1
|
Ma Y, Chang Y, Li Z, Gao Z, Han F, Wang Y, Yun L. Construction of a high-density genetic map using specific-locus amplified fragment sequencing and quantitative trait loci analysis for tillering related traits in Psathyrostachys juncea perennial grass. PeerJ 2024; 12:e18409. [PMID: 39525472 PMCID: PMC11549907 DOI: 10.7717/peerj.18409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Background Russian wildrye (RWR, Psathyrostachys juncea) is an outcrossing perennial grass that plays a crucial role in foragaing and rangeland restoration due to its tiller producing capabilities, nevertheless, a genetic map has yet to be constructed due to a shortage of efficient and reliable molecular markers. This also limits the identification, localization, and cloning of economically important traits related to tiller density during breeding. Methods Therefore, this study aimed to create a F1 mapping population with 147 individual lines and their two parents, which were selected based on varying tiller densities. We then used this mapping population to conduct specific-locus amplified fragment sequencing (SLAF-seq) to generate SLAF markers and discover single nucleotide polymorphisms (SNPs). Results Initially, we generated a total of 1,438.38 million pair-end reads with an average sequencing depth of 84.92 in the maternal line, 79.34 in the parental line, and 27.05 in each F1 individual line, respectively. Following the filtering of low-depth SLAF tags, a total of 558,344 high-quality SLAFs were identified. A total of 1,519,903 SNP markers were obtained, and 62,424 polymorphic SNPs were discovered. From these, 4,644 polymorphic SNPs were selected and used for the construction of a genetic map encompassing seven linkage groups. The genetic map spanned 1,416.60 cM with an average distance of 0.31 cM between adjacent markers. Comparative analysis between the seven linkage groups of RWR SLAF tag and the whole-genome sequences in barley (Hordeum vulgare L.) revealed homology values ranging from 17.5% to 34.6%, and the collinearity between the RWR linkage groups and the barley homology groups ranged from 0.6787 to 0.9234, with an average value of 0.8158. Additionally, 143 significant quantitative trait locus (QTLs) with Logarithm of Odds (LOD) value greater than 2.5 for five tiller related traits were detected using three consecutive years of phenotypic trait data from the F1 population, further verifying the map's reliability.
Collapse
Affiliation(s)
- Yingmei Ma
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yudong Chang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhen Li
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiqi Gao
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Han
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Wang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lan Yun
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education, Hohhot, China
| |
Collapse
|
2
|
Ou T, Wu Z, Tian C, Yang Y, Li Z. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC PLANT BIOLOGY 2024; 24:830. [PMID: 39232676 PMCID: PMC11373303 DOI: 10.1186/s12870-024-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China.
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
3
|
Türkösi E, Szakács É, Ivanizs L, Farkas A, Gaál E, Said M, Darkó É, Cséplő M, Mikó P, Doležel J, Molnár-Láng M, Molnár I, Kruppa K. A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:7. [PMID: 38263978 PMCID: PMC10803699 DOI: 10.1007/s11032-024-01439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024]
Abstract
Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01439-y.
Collapse
Affiliation(s)
- Edina Türkösi
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Éva Szakács
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - László Ivanizs
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - András Farkas
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Eszter Gaál
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czechia
- Agricultural Research Centre, Field Crops Research Institute, Cairo, Egypt
| | - Éva Darkó
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Mónika Cséplő
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Péter Mikó
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czechia
| | - Márta Molnár-Láng
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - István Molnár
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| | - Klaudia Kruppa
- Centre for Agricultural Research, Hungarian Research Network (HUN-REN), 2462 Martonvásár, Hungary
| |
Collapse
|
4
|
Kroupin PY, Yurkina AI, Ulyanov DS, Karlov GI, Divashuk MG. Comparative Characterization of Pseudoroegneria libanotica and Pseudoroegneria tauri Based on Their Repeatome Peculiarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4169. [PMID: 38140496 PMCID: PMC10747672 DOI: 10.3390/plants12244169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Pseudoroegneria species play an important role among Triticeae grasses, as they are the putative donors of the St genome in many polyploid species. Satellite repeats are widely used as a reliable tool for tracking evolutionary changes because they are distributed throughout the genomes of plants. The aim of our work is to perform a comparative characterization of the repeatomes of the closely related species Ps. libanotica and Ps. tauri, and Ps. spicata was also included in the analysis. The overall repeatome structures of Ps. libanotica, Ps. tauri, and Ps. spicata were similar, with some individual peculiarities observed in the abundance of the SIRE (Ty1/Copia) retrotransposons, Mutator and Harbinger transposons, and satellites. Nine new satellite repeats that have been identified from the whole-genome sequences of Ps. spicata and Ps. tauri, as well as the CL244 repeat that was previously found in Aegilops crassa, were localized to the chromosomes of Ps. libanotica and Ps. tauri. Four satellite repeats (CL69, CL101, CL119, CL244) demonstrated terminal and/or distal localization, while six repeats (CL82, CL89, CL168, CL185, CL192, CL207) were pericentromeric. Based on the obtained results, it can be assumed that Ps. libanotica and Ps. tauri are closely related species, although they have individual peculiarities in their repeatome structures and patterns of satellite repeat localization on chromosomes. The evolutionary fate of the identified satellite repeats and their related sequences, as well as their distribution on the chromosomes of Triticeae species, are discussed. The newly developed St genome chromosome markers developed in the present research can be useful in population studies of Ps. libanotica and Ps. tauri; auto- and allopolyploids that contain the St genome, such as Thinopyrum, Elymus, Kengyilia, and Roegneria; and wide hybrids between wheat and related wild species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
- Federal Research Center “Nemchinovka”, Bolshoi Blvd., 30 Bld. 1, Skolkovo Innovation Center, 121205 Moscow, Russia
- National Research Center “Kurchatov Institute”, Kurchatov Sq., 1, 123182 Moscow, Russia
| |
Collapse
|
5
|
Badaeva ED, Kotseruba VV, Fisenko AV, Chikida NN, Belousova MK, Zhurbenko PM, Surzhikov SA, Dragovich AY. Intraspecific divergence of diploid grass Aegilopscomosa is associated with structural chromosome changes. COMPARATIVE CYTOGENETICS 2023; 17:75-112. [PMID: 37304148 PMCID: PMC10252141 DOI: 10.3897/compcytogen.17.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 06/13/2023]
Abstract
Aegilopscomosa Smith in Sibthorp et Smith, 1806 is diploid grass with MM genome constitution occurring mainly in Greece. Two morphologically distinct subspecies - Ae.c.comosa Chennaveeraiah, 1960 and Ae.c.heldreichii (Holzmann ex Boissier) Eig, 1929 are discriminated within Ae.comosa, however, genetic and karyotypic bases of their divergence are not fully understood. We used Fluorescence in situ hybridization (FISH) with repetitive DNA probes and electrophoretic analysis of gliadins to characterize the genome and karyotype of Ae.comosa to assess the level of their genetic diversity and uncover mechanisms leading to radiation of subspecies. We show that two subspecies differ in size and morphology of chromosomes 3M and 6M, which can be due to reciprocal translocation. Subspecies also differ in the amount and distribution of microsatellite and satellite DNA sequences, the number and position of minor NORs, especially on 3M and 6M, and gliadin spectra mainly in the a-zone. Frequent occurrence of hybrids can be caused by open pollination, which, along with genetic heterogeneity of accessions and, probably, the lack of geographic or genetic barrier between the subspecies, may contribute to extremely broad intraspecific variation of GAAn and gliadin patterns in Ae.comosa, which are usually not observed in endemic plant species.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119334, RussiaN.I.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Violetta V. Kotseruba
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova str. 2, Saint Petersburg 197376, RussiaKomarov Botanical Institute, Russian Academy of SciencesSaint PetersburgRussia
| | - Andnrey V. Fisenko
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| | - Nadezhda N. Chikida
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher Education, Bolshaya Morskaya str. 42-44, Saint Petersburg 190000, RussiaN.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher EducationSaint PetersburgRussia
| | - Maria Kh. Belousova
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher Education, Bolshaya Morskaya str. 42-44, Saint Petersburg 190000, RussiaN.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher EducationSaint PetersburgRussia
| | - Peter M. Zhurbenko
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova str. 2, Saint Petersburg 197376, RussiaKomarov Botanical Institute, Russian Academy of SciencesSaint PetersburgRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119334, RussiaN.I.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexandra Yu. Dragovich
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
6
|
Wang Y, Li R, Chen B. Cytogenetic Characterization and Metabolomic Differences of Full-Sib Progenies of Saccharum spp. PLANTS (BASEL, SWITZERLAND) 2023; 12:810. [PMID: 36840158 PMCID: PMC9968213 DOI: 10.3390/plants12040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane smut is a worldwide fungal disease. Disease resistance breeding is the most economical and effective measure to prevent and control sugarcane smut. The cytogenetic characteristics and metabolomic differences of sugarcane F1s are closely related to disease resistance. Zhongzhe 1 and G160 sugarcane from the same parents (ROC25 and Yunzhe89-7) were used; the plants were grown in accordance with the barrel method. When the seedlings had 4-5 leaves, genomic in situ hybridization (GISH) was performed; digoxigenin (DIG)-labeled female parental (ROC25)DNA and biotin-labeled male parental (Yunzhe89-7) DNA were used as probes, and the karyotypes of two hybrids were analyzed. The new sugarcane smut-resistant variety (Zhongzhe 1) and the susceptible variety (G160) derived from the same parent were analyzed via gas chromatography-mass spectrometry technology (GC-MS) to compare the metabolomic differences between them. GISH analysis revealed that the chromosome ploidy number of Zhongzhe 1 sugarcane and G160 sugarcane were 114 and 110, respectively. However, the two contain different numbers of chromosomes from the female (ROC25) and male (Yunzhe89-7) parents. Moreover, 258 significantly changed metabolites were identified in smut-resistant Zhongzhe 1, as compared with the smut-susceptible G160 sugarcane: 56 flavonoids, 52 phenolic acids, 30 lipids, 26 organic acids, 26 amino acids and derivatives, 19 nucleotides and derivatives, 5 alkaloids, 9 terpenoids, and 35 others. Multivariate statistical analysis revealed a distinct difference in metabolic pathways between Zhongzhe 1 sugarcane and G160, and both of these varieties had unique functional metabolites. Differences in chromosome composition may constitute the genetic basis for the difference in resistance to smut disease between Zhongzhe 1 sugarcane and G160 sugarcane, and a high accumulation of flavonoids, lipids, terpenoids and tannins may constitute the basis of resistance to smut disease for the Zhongzhe 1 variety.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Wu D, Yang N, Xiang Q, Zhu M, Fang Z, Zheng W, Lu J, Sha L, Fan X, Cheng Y, Wang Y, Kang H, Zhang H, Zhou Y. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence In Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int J Mol Sci 2022; 23:ijms232314818. [PMID: 36499149 PMCID: PMC9737853 DOI: 10.3390/ijms232314818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae) with its genome abbreviated 'St' accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome. Therefore, investigating its chromosomes could provide some fundamental information required for subsequent studies of St genome evolution. Here, 24 wheat cDNA probes covering seven chromosome groups were mapped in P. libanotica to distinguish homoelogous chromosomes, and newly identified tandem repeats were performed to differentiate seven chromosome pairs. Using these probes, we investigated intraspecific population chromosomal polymorphism of P. libanotica. We found that (i) a duplicated fragment of the 5St long arm was inserted into the short arm of 2St; (ii) asymmetrical fluorescence in situ hybridization (FISH) hybridization signals among 2St, 5St, and 7St homologous chromosome pairs; and (iii) intraspecific population of polymorphism in P. libanotica. These observations established the integrated molecular karyotype of P. libanotica. Moreover, we suggested heterozygosity due to outcrossing habit and adaptation to the local climate of P. libanotica. Specifically, the generated STlib_96 and STlib_98 repeats showed no cross-hybridization signals with wheat chromosomes, suggesting that they are valuable for identifying alien chromosomes or introgressed fragments of wild relatives in wheat.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Namei Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingkun Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyan Fang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiale Lu
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Sha
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| | - Yonghong Zhou
- State Key Laboratory of Crop Genetic Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (H.Z.); (Y.Z.); Tel./Fax: +86-028-8629-0022 (Y.Z.)
| |
Collapse
|
8
|
Development and application of specific FISH probes for karyotyping Psathyrostachys huashanica chromosomes. BMC Genomics 2022; 23:309. [PMID: 35436853 PMCID: PMC9017042 DOI: 10.1186/s12864-022-08516-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Psathyrostachys huashanica Keng has long been used as a genetic resource for improving wheat cultivar because of its genes mediating the resistance to various diseases (stripe rust, leaf rust, take-all, and powdery mildew) as well as its desirable agronomic traits. However, a high-resolution fluorescence in situ hybridization (FISH) karyotype of P. huashanica remains unavailable. Results To develop chromosome-specific FISH markers for P. huashanica, repetitive sequences, including pSc119.2, pTa535, pTa713, pAs1, (AAC)5, (CTT)12, pSc200, pTa71A-2, and Oligo-44 were used for a FISH analysis. The results indicated that the combination of pSc200, pTa71A-2 and Oligo-44 probes can clearly identify all Ns genomic chromosomes in the two P. huashanica germplasms. The homoeologous relationships between individual P. huashanica chromosomes and common wheat chromosomes were clarified by FISH painting. Marker validation analyses revealed that the combination of pSc200, pTa71A-2, and Oligo-44 for a FISH analysis can distinguish the P. huashanica Ns-genome chromosomes from wheat chromosomes, as well as all chromosomes (except 4Ns) from the chromosomes of diploid wheat relatives carrying St, E, V, I, P and R genomes. Additionally, the probes were applicable for discriminating between the P. huashanica Ns-genome chromosomes in all homologous groups and the corresponding chromosomes in Psathyrostachys juncea and most Leymus species containing the Ns genome. Furthermore, six wheat–P. huashanica chromosome addition lines (i.e., 2Ns, 3Ns, 4Ns, 7Ns chromosomes and chromosomal segments) were characterized using the newly developed FISH markers. Thus, these probes can rapidly and precisely detect P. huashanica alien chromosomes in the wheat background. Conclusions The FISH karyotype established in this study lays a solid foundation for the efficient identification of P. huashanica chromosomes in wheat genetic improvement programs.
Collapse
|
9
|
Jha TB. Karyotype diversity in cultivated and wild Indian rice through EMA-based chromosome analysis. J Genet 2021. [DOI: 10.1007/s12041-021-01332-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Prieto P, Palomino C, Cifuentes Z, Cabrera A. Analysis of Chromosome Associations during Early Meiosis in Wheat Lines Carrying Chromosome Introgressions from Agropyron cristatum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112292. [PMID: 34834654 PMCID: PMC8625001 DOI: 10.3390/plants10112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Crested wheatgrass (Agropyron cristatum L. Gaertn., genome P), included in the Triticeae tribe (family Poaceae), is one of the most important grasses in temperate regions. It has been valued as a donor of important agronomic traits for wheat improvement, including tolerance to cold, drought, and high salinity, as well as resistance to leaf rust, stripe rust, and powdery mildew. For successful incorporation of beneficial alleles into wheat, it is essential that recombination between wheat and A. cristatum chromosomes occurs. In this work, we analysed chromosome associations during meiosis in wheat lines carrying chromosome introgressions from A. cristatum chromosomes 5P and 6P in the presence and absence of Ph1 locus using fluorescence in situ hybridisation. The results showed that the Ph1 locus does not affect chromosome associations between A. cristatum and wheat chromosomes because there were no interspecific chromosome associations; therefore, no recombination between chromosomes from wheat and Agropyron were observed in the absence of the Ph1 locus. The 5P and 6P A. cristatum chromosomes do not have a suppressor effect on the Ph1 locus. Wheat univalents in metaphase I suggest that Agropyron chromosomes might carry genes having a role in wheat homologous chromosome associations. Putative effect of the Agropyron genes on wheat chromosome associations does not interact with the Ph1 locus.
Collapse
Affiliation(s)
- Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Córdoba, Spain;
| | - Carmen Palomino
- Genetics Department, ETSIAM, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071 Córdoba, Spain; (C.P.); (A.C.)
| | - Zuny Cifuentes
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Córdoba, Spain;
| | - Adoración Cabrera
- Genetics Department, ETSIAM, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071 Córdoba, Spain; (C.P.); (A.C.)
| |
Collapse
|
11
|
Yu Z, Wang H, Jiang W, Jiang C, Yuan W, Li G, Yang Z. Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome 2021; 64:789-800. [PMID: 33513072 DOI: 10.1139/gen-2020-0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The perennial species Dasypyrum breviaristatum (genome Vb) contains many potentially valuable genes for the improvement of common wheat. Construction of a detailed karyotype of D. breviaristatum chromosomes will be useful for the detection of Dasypyrum chromatin in wheat background. We established the standard karyotype of 1Vb-7Vb chromosomes through nondenaturing fluorescence in situ hybridization (ND-FISH) technique using 28 oligonucleotide probes from the wheat - D. breviaristatum partial amphiploid TDH-2 (AABBVbVb) and newly identified wheat - D. breviaristatum disomic translocation and addition lines D2138 (6VbS.2VbL), D2547 (4Vb), and D2532 (3VbS.6VbL) by comparative molecular marker analysis. The ND-FISH with multiple oligo probes was conducted on the durum wheat - D. villosum amphiploid TDV-1 and large karyotype differences between D. breviaristatum and D. villosum was revealed. These ND-FISH probes will be valuable for screening the wheat - Dasypyrum derivative lines for chromosome identification, and the newly developed wheat - D. breviaristatum addition lines may broaden the gene pool of wheat breeding. The differences between D. villosum and D. breviaristatum chromosomes revealed by ND-FISH will help us understand evolutionary divergence of repetitive sequences within the genus Dasypyrum.
Collapse
Affiliation(s)
- Zhihui Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| |
Collapse
|
12
|
Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Singh AK, Zhang P, Dong C, Li J, Singh S, Trethowan RM, Sharp PJ. Development and molecular cytogenetic characterization of Thinopyrum bessarabicum introgression lines in hexaploid and tetraploid wheats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2117-2130. [PMID: 32198597 DOI: 10.1007/s00122-020-03581-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
A variety of Thinopyrum bessarabicum introgressions in both hexaploid and tetraploid wheats were generated and characterized by molecular cytogenetic analysis. Six wheat-J genome recombinants were identified with ND-FISH and GISH. Diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14, EbEb or JbJb or JJ), is a well-known alien source of salinity tolerance and disease resistance for wheat improvement. The true genetic potential and effect of such introgressions into wheat can be best studied in chromosomal addition or substitution lines. Here, we report the generation and characterization of various categories of Th. bessarabicum derivatives in both hexaploid and tetraploid cultivated wheats. Sequential non-denaturing fluorescence in situ hybridization (ND-FISH) and genomic in situ hybridization (GISH) are robust techniques to visualize the size of alien introgressions and breakpoints. We identified a complete set of monosomic addition lines into both bread wheat and durum wheat, except for 7J in durum wheat, by sequential ND-FISH and GISH. We also characterized alien derivatives belonging to various classes including mono-telosomic additions, disomic additions, monosomic substitutions, double monosomic substitutions, monosomic substitution-monosomic additions, double monosomic additions, and multiple monosomic additions into both bread and durum wheats. In addition, various wheat-Th. bessarabicum recombinant chromosomes were also detected in six alien derivatives. These wheat-Th. bessarabicum derivatives will provide useful cytogenetic resources for improvement of both hexaploid and tetraploid wheats.
Collapse
Affiliation(s)
- Amit K Singh
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Peng Zhang
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| | - Chongmei Dong
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jianbo Li
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Smriti Singh
- Bihar Agricultural University, Sabour, Bihar, 813210, India
| | - Richard M Trethowan
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Peter J Sharp
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
14
|
Wang RRC, Li X, Robbins MD, Larson SR, Bushman SB, Jones TA, Thomas A. DNA sequence-based mapping and comparative genomics of the St genome of Pseudoroegneria spicata (Pursh) Á. Löve versus wheat ( Triticum aestivum L.) and barley ( Hordeum vulgare L.). Genome 2020; 63:445-457. [PMID: 32384249 DOI: 10.1139/gen-2019-0152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bluebunch wheatgrass (referred to as BBWG) [Pseudoroegneria spicata (Pursh) Á. Löve] is an important rangeland Triticeae grass used for forage, conservation, and restoration. This diploid has the basic St genome that occurs also in many polyploid Triticeae species, which serve as a gene reservoir for wheat improvement. Until now, the St genome in diploid species of Pseudoroegneria has not been mapped. Using a double-cross mapping populations, we mapped 230 expressed sequence tag derived simple sequence repeat (EST-SSR) and 3468 genotyping-by-sequencing (GBS) markers to 14 linkage groups (LGs), two each for the seven homologous groups of the St genome. The 227 GBS markers of BBWG that matched those in a previous study helped identify the unclassified seven LGs of the St sub-genome among 21 LGs of Thinopyrum intermedium (Host) Barkworth & D.R. Dewey. Comparisons of GBS sequences in BBWG to whole-genome sequences in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) revealed that the St genome shared a homology of 35% and 24%, a synteny of 86% and 84%, and a collinearity of 0.85 and 0.86, with ABD and H, respectively. This first-draft molecular map of the St genome will be useful in breeding cereal and forage crops.
Collapse
Affiliation(s)
- Richard R-C Wang
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Matthew D Robbins
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Steve R Larson
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Shaun B Bushman
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Thomas A Jones
- U.S. Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Aaron Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA
| |
Collapse
|
15
|
Badaeva ED, Surzhikov SA, Agafonov AV. Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. COMPARATIVE CYTOGENETICS 2019; 13:389-402. [PMID: 31844506 PMCID: PMC6904353 DOI: 10.3897/compcytogen.v13i4.36879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Thinopyrum bessarabicum (T. Săvulescu & T. Rayss, 1923) A. Löve, 1980 is diploid (2n=2x=14, JJ or EbEb), perennial self-fertilizing rhizomatous maritime beach grass, which is phylogenetically close to another diploid wheatgrass species, Agropyron elongatum (N. Host, 1797) P. de Beauvois, 1812. The detailed karyotype of Th. bessarabicum was constructed based on FISH with six DNA probes representing 5S and 45S rRNA gene families and four tandem repeats. We found that the combination of pAesp_SAT86 (= pTa-713) probe with pSc119.2 or pAs1/ pTa-535 allows the precise identification of all J-genome chromosomes. Comparison of our data with the results of other authors showed that karyotypically Th. bessarabicum is distinct from A. elongatum. On the other hand, differences between the J-genome chromosomes of Th. bessarabicum and the chromosomes of hexaploid Th. intermedium (N. Host, 1797) M. Barkworth & D.R. Dewey, 1985 and decaploid Th. ponticum (J. Podpěra, 1902) Z.-W. Liu & R.-C. Wang, 1993 in the distribution of rDNA loci and hybridization patterns of pSc119.2 and pAs1 probes could be an indicative of (1) this diploid species was probably not involved in the origin of these polyploids or (2) it could has contributed the J-genome to Th. intermedium and Th. ponticum, but it was substantially modified over the course of speciation.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences. Gubkina str. 3, Moscow 117333, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexander V. Agafonov
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Zolotodolinskaya st., 101, Novosibirsk 630090, RussiaCentral Siberian Botanical Garden, Russian Academy of SciencesNovosibirskRussia
| |
Collapse
|
16
|
Said M, Parada AC, Gaál E, Molnár I, Cabrera A, Doležel J, Vrána J. Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2881-2898. [PMID: 31312850 PMCID: PMC6763527 DOI: 10.1007/s00122-019-03394-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Using COS markers, the study reveals homeologous relationships between tetraploid Agropyron cristatum and bread wheat to support alien introgression breeding of wheat. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat that possesses many genes that are potentially useful in wheat improvement. The species comprises a complex of diploid, tetraploid and hexaploid forms. In this study, wheat-A. cristatum chromosome, telosome and translocation lines were used to characterize syntenic relationships between tetraploid A. cristatum and bread wheat. Prior to mapping COS markers, the cytogenetic stock lines were characterized for fertility and by FISH and GISH for karyotype stability. Out of 328 COS markers selected for the study, 279 consistently amplified products in tetraploid A. cristatum, and, out of these, 139 were polymorphic between tetraploid crested wheatgrass and wheat. Sixty-nine markers were found to be suitable for the detection of tetraploid A. cristatum chromosomes 1P-6P in wheat, ranging from 6 to 17 markers per chromosome. BLASTn of the source ESTs resulted in significant hits for 67 markers on the wheat pseudomolecules. Generally, COS markers of the same homeologous group were detected on similar arms in both Agropyron and wheat. However, some intragenomic duplications and chromosome rearrangements were detected in tetraploid A. cristatum. These results provide new insights into the structure and evolution of the tetraploid A. cristatum genome and will facilitate the exploitation of the wild species for introgression breeding of bread wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Alejandro Copete Parada
- Genetics Department, ETSIAM, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, 14071, Córdoba, Spain
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - István Molnár
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - Adoración Cabrera
- Genetics Department, ETSIAM, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, 14071, Córdoba, Spain
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Identification of P genome chromosomes in Agropyron cristatum and wheat-A. cristatum derivative lines by FISH. Sci Rep 2019; 9:9712. [PMID: 31273296 PMCID: PMC6609639 DOI: 10.1038/s41598-019-46197-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Agropyron cristatum (L.) Gaertn. (P genome) is cultivated as pasture fodder and can provide many desirable genes for wheat improvement. With the development of genomics and fluorescence in situ hybridization (FISH) technology, probes for identifying plant chromosomes were also developed. However, there are few reports on A. cristatum chromosomes. Here, FISH with the repeated sequences pAcTRT1 and pAcpCR2 enabled the identification of all diploid A. cristatum chromosomes. An integrated idiogram of A. cristatum chromosomes was constructed based on the FISH patterns of five diploid A. cristatum individuals. Structural polymorphisms of homologous chromosomes were observed not only among different individuals but also within individuals. Moreover, seventeen wheat-A. cristatum introgression lines containing different P genome chromosomes were identified with pAcTRT1 and pAcpCR2 probes. The arrangement of chromosomes in diploid A. cristatum was determined by identifying correspondence between the P chromosomes in these genetically identified introgression lines and diploid A. cristatum chromosomes. The two probes were also effective for discriminating all chromosomes of tetraploid A. cristatum, and the differences between two tetraploid A. cristatum accessions were similar to the polymorphisms among individuals of diploid A. cristatum. Collectively, the results provide an effective means for chromosome identification and phylogenetic studies of P genome chromosomes.
Collapse
|
18
|
Said M, Kubaláková M, Karafiátová M, Molnár I, Doležel J, Vrána J. Dissecting the Complex Genome of Crested Wheatgrass by Chromosome Flow Sorting. THE PLANT GENOME 2019; 12:180096. [PMID: 31290923 DOI: 10.3835/plantgenome2018.12.0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheatgrass (Agropyron sp.) is a potential source of beneficial traits for wheat improvement. Among them, crested wheatgrass [A. cristatum (L.) Gaertn.] comprises a complex of diploid, tetraploid, and hexaploid forms with the basic genome P, with some accessions carrying supernumerary B chromosomes (Bs). In this work, we applied flow cytometry to dissect the complex genome of crested wheatgrass into individual chromosomes to facilitate its analysis. Flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained mitotic chromosomes of diploid and tetraploid accessions consisted of three peaks, each corresponding to a group of two or three chromosomes. To improve the resolution, bivariate flow karyotyping after fluorescent labeling of chromosomes with fluorescein isothiocyanate (FITC)-conjugated probe (GAA) microsatellite was applied and allowed discrimination and sorting of P genome chromosomes from wheat-crested wheatgrass addition lines. Chromosomes 1P-6P and seven telomeric chromosomes could be sorted at purities ranging from 81.7 to 98.2% in disomics and from 44.8 to 87.3% in telosomics. Chromosome 7P was sorted at purities reaching 50.0 and 39.5% in diploid and tetraploid crested wheatgrass, respectively. In addition to the whole complement chromosomes (A), Bs could be easily discriminated and sorted from a diploid accession at 95.4% purity. The sorted chromosomes will streamline genome analysis of crested wheatgrass, facilitating gene cloning and development of molecular tools to support alien introgression into wheat.
Collapse
|
19
|
Mirzaghaderi G, Mason AS. Broadening the bread wheat D genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1295-1307. [PMID: 30739154 DOI: 10.1007/s00122-019-03299-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. In this review, we discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. The D genome of allohexaploid bread wheat (Triticum aestivum, 2n = AABBDD) is the least diverse of the three wheat genomes and is unarguably less diverse than that of diploid progenitor Aegilops tauschii (2n = DD). Useful genetic variation and phenotypic traits also exist within each of the wheat group species containing a copy of the D genome: allopolyploid Aegilops species Ae. cylindrica (2n = DcDcCcCc), Ae. crassa 4x (2n = D1D1XcrXcr), Ae. crassa 6x (2n = D1D1XcrXcrDcrDcr), Ae. ventricosa (2n = DvDvNvNv), Ae. vavilovii (2n = D1D1XcrXcrSvSv) and Ae. juvenalis (2n = D1D1XcrXcrUjUj). Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. Some of these D genomes appear to be modified relative to the bread wheat and Ae. tauschii D genomes, and others present in the allopolyploids may also contain useful variation as a result of adaptation to an allopolyploid, multi-genome environment. We summarise the genetic relationships, karyotypic variation and phenotypic traits known to be present in each of the D genome species that could be of relevance for bread wheat improvement and discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. Better understanding of factors controlling chromosome inheritance and recombination in wheat group interspecific hybrids, as well as effective utilisation of new and developing genetics and genomics technologies, have great potential to improve the agronomic potential of the bread wheat D genome.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
20
|
Sun J, Yu L, Cai Z, Zhang A, Jin W, Han Y, Li Z. Comparative karyotype analysis among six species of Ipomoea based on two newly identified repetitive sequences. Genome 2019; 62:243-252. [PMID: 30785785 DOI: 10.1139/gen-2018-0169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sweet potato is one of the most important crops worldwide; however, basic research in this crop is limited. In this study, we aimed to construct a detailed karyotype of six species of Ipomoea (hexaploid Ipomoea batatas and five related species, namely, one tetraploid, I. tabascana and four diploids, I. splendor-sylvae, I. trifida, I. tenuissima, and I. × leucantha) and understand the relationship among these species. Two satellite repeats (viz., Itf_1 and Itf_2) were identified from the diploid I. trifida genome sequence using RepeatExplorer on Galaxy. Together with the ribosomal DNA (rDNA), although without distinguishable chromosomes, a detailed karyotype was constructed for the six species. Our results showed a similar karyotype between I. tenuissima and I. × leucantha, indicating their close relationship. The signal distribution pattern of Itf_1, 45S rDNA combination, detected only in I. trifida, I. tabascana, and I. batatas, implied their close relationships. The chromosomes carrying 5S rDNA could be conserved among the six species as they always carried the Itf_2 signals, which generated a similar signal distribution pattern. The results enabled a detailed comparative cytogenetic analysis, providing valuable information to understand the relationship among these species and help assemble the genome sequence of the six species of Ipomoea.
Collapse
Affiliation(s)
- Jianying Sun
- a Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China.,b Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Lixuan Yu
- a Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China.,b Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Zeixi Cai
- c National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Coordinated Research Center for Crop Biology, China Agricultural University, Beijing, China
| | - An Zhang
- d Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou, China
| | - Weiwei Jin
- c National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Coordinated Research Center for Crop Biology, China Agricultural University, Beijing, China
| | - Yonghua Han
- a Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China.,b Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- a Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China.,b Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
21
|
Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS One 2018; 13:e0208840. [PMID: 30540828 PMCID: PMC6291125 DOI: 10.1371/journal.pone.0208840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022] Open
Abstract
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.
Collapse
|
22
|
Sequence Diversity and Identification of Novel Puroindoline and Grain Softness Protein Alleles in Elymus, Agropyron and Related Species. DIVERSITY 2018. [DOI: 10.3390/d10040114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The puroindoline proteins, PINA and PINB, which are encoded by the Pina and Pinb genes located at the Ha locus on chromosome 5D of bread wheat, are considered to be the most important determinants of grain hardness. However, the recent identification of Pinb-2 genes on group 7 chromosomes has stressed the importance of considering the effects of related genes and proteins. Several species related to wheat (two diploid Agropyron spp., four tetraploid Elymus spp. and five hexaploid Elymus and Agropyron spp.) were therefore analyzed to identify novel variation in Pina, Pinb and Pinb-2 genes which could be exploited for the improvement of cultivated wheat. A novel sequence for the Pina gene was detected in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus and Elymus nutans and novel PINB sequences in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus, and Elymus nutans. A novel PINB-2 variant was also detected in Agropyron repens and Elymus repens. The encoded proteins detected all showed changes in the tryptophan-rich domain as well as changes in and/or deletions of basic and hydrophobic residues. In addition, two new AGP sequences were identified in Elymus nutans and Elymus wawawaiensis. The data presented therefore highlight the sequence diversity in this important gene family and the potential to exploit this diversity to modify grain texture and end-use quality in wheat.
Collapse
|
23
|
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2213-2227. [PMID: 30069594 PMCID: PMC6154037 DOI: 10.1007/s00122-018-3148-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Eva Hřibová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bikram S Gill
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
24
|
Li D, Li T, Wu Y, Zhang X, Zhu W, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines. FRONTIERS IN PLANT SCIENCE 2018; 9:526. [PMID: 29765383 PMCID: PMC5938340 DOI: 10.3389/fpls.2018.00526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Tetraploid Thinopyrum elongatum, which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.
Collapse
Affiliation(s)
- Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
He F, Xing P, Bao Y, Ren M, Liu S, Wang Y, Li X, Wang H. Chromosome Pairing in Hybrid Progeny between Triticum aestivum and Elytrigia elongata. FRONTIERS IN PLANT SCIENCE 2017; 8:2161. [PMID: 29312403 PMCID: PMC5742266 DOI: 10.3389/fpls.2017.02161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/07/2017] [Indexed: 05/29/2023]
Abstract
In this study, the intergeneric hybrids F1, F2, BC1F1, BC1F2, and BC2F1 from Elytrigia elongata and Triticum aestivum crosses were produced to study their chromosome pairing behavior. The average E. elongata chromosome configuration of the two F1 hybrids agreed with the theoretical chromosome configuration of 21I+7II, indicating that the genomic constitution of this F1 hybrid was ABDStStEeEbEx. Compared with the BC1F1 generation, the BC2F1 generation showed a rapid decrease in the number of E. elongata chromosomes and the BC1F2 generation showed a more extensive distribution of E. elongata chromosomes. In addition, pairing between wheat and E. elongata chromosomes was detected in each of the wheat-E. elongata hybrid progenies, albeit rarely. Our results demonstrated that genomic in situ hybridization (GISH) using an E. elongata genomic DNA probe offers a reliable approach for characterizing chromosome pairing in wheat and E. elongata hybrid progenies.
Collapse
Affiliation(s)
- Fang He
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Piyi Xing
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Shubing Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yuhai Wang
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| |
Collapse
|