1
|
Han X, Liu K, Gao F, Yang M, Wang F. Hsa-miR-223-3p participates in the process of anthracycline-induced cardiomyocyte damage by regulating NFIA gene. Open Med (Wars) 2023; 18:20230754. [PMID: 37533740 PMCID: PMC10390750 DOI: 10.1515/med-2023-0754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Irreversible cardiomyopathy was caused by the therapeutic of anthracyclines in the chemotherapy of cancers. The cell apoptosis and autophagy were induced by anthracyclines in AC16 cells. MiR-223-3p ascends in anthracycline-treated AC16, but the expression of nuclear factor I-A (NFIA) was specifically down-regulated. However, the underlying molecular mechanism between NFIA and miR-223-3p is unclear now in AC16 cells. In our research, NFIA expression was dampened in AC16 cells by miR-223-3p mimics. Additionally, miR-223-3p knockdown hindered the apoptosis and autophagy in anthracycline-treated AC16. Furthermore, NFIA was predicted and verified as a miR-223-3p's downstream target and rescued the functions of miR-223-3p. These findings illustrated that miR-223-3p advances anthracycline-stimulated cardiomyocyte damage progression by targeting NFIA, implying the promising therapeutic function of miR-223-3p on cardiomyocyte damage in cancer patients.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Fumin Gao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Mingjun Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
2
|
Wang J, Zhang F, Yang W, Gao D, Yang L, Yu C, Chen C, Li X, Zhang JS. FGF1 ameliorates obesity-associated hepatic steatosis by reversing IGFBP2 hypermethylation. FASEB J 2023; 37:e22881. [PMID: 36934380 DOI: 10.1096/fj.202201950r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
Obesity is a major contributing factor for metabolic-associated fatty liver disease (MAFLD). Fibroblast growth factor (FGF) 1 is the first paracrine FGF family member identified to exhibit promising metabolic regulatory properties capable of conferring glucose-lowering and insulin-sensitizing effect. This study explores the role and molecular underpinnings of FGF1 in obesity-associated hepatic steatosis. In a mouse high-fat diet (HFD)-induced MAFLD model, chronic treatment with recombinant FGF1(rFGF1) was found to effectively reduce the severity of insulin resistance, hyperlipidemia, and inflammation. FGF1 treatment decreased lipid accumulation in the mouse liver and palmitic acid-treated AML12 cells. These effects were associated with decreased mature form SREBF1 expression and its target genes FASN and SCD1. Interestingly, we uncovered that rFGF1 significantly induced IGFBP2 expression at both mRNA and protein levels in HFD-fed mouse livers and cultured hepatocytes treated with palmitic acid. Adeno-associated virus-mediated IGFBP2 suppression significantly diminished the therapeutic benefit of rFGF1 on MAFLD-associated phenotypes, indicating that IGFBP2 plays a crucial role in the FGF1-mediated reduction of hepatic steatosis. Further analysis revealed that rFGF1 treatment reduces the recruitment of DNA methyltransferase 3 alpha to the IGFBP2 genomic locus, leading to decreased IGFBP2 gene methylation and increased mRNA and protein expression. Collectively, our findings reveal FGF1 modulation of lipid metabolism via epigenetic regulation of IGFBP2 expression, and unravel the therapeutic potential of the FGF1-IGFBP2 axis in metabolic diseases associated with obesity.
Collapse
Affiliation(s)
- Jie Wang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Weiwei Yang
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dandan Gao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Linglong Yang
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenhua Yu
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
The Use of Pro-Angiogenic and/or Pro-Hypoxic miRNAs as Tools to Monitor Patients with Diffuse Gliomas. Int J Mol Sci 2022; 23:ijms23116042. [PMID: 35682718 PMCID: PMC9181142 DOI: 10.3390/ijms23116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.
Collapse
|
4
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|
5
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|
6
|
Cao H, Wang D, Sun P, Chen L, Feng Y, Gao R. RNA-seq reveals microRNA-302b as a suppressor of prostate cancer epithelial-mesenchymal transition by targeting RELA/NF-κB. Am J Cancer Res 2021; 11:5715-5725. [PMID: 34873489 PMCID: PMC8640823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023] Open
Abstract
To identify novel biomarker(s) in prostate cancer and demonstrate the mechanistic involvements in this disease, RNA-seq was employed to reveal the differentially expressed genes in the blood samples from prostate cancer patients. Relative expression of miR-302b-3p was evaluated using real-time PCR. The potential regulation of RELA by miR-302b-3p was assessed by luciferase reporter assay. Protein levels of NF-κB, Vimentin, N-cadherin and E-cadherin, were quantified using western blotting. Transwell chamber was employed to measure cell migratory and invasive capacity, while cell attachment/detachment assay was performed to evaluated epithelial-mesenchymal transition (EMT)-related behavior. Xenograft tumor model was adopted to determine the anti-tumor activity of miR-302b-3p in vivo. We demonstrated miR-302b-3p was down-regulated in prostate cancer both in vivo and in vitro. We predicted and identified RELA as directly targeted by miR-302b-3p. Ectopic miR-302b-3p expression in PC-3 cells significantly suppressed cell migration, invasion, attachment, detachment capacity, which was accompanied with a decrease in the expression of N-cadherin and Vimentin, and an increase of E-cadherin expression. MiR-302b-3p-proficiency greatly delayed xenograft tumor growth and associated with favorable overall survival. Co-introduction of RELA completely abolished anti-tumor effects of miR-302b-3p, which indicated a potential genetic interaction between RELA/NF-κB and miR-302b-3p. We characterized the aberrant down-regulation of miR-302b-3p in prostate cancer and unraveled a possible involvement of miR-302b-3p/RELA signaling axis in this scenario.
Collapse
Affiliation(s)
- Hongwen Cao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Dan Wang
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Peng Sun
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Renjie Gao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| |
Collapse
|
7
|
Erzhi Tiangui Granules Improve In Vitro Fertilization Outcomes in Infertile Women with Advanced Age. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9951491. [PMID: 34422084 PMCID: PMC8378947 DOI: 10.1155/2021/9951491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
Background The fertility of females with advanced age declines with aging. Therefore, for medical and social reasons, it is important to establish mechanisms to protect and improve the fertility of such populations. With widespread use of traditional Chinese medicine (TCM) in in vitro fertilization (IVF), studies have evaluated their impact on improving the fertility of females with advanced age. In this study, we performed proteomic analysis of follicular fluid to reveal mechanisms of the Erzhi Tiangui (EZTG) granule (Chinese herbs for replenishing vital essence to tonify the kidney) in improving the outcomes of IVF in infertile women with advanced age. Methods This was a randomized, double-blind, and placebo-controlled trial in which 100 patients with advanced age were divided into the EZTG group and the placebo group by the random number table plus envelope method. Both groups were subjected to controlled ovarian stimulation with a GnRH antagonist regimen. Differences between the two groups were evaluated, including the TCM syndrome score after treatment, gonadotrophin (Gn) days and Gn doses, the number of retrieved oocytes, 2 pronucleus (PN) fertilization, 2PN cleavage, and high-quality embryos. Differentially expressed proteins were identified using the LC-MS/MS method, and their functions were determined through bioinformatics analyses. Results The number of high-quality embryos in the placebo group was significantly lower than that in the EZTG group (2.88 ± 1.85 vs. 4.13 ± 2.83, p=0.011). Eleven differentially expressed proteins were identified between the two groups. Four proteins were highly expressed, whereas seven were suppressed in the control group, compared to the EZTG group. The overall trend suggested that the apoptotic effect in the follicular fluid of the EZTG group was downregulated. Conclusion Treatment with the EZTG granule can improve embryo quality in IVF of advanced age females with both kidney Qi and Yin deficiency syndromes. The mechanism is attributed to downregulation of apoptotic-effector protein expressions in the follicular fluid. This trial is registered with ChiCTR1900025139.
Collapse
|
8
|
Tirrò E, Massimino M, Romano C, Martorana F, Pennisi MS, Stella S, Pavone G, Di Gregorio S, Puma A, Tomarchio C, Vitale SR, Manzella L, Vigneri P. Prognostic and Therapeutic Roles of the Insulin Growth Factor System in Glioblastoma. Front Oncol 2021; 10:612385. [PMID: 33604294 PMCID: PMC7885861 DOI: 10.3389/fonc.2020.612385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain malignancy and is often resistant to conventional treatments due to its extensive cellular heterogeneity. Thus, the overall survival of GBM patients remains extremely poor. Insulin-like growth factor (IGF) signaling entails a complex system that is a key regulator of cell transformation, growth and cell-cycle progression. Hence, its deregulation is frequently involved in the development of several cancers, including brain malignancies. In GBM, differential expression of several IGF system components and alterations of this signaling axis are linked to significantly worse prognosis and reduced responsiveness to temozolomide, the most commonly used pharmacological agent for the treatment of the disease. In the present review we summarize the biological role of the IGF system in the pathogenesis of GBM and comprehensively discuss its clinical significance and contribution to the development of resistance to standard chemotherapy and experimental treatments.
Collapse
Affiliation(s)
- Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Giuliana Pavone
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| |
Collapse
|
9
|
Boughanem H, Yubero-Serrano EM, López-Miranda J, Tinahones FJ, Macias-Gonzalez M. Potential Role of Insulin Growth-Factor-Binding Protein 2 as Therapeutic Target for Obesity-Related Insulin Resistance. Int J Mol Sci 2021; 22:ijms22031133. [PMID: 33498859 PMCID: PMC7865532 DOI: 10.3390/ijms22031133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from observational and in vitro studies suggests that insulin growth-factor-binding protein type 2 (IGFBP2) is a promising protein in non-communicable diseases, such as obesity, insulin resistance, metabolic syndrome, or type 2 diabetes. Accordingly, great efforts have been carried out to explore the role of IGFBP2 in obesity state and insulin-related diseases, which it is typically found decreased. However, the physiological pathways have not been explored yet, and the relevance of IGFBP2 as an important pathway integrator of metabolic disorders is still unknown. Here, we review and discuss the molecular structure of IGFBP2 as the first element of regulating the expression of IGFBP2. We highlight an update of the association between low serum IGFBP2 and an increased risk of obesity, type 2 diabetes, metabolic syndrome, and low insulin sensitivity. We hypothesize mechanisms of IGFBP2 on the development of obesity and insulin resistance in an insulin-independent manner, which meant that could be evaluated as a therapeutic target. Finally, we cover the most interesting lifestyle modifications that regulate IGFBP2, since lifestyle factors (diet and/or physical activity) are associated with important variations in serum IGFBP2.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| |
Collapse
|
10
|
Li Z, Zuo L, Shi Y, Tian D, Liu L, Yang Y, Zhou L, Zhang X, Kang J, Hao X, Yuan C, Sun Z. Combination of high-resolution accurate mass spectrometry and network pharmacology provides a new method for the chemical constituents' study and target prediction in vivo of Garcinia multiflora. J Sep Sci 2019; 43:978-986. [PMID: 31867785 DOI: 10.1002/jssc.201900755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Garcinia multiflora is a kind of evergreen tree which is widely distributed in the south of China. However, few researches focused on the constituents in different parts of G. multiflora as well as their potential targets and pathways in vivo. To clarify the chemical constituents of G. multiflora rapidly and predict the potential targets as well as pathways in vivo that this plant may have effects on, a feasible and accurate strategy was developed to identify the chemical constituents in fruits, leaves, and branches of G. multiflora by ultra-high performance liquid chromatography with Q-Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry. Network pharmacology was then employed and a "compounds-targets-diseases" network was established. Sixty-one compounds including polycyclic polyprenylated acylphloroglucinols, xanthones, and flavonoids were finally identified in different parts of G. multiflora, and the contents of seven constituents were quantified, respectively. On the basis of the network pharmacology analysis results, compounds in this plant were speculated to have potential pharmacodynamic effect on cancer, inflammatory, respiratory diseases, cardiovascular diseases, and metabolic diseases. This research will provide a new method for the advanced study on the pharmacodynamic materials basis of G. multiflora, and offer valuable evidences for medicinal purpose of this plant.
Collapse
Affiliation(s)
- Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Dongsong Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Yantao Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| |
Collapse
|
11
|
Chen Z, Ma Y, Pan Y, Zuo S, Zhu H, Yu C, Zhu C, Sun C. Long Noncoding RNA RP5-833A20.1 Suppresses Tumorigenesis In Hepatocellular Carcinoma Through Akt/ERK Pathway By Targeting miR-18a-5p. Onco Targets Ther 2019; 12:10717-10726. [PMID: 31827329 PMCID: PMC6902849 DOI: 10.2147/ott.s219797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Background Previous studies indicated that long noncoding RNAs (lncRNAs) played vital roles in the development and progression of hepatocellular carcinoma (HCC). Recently, downregulation of lncRNA RP5‑833A20.1 has been observed in HCC tissues. However, the underlying mechanism by which RP5‑833A20.1 regulates the proliferation and apoptosis in HCC has not been investigated. Thus, this study aimed to investigate the role of RP5‑833A20.1 in the progression of HCC. Methods The levels of RP5‑833A20.1 in 30 pairs of HCC tissues and adjacent normal tissues were detected by RT-qPCR. In addition, the effects of RP5‑833A20.1 on cell proliferation, apoptosis and invasion were evaluated by CCK-8, flow cytometric, transwell assays, respectively. Meanwhile, the dual-luciferase reporter system assay was used to explore the interaction of RP5‑833A20.1 and miR-18a-5p in HCC. Results The level of RP5‑833A20.1 was significantly downregulated in HCC tissues and HCC cell lines. Downregulation of RP5‑833A20.1 markedly promoted the proliferation and invasion of Bel-7402 cells. In addition, overexpression of RP5‑833A20.1 notably inhibited the proliferation and invasion of Huh7 cells. Moreover, overexpression of RP5‑833A20.1 obviously induced the apoptosis of Huh7 cells via increasing the levels of Bax and active caspase 3, and decreasing the levels of Bcl-2, p-Akt and p-ERK. Meanwhile, in vivo experiments performed also indicated that overexpression of RP5-833A20.1 could inhibit the tumorigenesis of subcutaneous Huh7 xenograft in nude mice. Furthermore, bioinformatics and luciferase reporter assay identified that RP5-833A20.1 functioned as a competing endogenous RNA (ceRNA) for miR-18a-5p in HCC. Conclusion In this study, we found that RP5‑833A20.1 was downregulated in HCC tissues. In addition, RP5-833A20.1 could suppress the tumorigenesis in HCC through inhibiting Akt/ERK pathway by acting as a ceRNA for miR-18a-5p. Therefore, RP5-833A20.1 might be a valuable and potential biomarker and therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zili Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Yifei Ma
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Yaozhen Pan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| |
Collapse
|
12
|
Théberge ET, Baker JA, Dubose C, Boyle JK, Balce K, Goldowitz D, Hamre KM. Genetic Influences on the Amount of Cell Death in the Neural Tube of BXD Mice Exposed to Acute Ethanol at Midgestation. Alcohol Clin Exp Res 2019; 43:439-452. [PMID: 30589433 DOI: 10.1111/acer.13947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) have a strong genetic component although the genes that underlie this are only beginning to be elucidated. In the present study, one of the most common phenotypes of FASD, cell death within the early developing neural tube, was examined across a genetic reference population in a reverse genetics paradigm with the goal of identifying genetic loci that could influence ethanol (EtOH)-induced apoptosis in the early developing neural tube. METHODS BXD recombinant inbred mice as well as the parental strains were used to evaluate genetic differences in EtOH-induced cell death after exposure on embryonic day 9.5. Dams were given either 5.8 g/kg EtOH or isocaloric maltose-dextrin in 2 doses via intragastric gavage. Embryos were collected 7 hours after the initial exposure and cell death evaluated via TUNEL staining in the brainstem and forebrain. Genetic loci were evaluated using quantitative trait locus (QTL) analysis at GeneNetwork.org. RESULTS Significant strain differences were observed in the levels of EtOH-induced cell death that were due to genetic effects and not confounding variables such as differences in developmental maturity or cell death kinetics. Comparisons between the 2 regions of the developing neural tube showed little genetic correlation with the QTL maps exhibiting no overlap. Significant QTLs were found on murine mid-chromosome 4 and mid-chromosome 14 only in the brainstem. Within these chromosomal loci, a number of interesting candidate genes were identified that could mediate this differential sensitivity including Nfia (nuclear factor I/A) and Otx2 (orthodenticle homeobox 2). CONCLUSIONS These studies demonstrate that the levels of EtOH-induced cell death occur in strain- and region-dependent manners. Novel QTLs on mouse Chr4 and Chr14 were identified that modulate the differential sensitivity to EtOH-induced apoptosis in the embryonic brainstem. The genes underlying these QTLs could identify novel molecular pathways that are critical in this phenotype.
Collapse
Affiliation(s)
- Emilie T Théberge
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Baker
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| | - Candis Dubose
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| | - Julia K Boyle
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina Balce
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
13
|
Saxena A, Sachin K. A Network Biology Approach for Assessing the Role of Pathologic Adipose Tissues in Insulin Resistance Using Meta-analysis of Microarray Datasets. Curr Genomics 2018; 19:630-666. [PMID: 30386174 PMCID: PMC6194434 DOI: 10.2174/1389202919666180726125645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Background The role of adipose tissue in Insulin resistance (IR) and Type 2 Diabetes (T2D) has well been received in the biomedical community; being a precursor of T2D, identification of the molecular basis of IR is therefore, vital to elucidate T2D- pathogenesis and meta-analysis of previously conducted microarray studies provides an inexpensive approach to achieve this end. Methods In this study, we have carried out a statistical meta-analysis of 157 microarray datasets from five independent studies and identified a meta-signature of 1,511 genes; their functional meaning was elucidated by integrated pathways-analysis. Further, a protein-protein interaction network was constructed and key genes along with their high confidence transcriptional- and epigenetic-mediators were identified using a network biology approach. Results Various inflammation- and immune system-related pathways such as TGF-β signaling, IL7 signaling, Neutrophil degranulation, and Chemokine signaling etc. were enriched in sick adipose tissues; identified transcription factors, and microRNAs were also found to regulate processes relevant to IR/T2D pathophysiology. Conclusion This study endorses the development of effective bioinformatics workflow and further grants an indication for the acceptance of adiposopathy as the root mechanistic pathology that poses risk for development of type 2 diabetes; concept of adipospathy in place of metabolic syndrome will open the possibility to design drugs, those will ameliorate adipose functions and hence proved to be more effective against Type 2 Diabetes.
Collapse
Affiliation(s)
- Aditya Saxena
- 1Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura (U.P.), India; 2Uttarakhand Technical University, Dehradun (U.K.), India; 3Department of Biochemistry and Biotechnology, S.B.S. (PG) Institute of Biomedical Sciences & Research, Dehradun (U.K.), India
| | - Kumar Sachin
- 1Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura (U.P.), India; 2Uttarakhand Technical University, Dehradun (U.K.), India; 3Department of Biochemistry and Biotechnology, S.B.S. (PG) Institute of Biomedical Sciences & Research, Dehradun (U.K.), India
| |
Collapse
|
14
|
Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, Lu GX, Zhu J, Fu D. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:252. [PMID: 30326936 PMCID: PMC6192354 DOI: 10.1186/s13046-018-0927-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is increasing evidence that liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) initiation and progression. MicroRNA (miRNA) plays a significant functional role by directly regulating respective targets in LCSCs-triggered HCC, however, little is known about the function of the miRNA-302 family in LCSCs. METHODS MiRNAs microarray was used to detect the miRNAs involved in LCSCs maintenance and differentiation. Biological roles and the molecular mechanism of miRNA-302a/d and its target gene E2F7 were detected in HCC in vitro. The expression and correlation of miRNA-302a/d and E2F7 in HCC patients was evaluated by quantitative PCR and Kaplan-Meier survival analysis. RESULTS We found that the miRNA-302 family was downregulated during the spheroid formation of HCC cells and patients with lower miRNA-302a/d expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, E2F7 was confirmed to be directly targeted and inhibited by miRNA-302a/d. Furthermore, concomitant low expression of miRNA-302a/d and high expression of E2F7 correlated with a shorter median OS and PFS in HCC patients. Cellular functional analysis demonstrated that miRNA-302a/d negatively regulates self-renewal capability and cell cycle entry of liver cancer stem cells via suppression of its target gene E2F7 and its downstream AKT/β-catenin/CCND1 signaling pathway. CONCLUSIONS Our data provide the first evidence that E2F7 is a direct target of miRNA-302a/d and miRNA-302a/d inhibits the stemness of LCSCs and proliferation of HCC cells by targeting the E2F7/AKT/β-catenin/CCND1 signaling pathway.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zheng-Yan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xian-Ling Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xiao-Ming Zhong
- Department of Radiology, Jiangxi Provincial Tumor Hospital, Nanchang, 330029, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Zhu
- Department of Digestive Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|