Ca ions to induce contractions and pump the blood. In a fibrillatory state, these wave fronts are organized into rotating scroll waves, with a centerline known as a filament. Treatment requires altering the electrical state of the heart through an externally applied electrical shock, in a manner that precludes the existence of the filaments and scroll waves. Detailed mechanisms for the success of this treatment are partially understood, and involve local shock-induced changes in the transmembrane potential, known as virtual electrode alterations. These transmembrane alterations are located at boundaries of the cardiac tissue, including blood vessels and the heart chamber wall, where discontinuities in electrical conductivity occur. The primary focus of this paper is the defibrillation shock and the subsequent electrical phenomena it induces. Six partially overlapping causal factors for defibrillation success are identified from the literature. We present evidence in favor of five of these and against one of them. A major conclusion is that a dynamically growing wave front starting at the heart surface appears to play a primary role during defibrillation by critically reducing the volume available to sustain the dynamic motion of scroll waves; in contrast, virtual electrodes occurring at the boundaries of small, isolated blood vessels only cause minor effects. As a consequence, we suggest that the size of the heart (specifically, the surface to volume ratio) is an important defibrillation variable.
Collapse
Affiliation(s)
- Hyunkyung Lim
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| | - Wenjing Cun
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| | - Yue Wang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| | - Richard A Gray
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993-0002, USA
| | - James Glimm
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| |
Collapse
|
10
|
Connolly A, Robson MD, Schneider J, Burton R, Plank G, Bishop MJ. Highly trabeculated structure of the human endocardium underlies asymmetrical response to low-energy monophasic shocks. CHAOS (WOODBURY, N.Y.) 2017; 27:093913. [PMID: 28964115 PMCID: PMC5570597 DOI: 10.1063/1.4999609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached trabeculations in the human ventricle interact with anodal stimuli to induce multiple secondary sources from VEs, facilitating more rapid shock-induced ventricular excitation compared to cathodal shocks. Such a mechanism may help explain inter-species differences in response to shocks and help to develop novel defibrillation strategies.
Collapse
Affiliation(s)
- Adam Connolly
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Matthew D Robson
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jürgen Schneider
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca Burton
- Pharmacology Department, University of Oxford, Oxford, United Kingdom
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Martin J Bishop
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|