1
|
Krinitsina AA, Omelchenko DO, Kasianov AS, Karaseva VS, Selezneva YM, Chesnokova OV, Shirobokov VA, Polevova SV, Severova EE. Aerobiological Monitoring and Metabarcoding of Grass Pollen. PLANTS (BASEL, SWITZERLAND) 2023; 12:2351. [PMID: 37375978 DOI: 10.3390/plants12122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Grass pollen is one of the leading causes of pollinosis, affecting 10-30% of the world's population. The allergenicity of pollen from different Poaceae species is not the same and is estimated from moderate to high. Aerobiological monitoring is a standard method that allows one to track and predict the dynamics of allergen concentration in the air. Poaceae is a stenopalynous family, and thus grass pollen can usually be identified only at the family level with optical microscopy. Molecular methods, in particular the DNA barcoding technique, can be used to conduct a more accurate analysis of aerobiological samples containing the DNA of various plant species. This study aimed to test the possibility of using the ITS1 and ITS2 nuclear loci for determining the presence of grass pollen from air samples via metabarcoding and to compare the analysis results with the results of phenological observations. Based on the high-throughput sequencing data, we analyzed the changes in the composition of aerobiological samples taken in the Moscow and Ryazan regions for three years during the period of active flowering of grasses. Ten genera of the Poaceae family were detected in airborne pollen samples. The representation for most of them for ITS1 and ITS2 barcodes was similar. At the same time, in some samples, the presence of specific genera was characterized by only one sequence: either ITS1 or ITS2. Based on the analysis of the abundance of both barcode reads in the samples, the following order could describe the change with time in the dominant species in the air: Poa, Alopecurus, and Arrhenatherum in early mid-June, Lolium, Bromus, Dactylis, and Briza in mid-late June, Phleum, Elymus in late June to early July, and Calamagrostis in early mid-July. In most samples, the number of taxa found via metabarcoding analysis was higher compared to that in the phenological observations. The semi-quantitative analysis of high-throughput sequencing data well reflects the abundance of only major grass species at the flowering stage.
Collapse
Affiliation(s)
- Anastasia A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Artem S Kasianov
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Vera S Karaseva
- Department of Biology, Institute of Natural Science, S.A. Esenin Ryazan State University, 390000 Ryazan, Russia
| | - Yulia M Selezneva
- Department of Biology, Institute of Natural Science, S.A. Esenin Ryazan State University, 390000 Ryazan, Russia
| | - Olga V Chesnokova
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly A Shirobokov
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Svetlana V Polevova
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena E Severova
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
3
|
Galveias A, Ribeiro H, Guimarães F, Costa MJ, Rodrigues P, Costa AR, Abreu I, Antunes CM. Differential Quercus spp. pollen-particulate matter interaction is dependent on geographical areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154892. [PMID: 35378190 DOI: 10.1016/j.scitotenv.2022.154892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM) and pollen interaction, either airborne or at the respiratory mucosa needs further clarification, as allergic reaction intensification can be related to the PM physical characteristics and toxicity. This study aimed to investigate the physical-chemical properties of PM that can adhere to the pollen wall during its transport or inhalation, using Quercus spp. as a model, in three Portuguese cities with different geographical locations, meteorological influence and urbanization levels. Possible sources were evaluated through air masses trajectory analysis using the HYSPLIT model and correlation with meteorological factors. The sampling was performed using a 7-days Hirst-type volumetric sampler, and the pollen grains were observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image of each pollen grain was taken, to determine the adhered particles characteristics and energy dispersive x-ray spectroscopy (EDS) spectra were obtained for individual particles. A total of 484 pollen grains was observed, with 7683 particles counted and 1914 EDS spectra analyzed. The particle's equivalent diameter ranged from 0.3-16 μm, with most having a diameter < 3 μm. For the three cities, there were significant differences in the number of particles per pollen and the % area occupied by the particles. Particles adhered were mainly Si-rich, but variations in other dominant groups were observed. For Évora and Guarda, Ca-rich, SO-rich were second and third more representative, while Porto were Organic and Cl-rich. Metals&Oxides were found in all cities with the highest number in Porto. P-rich particles were only found in Évora. Sea salt particles were observed in Évora, coincide with air mass trajectories possible carrying them from the Mediterranean Sea. In conclusion, the PM physical characteristics are similar between the studied cities, however, the dominant chemical composition is different, certainly impacting the exposome influence and pollen-allergy intensification towards the same pollen type and concentration.
Collapse
Affiliation(s)
- Ana Galveias
- Institute of Earth Sciences (ICT), Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal.
| | - Helena Ribeiro
- Institute of Earth Sciences (ICT), Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Fernanda Guimarães
- Unit of Science and Mineral Technology, National Laboratory of Energy and Geology (LNEG), Portugal
| | - Maria João Costa
- Institute of Earth Sciences (ICT), Earth remote Sensing Laboratory (EaRSLab), Department of Physical, School of Sciences and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671, Portugal
| | - Pedro Rodrigues
- School of Technology and Management, Polytechnic Institute of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Ana R Costa
- Institute of Earth Sciences (ICT), Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ilda Abreu
- Institute of Earth Sciences (ICT), Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Célia M Antunes
- Institute of Earth Sciences (ICT), Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| |
Collapse
|
4
|
Baksay S, Andalo C, Galop D, Burrus M, Escaravage N, Pornon A. Using Metabarcoding to Investigate the Strength of Plant-Pollinator Interactions From Surveys of Visits to DNA Sequences. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.735588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ongoing decline in pollinators and increasing concerns about pollination services require a better understanding of complex pollination networks, particularly their response to global climate change. While metabarcoding is increasingly used for the identification of taxa in DNA mixtures, its reliability in providing quantitative information on plant-pollinator interactions is still the subject of debate. Combining metabarcoding and microscopy, we investigated the relationships between the number and composition of sequences and the abundance and composition of pollen in insect pollen loads (IPL) and how the two are linked to insect visits. Our findings confirm that metabarcoding is more effective than microscopy in identifying plant species in IPL. For a given species, we found a strong positive relationship between the amount of pollen in IPL and the number of sequences. The relationship was stable across species even if the abundance of co-occurring species in IPL (hereafter “co-occurring pollen”) tended to reduce the sequence yield (number of sequences obtained from one pollen grain) of a given species. We also found a positive relationship between the sequence count and the frequency of visits, and between the frequency and the amounts of pollen in IPL. Our results demonstrate the reliability of metabarcoding in assessing the strength of plant-pollinator interactions and in providing a broader perspective for the analyses of plant-pollinator interactions and pollination networks.
Collapse
|
5
|
Jochner-Oette S, Jetschni J, Liedl P, Menzel A. Indoor Pollen Concentrations of Mountain Cedar (Juniperus ashei) during Rainy Episodes in Austin, Texas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031541. [PMID: 35162567 PMCID: PMC8835118 DOI: 10.3390/ijerph19031541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
Standard pollen monitoring programs evaluate outdoor pollen concentrations; however, information on indoor pollen is crucial for human wellbeing as people spend most of the day in indoor environments. In this study, we investigated the differences in indoor mountain cedar pollen loads between rooms of different uses and with different ventilation at The University of Texas in Austin and focused on the effect of rainy episodes on indoor/outdoor ratios of pollen concentrations. Pollen were sampled outdoors and indoors, specifically in seven rooms and in two thermal labs with controlled ventilation, during the daytime on 6 days in 2015. We calculated daily pollen concentrations, campaign pollen integrals (CPIn, the sum of all daily pollen concentrations) and ratios between indoor and outdoor concentrations (I/O ratio). Pollen concentrations differed substantially based on features related to room use and ventilation: Whereas the highest CPIn was observed in a room characterized by a frequently opened window and door, the smallest CPIn was related to a storeroom without any windows and no forced ventilation. Our results showed that rainy episodes were linked to a higher mean I/O ratio (0.98; non-rainy episodes: 0.05). This suggests that pollen accumulated indoors and reached higher levels than outdoors. Low ratios seem to signal a low level of risk for allergic people when staying inside. However, under very high outdoor pollen concentrations, small ratios can still be associated with high indoor pollen levels. In turn, high I/O ratios are not necessarily related to a (very) high indoor exposure. Therefore, I/O ratios should be considered along with pollen concentration values for a proper risk assessment. Exposure may be higher in indoor environments during prevailing precipitation events and at the end of the pollen season of a specific species. Standardized indoor environments (e.g., thermal labs) should be included in pollen monitoring programs.
Collapse
Affiliation(s)
- Susanne Jochner-Oette
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany;
- Correspondence:
| | - Johanna Jetschni
- Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany;
| | - Petra Liedl
- Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, 85748 Garching, Germany;
| | - Annette Menzel
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, 85354 Freising, Germany;
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
6
|
Levetin E. Aeroallergens and Climate Change in Tulsa, Oklahoma: Long-Term Trends in the South Central United States. FRONTIERS IN ALLERGY 2021; 2:726445. [PMID: 35386984 PMCID: PMC8974782 DOI: 10.3389/falgy.2021.726445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.
Collapse
Affiliation(s)
- Estelle Levetin
- Department of Biological Science, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
7
|
Leontidou K, Vokou D, Sandionigi A, Bruno A, Lazarina M, De Groeve J, Li M, Varotto C, Girardi M, Casiraghi M, Cristofori A. Plant biodiversity assessment through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps). Sci Rep 2021; 11:18226. [PMID: 34521917 PMCID: PMC8440677 DOI: 10.1038/s41598-021-97619-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/02/2021] [Indexed: 01/28/2023] Open
Abstract
Monitoring biodiversity is of increasing importance in natural ecosystems. Metabarcoding can be used as a powerful molecular tool to complement traditional biodiversity monitoring, as total environmental DNA can be analyzed from complex samples containing DNA of different origin. The aim of this research was to demonstrate the potential of pollen DNA metabarcoding using the chloroplast trnL partial gene sequencing to characterize plant biodiversity. Collecting airborne biological particles with gravimetric Tauber traps in four Natura 2000 habitats within the Natural Park of Paneveggio Pale di San Martino (Italian Alps), at three-time intervals in 1 year, metabarcoding identified 68 taxa belonging to 32 local plant families. Metabarcoding could identify with finer taxonomic resolution almost all non-rare families found by conventional light microscopy concurrently applied. However, compared to microscopy quantitative results, Poaceae, Betulaceae, and Oleaceae were found to contribute to a lesser extent to the plant biodiversity and Pinaceae were more represented. Temporal changes detected by metabarcoding matched the features of each pollen season, as defined by aerobiological studies running in parallel, and spatial heterogeneity was revealed between sites. Our results showcase that pollen metabarcoding is a promising approach in detecting plant species composition which could provide support to continuous monitoring required in Natura 2000 habitats for biodiversity conservation.
Collapse
Affiliation(s)
- Kleopatra Leontidou
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all' Adige, Trentino, Italy. .,Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Sandionigi
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonia Bruno
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Maria Lazarina
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Johannes De Groeve
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all' Adige, Trentino, Italy.,Department of Geography, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all' Adige, Trentino, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all' Adige, Trentino, Italy
| | - Matteo Girardi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all' Adige, Trentino, Italy
| | - Maurizio Casiraghi
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonella Cristofori
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all' Adige, Trentino, Italy
| |
Collapse
|
8
|
Rojo J, Moreno JM, Romero-Morte J, Lara B, Elvira-Rendueles B, Negral L, Fernández-González F, Moreno-Grau S, Pérez-Badia R. Causes of increased pollen exposure during Saharan-Sahel dust intrusions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117441. [PMID: 34062432 DOI: 10.1016/j.envpol.2021.117441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Airborne particulate matter such as mineral dust comes mainly from natural sources, and the African regions of Sahara and Sahel originate large amounts of the aerosols dispersed worldwide. There is little knowledge about the influence of dust episodes on airborne pollen concentrations, and although the centre and southeast of the Iberian Peninsula are frequently affected by dust intrusions, until now, no specific works have analysed the effect of these episodes on airborne pollen concentrations in these areas. The aims of this study were to analyse the simultaneous occurrence of airborne pollen peaks and Saharan-Sahel dust intrusions in the central and south-eastern Iberian Peninsula, and to study the weather conditions - air mass pathways and conditions of air temperature, relative humidity and atmospheric pressure - that influence the airborne pollen concentrations during dust episodes. The results showed that the rise in airborne pollen concentrations during dust episodes is apparent in inland Iberian areas, although not in coastal areas in the southeast where pollen concentrations are even observed to decrease, coinciding with prevailing easterly winds from the sea. Total pollen concentrations and specific pollen types such as Olea, Poaceae and Quercus showed an increase in the central Iberian Peninsula during dust episodes when two meteorological phenomena concur: 1) prevailing winds from extensive areas of major wind-pollinated pollen sources over a medium or short distance (mainly from western and southwestern areas); and 2) optimal meteorological conditions that favour pollen release and dispersal into the atmosphere (mainly high temperatures and subsequently low humidity in central areas). Both conditions often occur during the Saharan-Sahel dust intrusions in the centre. Maximum pollen peaks are therefore most likely to occur during dust episodes in the central Iberian Peninsula, thus dramatically increasing the risk of outbreaks of pollinosis and other respiratory diseases in the population.
Collapse
Affiliation(s)
- Jesús Rojo
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain; Department of Pharmacology, Pharmacognosy and Botany, Complutense University. Madrid, Spain.
| | - José María Moreno
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Jorge Romero-Morte
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| | - Beatriz Lara
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| | - Belén Elvira-Rendueles
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Luis Negral
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Stella Moreno-Grau
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Rosa Pérez-Badia
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| |
Collapse
|
9
|
Suanno C, Aloisi I, Fernández-González D, Del Duca S. Monitoring techniques for pollen allergy risk assessment. ENVIRONMENTAL RESEARCH 2021; 197:111109. [PMID: 33848553 DOI: 10.1016/j.envres.2021.111109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 05/15/2023]
Abstract
Understanding airborne pollen allergens trends is of great importance for the high prevalence and the socio-economic impact that pollen-related respiratory diseases have on a global scale. Pursuing this aim, aeropalynology evolved as a broad and complex field, that requires multidisciplinary knowledge covering the molecular identity of pollen allergens, the nature of allergen-bearing particles (pollen grains, pollen sub-particles, and small airborne particles), and the distribution of their sources. To estimate the health hazard that urban vegetation and atmospheric pollen concentrations pose to allergic subjects, it is pivotal to develop efficient and rapid monitoring systems and reliable allergic risk indices. Here, we review different pollen allergens monitoring approaches, classifying them into I) vegetation-based, II) pollen-based, and III) allergen-based, and underlining their advantages and limits. Finally, we discuss the outstanding issues and directions for future research that will further clarify our understanding of pollen aeroallergens dynamics and allergen avoidance strategies.
Collapse
Affiliation(s)
- Chiara Suanno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Delia Fernández-González
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy; Department Biodiversity and Environmental Management, University of León, 24071, Callejón Campus Vegazana, S/n, 24007, León, Spain
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| |
Collapse
|
10
|
Williams CG, Smith DJ. Unifying atmospheric biology research for the U.S. scientific community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02275. [PMID: 33314515 DOI: 10.1002/eap.2275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
A global COVID-19 pandemic, rising asthma and allergies, along with climate change impacting storm intensity and frequency, point to an urgent need to unify U.S. atmospheric biology research. To this end, we briefly define atmospheric biology, summarize its fragmented history, and then outline how to unify the field to provide benefits for the U.S. science community and its citizens. Atmospheric biology refers to the study of concentrations, sources, sinks, transformation, and impacts of airborne microorganisms inclusive of pollen, fungal spores, algae, lichens, bacteria, viruses, cellulose fibers, and other biomolecules or fragments of cells. Here our focus is biological particles, both respirable (PM10 ) and systemic (PM2.5 ). Due to its interdisciplinary dependencies and broadness of scales from nanometers to kilometers, atmospheric biology research is highly fragmented in the U.S. science community. It lacks shared paradigms and common vocabulary. This deficit calls for recognizing atmospheric biology as a research community in its own right, thereby linking human health to climate change. We need to recognize atmospheric biology's importance to national security and science diplomacy. Advanced atmospheric biology research is being conducted in Europe, Russia, and China, not in the United States.
Collapse
Affiliation(s)
- Claire G Williams
- Department of Environmental Sciences, American University, Washington, D.C., 20016, USA
| | - David J Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, 94035, USA
| |
Collapse
|
11
|
Menzel A, Ghasemifard H, Yuan Y, Estrella N. A First Pre-season Pollen Transport Climatology to Bavaria, Germany. FRONTIERS IN ALLERGY 2021; 2:627863. [PMID: 35386987 PMCID: PMC8974717 DOI: 10.3389/falgy.2021.627863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/21/2021] [Indexed: 12/05/2022] Open
Abstract
Climate impacts on the pollen season are well-described however less is known on how frequently atmospheric transport influences the start of the pollen season. Based on long-term phenological flowering and airborne pollen data (1987–2017) for six stations and seven taxa across Bavaria, Germany, we studied changes in the pollen season, compared pollen and flowering season start dates to determine pollen sources, and analyzed the likelihood of pollen transport by HYSPLIT back trajectories. Species advanced their pollen season more in early spring (e.g., Corylus and Alnus by up to 2 days yr−1) than in mid spring (Betula, Fraxinus, Pinus); Poaceae and Artemisia exhibited mixed trends in summer. Annual pollen sums mainly increased for Corylus and decreased for Poaceae and Artemisia. Start of pollen season trends largely deviated from flowering trends, especially for Corylus and Alnus. Transport phenomena, which rely on comparisons between flowering and pollen dates, were determined for 2005–2015 at three stations. Pre-season pollen was a common phenomenon: airborne pollen was predominantly observed earlier than flowering (median 17 days) and in general, in 63% of the cases (except for Artemisia and Poaceae, and the alpine location) the pollen sources were non-local (transported). In 54% (35%) of these cases, back trajectories confirmed (partly confirmed) the pre-season transport, only in 11% of the cases transport modeling failed to explain the records. Even within the main pollen season, 70% of pollen season start dates were linked to transport. At the alpine station, non-local pollen sources (both from outside Bavaria as well as Bavarian lowlands) predominated, in only 13% of these cases transport could not be confirmed by back trajectories. This prominent role of pollen transport has important implications for the length, the timing, and the severity of the allergenic pollen season, indicating only a weak dependency on flowering of local pollen sources.
Collapse
Affiliation(s)
- Annette Menzel
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
- Institute for Advanced Study, Technical University of Munich (TUM), Garching, Germany
| | - Homa Ghasemifard
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ye Yuan
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
- *Correspondence: Ye Yuan
| | - Nicole Estrella
- Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
12
|
Farhat P, Siljak-Yakovlev S, Valentin N, Fabregat C, Lopez-Udias S, Salazar-Mendias C, Altarejos J, Adams RP. Gene flow between diploid and tetraploid junipers - two contrasting evolutionary pathways in two Juniperus populations. BMC Evol Biol 2020; 20:148. [PMID: 33167862 PMCID: PMC7650182 DOI: 10.1186/s12862-020-01688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene flow and polyploidy have been found to be important in Juniperus evolution. However, little evidence has been published elucidating the association of both phenomena in juniper taxa in the wild. Two main areas were studied in Spain (Eastern Iberian Range and Sierra de Baza) with both diploid and tetraploid taxa present in sympatry. Gene flow and ploidy level were assessed for these taxa and the resulted offspring. RESULTS Twenty-two allo-triploid hybrids between J. sabina var. sabina and J. thurifera were found in the Eastern Iberian Range population. However, in the Sierra de Baza population no triploids were found. Instead, 18 allo-tetraploid hybrids between two tetraploid taxa: J. sabina var. balkanensis and J. thurifera were discovered. High genetic diversity was exhibited among the tetraploid hybrids at Sierra de Baza, in contrast to the genetically identical triploid hybrids at the Eastern Iberian Range; this suggests meiotic difficulties within the triploid hybrids. In addition, unidirectional gene flow was observed in both studied areas. CONCLUSION Polyploidy and hybridization can be complementary partners in the evolution of Juniperus taxa in sympatric occurrences. Juniperus was shown to be an ideal coniferous model to study these two phenomena, independently or in concert.
Collapse
Affiliation(s)
- Perla Farhat
- Biology Department, Baylor University, Waco, TX, 76798, USA.
- Present address: Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Nicolas Valentin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Carlos Fabregat
- Jardí Botànic de la Universitat de València, 46008, València, Spain
| | | | - Carlos Salazar-Mendias
- Departamento de Biología Animal, Biología Vegetal y Ecología. Universidad de Jaén, 23071, Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071, Jaén, Spain
| | - Robert P Adams
- Biology Department, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
13
|
Wiśniewska KA, Śliwińska-Wilczewska S, Lewandowska AU. The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region. PLoS One 2020; 15:e0238808. [PMID: 32913356 PMCID: PMC7482968 DOI: 10.1371/journal.pone.0238808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022] Open
Abstract
The presence of airborne cyanobacteria and microalgae as well as their negative impacts on human health have been documented by many researchers worldwide. However, studies on cyanobacteria and microalgae are few compared with those on bacteria and viruses. Research is especially lacking on the presence and taxonomic composition of cyanobacteria and microalgae near economically important water bodies with much tourism, such as the Adriatic Sea region. Here, we present the first characterization of the airborne cyanobacteria and microalgae in this area. Sampling conducted between 11th and 15th June 2017 revealed a total of 15 taxa of airborne cyanobacteria and microalgae. Inhalation of many of the detected taxa, including Synechocystis sp., Synechococcus sp., Bracteacoccus sp., Chlorella sp., Chlorococcum sp., Stichococcus sp., and Amphora sp., poses potential threats to human health. Aside from two green algae, all identified organisms were capable of producing harmful metabolites, including toxins. Moreover, we documented the presence of the cyanobacterium Snowella sp. and the green alga Tetrastrum sp., taxa that had not been previously documented in the atmosphere by other researchers. Our study shows that the Adriatic Sea region seems to be a productive location for future research on airborne cyanobacteria and microalgae in the context of their impacts on human health, especially during the peak of tourism activity.
Collapse
Affiliation(s)
- Kinga A. Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Gdynia, Pomerania, Poland
- * E-mail:
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Gdynia, Pomerania, Poland
| | - Anita U. Lewandowska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Gdynia, Pomerania, Poland
| |
Collapse
|
14
|
Baksay S, Pornon A, Burrus M, Mariette J, Andalo C, Escaravage N. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci Rep 2020; 10:4202. [PMID: 32144370 PMCID: PMC7060345 DOI: 10.1038/s41598-020-61198-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Although the use of metabarcoding to identify taxa in DNA mixtures is widely approved, its reliability in quantifying taxon abundance is still the subject of debate. In this study we investigated the relationships between the amount of pollen grains in mock solutions and the abundance of high-throughput sequence reads and how the relationship was affected by the pollen counting methodology, the number of PCR cycles, the type of markers and plant species whose pollen grains have different characteristics. We found a significant positive relationship between the number of DNA sequences and the number of pollen grains in the mock solutions. However, better relationships were obtained with light microscopy as a pollen grain counting method compared with flow cytometry, with the chloroplastic trnL marker compared with ribosomal ITS1 and with 30 when compared with 25 or 35 PCR cycles. We provide a list of recommendations to improve pollen quantification.
Collapse
Affiliation(s)
- Sandra Baksay
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France.
| | - André Pornon
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Monique Burrus
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Jérôme Mariette
- Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliqués INRA, UR875, Toulouse, F-31320, Castanet-Tolosan, France
| | - Christophe Andalo
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Nathalie Escaravage
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| |
Collapse
|
15
|
Gross L, Weber R, Wolf M, Crooks JL. The impact of weather and climate on pollen concentrations in Denver, Colorado, 2010-2018. Ann Allergy Asthma Immunol 2019; 123:494-502.e4. [PMID: 31401104 DOI: 10.1016/j.anai.2019.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Increasing evidence indicates that climate change is affecting the timing of pollen season and concentrations of allergenic pollens. To date, pollen trends and their associations with meteorological variables have not been studied in most of the United States. OBJECTIVE The purpose of this study was to investigate the effects of weather and climate on pollen concentrations and pollen season timing in Denver, Colorado. METHODS We retrospectively analyzed tree, grass, and weed pollen counts and meteorological variables from 2010-2018 using linear and Poisson regression models. RESULTS Pollen season timing did not demonstrate uniform trends from 2010 to 2018. Certain species demonstrated earlier season start dates (linden, oak) or end dates (birch, maple), and others had later end dates (oak, grass). Only a few species demonstrated changes in season duration (linden, oak, maple, birch) and peak date (maple, birch). Pollen concentrations either remained stable or increased over the years. Temperature and carbon dioxide levels increased over the study period, with the exception of decreased temperature in August. Wind speed remained stable or decreased over the study period. CONCLUSION This study illustrates the complex interactions between pollens and meteorology. Meteorological variables associated with climate change do appear to affect allergenic pollens, though the relationship is variable both amongst pollens and from year to year.
Collapse
Affiliation(s)
- Lara Gross
- Dallas Allergy & Asthma Center, Dallas, Texas; National Jewish Health, Denver, Colorado; University of Colorado School of Medicine, Aurora, Colorado
| | - Richard Weber
- National Jewish Health, Denver, Colorado; University of Colorado School of Medicine, Aurora, Colorado
| | - Molly Wolf
- National Jewish Health, Denver, Colorado
| | - James L Crooks
- University of Colorado School of Medicine, Aurora, Colorado; Colorado School of Public Health, Aurora, Colorado.
| |
Collapse
|
16
|
Klingebiel C, Chantran Y, Arif‐Lusson R, Ehrenberg AE, Östling J, Poisson A, Liabeuf V, Agabriel C, Birnbaum J, Porri F, Sarrat A, Apoil P, Vivinus M, Garnier L, Chiriac AM, Caimmi D, Bourrain J, Demoly P, Guez S, Boralevi F, Lovato B, Palussière C, Leroy S, Bourrier T, Giovannini‐Chami L, Gouitaa M, Aferiat‐Derome A, Charpin D, Sofalvi T, Cabon‐Boudard I, Massabie‐Bouchat Y, Hofmann B, Bonardel N, Dron‐Gonzalvez M, Sterling B, Carsin A, Vivinus S, Poitevin B, Nicolau L, Liautard G, Soler C, Mezouar S, Annesi‐Maesano I, Mège J, Lidholm J, Vitte J. Pru p 7 sensitization is a predominant cause of severe, cypress pollen‐associated peach allergy. Clin Exp Allergy 2019; 49:526-536. [DOI: 10.1111/cea.13345] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/11/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
| | - Yannick Chantran
- UPMC Univ Paris 06 INSERM UMRS 938 Centre de Recherche Saint‐Antoine, team “Immune System, Neuroinflammation and Neurodegenerative Diseases” Hôpital Saint‐Antoine Sorbonne Universités Paris France
- Immunology Department AP‐HP Saint‐Antoine Hospital Paris France
| | - Rihane Arif‐Lusson
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | | | | - Alain Poisson
- Service de Pneumo‐Allergologie Hôpital Saint Joseph Marseille France
| | - Valérie Liabeuf
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Dermatologie‐Vénéréologie Marseille France
| | - Chantal Agabriel
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Pédiatrie Multidisciplinaire Marseille France
| | - Joëlle Birnbaum
- Service de Pneumologie et Allergologie CH du Pays d'Aix Aix‐en‐Provence France
| | - Françoise Porri
- Service de Pneumo‐Allergologie Hôpital Saint Joseph Marseille France
| | - Anne Sarrat
- Laboratoire d'Immunologie et Immunogénétique GH Pellegrin CHU Bordeaux Bordeaux France
| | - Pol‐André Apoil
- Institut Fédératif de Biologie Hôpital Purpan, CHU Toulouse Toulouse France
| | - Mylène Vivinus
- Laboratoire d'Immunologie Hôpital de l'Archet CHU Nice Nice France
| | - Lorna Garnier
- Laboratoire d'Immunologie CH Lyon Sud CHU Lyon Pierre‐Bénite France
| | - Anca Mirela Chiriac
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
- Sorbonne Universités INSERM UMRS 1136 IPLESP, team EPAR Paris France
| | - Davide‐Paolo Caimmi
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
- Sorbonne Universités INSERM UMRS 1136 IPLESP, team EPAR Paris France
| | - Jean‐Luc Bourrain
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
| | - Pascal Demoly
- Département de pneumologie et addictologie CHU Montpellier Hôpital Arnaud‐de‐Villeneuve Univ Montpellier Montpellier France
- Sorbonne Universités INSERM UMRS 1136 IPLESP, team EPAR Paris France
| | - Stéphane Guez
- Unité d'allergologie, GH Pellegrin, CHU Bordeaux Bordeaux France
| | - Franck Boralevi
- Unité de Dermatologie Pédiatrique Hôpital Pellegrin‐Enfants, CHU Bordeaux Bordeaux France
| | | | | | - Sylvie Leroy
- Service de Pneumologie Hôpital Pasteur CHU Nice Nice France
| | | | | | - Marion Gouitaa
- Aix‐Marseille Univ APHM, Hôpital Nord Service de Pneumologie Marseille France
| | | | - Denis Charpin
- Aix‐Marseille Univ APHM, Hôpital Timone Unité de Pneumologie Marseille France
| | - Tünde Sofalvi
- Aix‐Marseille Univ APHM, Hôpital Nord Service de Pneumologie Marseille France
| | - Isabelle Cabon‐Boudard
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Chirurgie Pédiatrique Marseille France
| | | | | | | | | | - Benoît Sterling
- Medical Office Marseille France
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Pneumo‐Pédiatrie Marseille France
| | - Ania Carsin
- Aix‐Marseille Univ APHM, Hôpital Timone Service de Pneumo‐Pédiatrie Marseille France
| | - Serge Vivinus
- Service de Pneumologie Hôpital Pasteur CHU Nice Nice France
| | | | | | | | | | - Soraya Mezouar
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | | - Jean‐Louis Mège
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | | - Joana Vitte
- Aix‐Marseille Univ IRD APHM MEPHI IHU Méditerranée Infection Marseille France
| | | |
Collapse
|
17
|
Madronich S, Björn LO, McKenzie RL. Solar UV radiation and microbial life in the atmosphere. Photochem Photobiol Sci 2018; 17:1918-1931. [PMID: 29978175 DOI: 10.1039/c7pp00407a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many microorganisms are alive while suspended in the atmosphere, and some seem to be metabolically active during their time there. One of the most important factors threatening their life and activity is solar ultraviolet (UV) radiation. Quantitative understanding of the spatial and temporal survival patterns in the atmosphere, and of the ultimate deposition of microbes to the surface, is limited by a number factors some of which are discussed here. These include consideration of appropriate spectral sensitivity functions for biological damage (e.g. inactivation), and the estimation of UV radiation impingent on a microorganism suspended in the atmosphere. We show that for several bacteria (E. coli, S. typhimurium, and P. acnes) the inactivation rates correlate well with irradiances weighted by the DNA damage spectrum in the UV-B spectral range, but when these organisms show significant UV-A (or visible) sensitivities, the correlations become clearly non-linear. The existence of these correlations enables the use of a single spectrum (here DNA damage) as a proxy for sensitivity spectra of other biological effects, but with some caution when the correlations are strongly non-linear. The radiative quantity relevant to the UV exposure of a suspended particle is the fluence rate at an altitude above ground, while down-welling irradiance at ground-level is the quantity most commonly measured or estimated in satellite-derived climatologies. Using a radiative transfer model that computes both quantities, we developed a simple parameterization to exploit the much larger irradiance data bases to estimate fluence rates, and present the first fluence-rate based climatology of DNA-damaging UV radiation in the atmosphere. The estimation of fluence rates in the presence of clouds remains a particularly challenging problem. Here we note that both reductions and enhancements in the UV radiation field are possible, depending mainly on cloud optical geometry and prevailing solar zenith angles. These complex effects need to be included in model simulations of the atmospheric life cycle of the organisms.
Collapse
|
18
|
Green BJ, Levetin E, Horner WE, Codina R, Barnes CS, Filley WV. Landscape Plant Selection Criteria for the Allergic Patient. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1869-1876. [PMID: 30097356 DOI: 10.1016/j.jaip.2018.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
Patients with pollen-related allergies are concerned about the species within their landscape that provoke their symptoms. Allergists are often asked for guidance but few information sources are available to aid patients in the recognition of allergenic plants and strategies to avoid personal exposure to them. Landscaping and horticultural workers also have few reliable guidance references, and what is available usually extols the virtues of the plants rather than their negative features. The aim of this article was to provide the results of the Landscape Allergen Working Group that was formed by the AAAAI Aerobiology Committee, which aimed to fill these existing knowledge gaps and develop guidance on producing a low-allergenic landscape. Within the context that complete pollen avoidance is unrealistic, the workgroup introduces selection criteria, avoidance strategies, and guidance on low-allergenic plants that could be selected by patients to reduce the overall pollen burden in their landscape environment. Specific focus is placed on entomophilous plants, which require insects as dispersal vectors and generally produce lower quantities of pollen, compared with anemophilous (wind-pollinated) species. Other biological hazards that can be encountered while performing landscaping activities are additionally reviewed and avoidance methods presented with the aim of protecting gardeners, and workers in the landscape and horticulture industries. The guidance presented in this article will ultimately be a helpful resource for the allergist and assist in engaging patients who are seeking to reduce the burden of allergen in their landscape environment.
Collapse
Affiliation(s)
- Brett J Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WVa.
| | - Estelle Levetin
- Department of Biological Science, University of Tulsa, Tulsa, Okla
| | | | | | - Charles S Barnes
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Warren V Filley
- Oklahoma Allergy & Asthma Clinic, University of Oklahoma Health Science Center, Oklahoma City, Okla
| |
Collapse
|