1
|
Morin M, Jönsson M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Seasonal tissue-specific gene expression in wild crown-of-thorns starfish reveals reproductive and stress-related transcriptional systems. PLoS Biol 2024; 22:e3002620. [PMID: 38743647 PMCID: PMC11093393 DOI: 10.1371/journal.pbio.3002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.
Collapse
Affiliation(s)
- Marie Morin
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| | - Mathias Jönsson
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Sandie M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Webb M, Clements M, Selvakumaraswamy P, McLaren E, Byrne M. Chemosensory behaviour of juvenile crown-of-thorns sea star ( Acanthaster sp.), attraction to algal and coral food and avoidance of adult conspecifics. Proc Biol Sci 2024; 291:20240623. [PMID: 38807518 DOI: 10.1098/rspb.2024.0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Intraspecific and habitat-mediated responses to chemical cues play key roles in structuring populations of marine species. We investigated the behaviour of herbivorous-stage juvenile crown-of-thorns sea stars (COTS; Acanthaster sp.) in flow-through choice chambers to determine if chemical cues from their habitat influence movement and their transition to become coral predators. Juveniles at the diet transition stage were exposed to cues from their nursery habitat (coral rubble-crustose coralline algae (CCA)), live coral and adult COTS to determine if waterborne cues influence movement. In response to CCA and coral as sole cues, juveniles moved towards the cue source and when these cues were presented in combination, they exhibited a preference for coral. Juveniles moved away from adult COTS cues. Exposure to food cues (coral, CCA) in the presence of adult cues resulted in variable responses. Our results suggest a feedback mechanism whereby juvenile behaviour is mediated by adult chemical cues. Cues from the adult population may deter juveniles from the switch to corallivory. As outbreaks wane, juveniles released from competition may serve as a proximate source of outbreaks, supporting the juveniles-in-waiting hypothesis. The accumulation of juveniles within the reef infrastructure is an underappreciated potential source of COTS outbreaks that devastate coral reefs.
Collapse
Affiliation(s)
- M Webb
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - M Clements
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - P Selvakumaraswamy
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - E McLaren
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| | - M Byrne
- School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Ye Z, Wei Y, Zhang G, Ge L, Wu C, Ren Y, Wang J, Xu X, Yang J, Wang T. Circadian rhythm regulation in the sea cucumber Apostichopus japonicus: Insights into clock gene expression, photoperiod susceptibility, and neurohormone signaling. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110930. [PMID: 38065309 DOI: 10.1016/j.cbpb.2023.110930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Sea cucumber Apostichopus japonicus displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of A. japonicus, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely AjClock, AjArnt1, AjCry1, and AjTimeless, were identified and a comprehensive analysis of their expressions across various tissues in adult A. japonicus was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as AjArnt1 and AjCry1, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in A. japonicus, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.
Collapse
Affiliation(s)
- Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Chenqian Wu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Yucheng Ren
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| |
Collapse
|
4
|
Doll PC, Uthicke S, Caballes CF, Patel F, Gomez Cabrera MDC, Lang BJ, Pratchett MS. Induction of larval settlement in crown-of-thorns starfish is not mediated by conspecific cues. Sci Rep 2023; 13:17119. [PMID: 37816798 PMCID: PMC10564929 DOI: 10.1038/s41598-023-44422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
Population irruptions of crown-of-thorns starfish (COTS; Acanthaster spp.) remain a major cause of coral reef degradation throughout the Pacific and Indian Oceans and are inherently modulated by larval settlement and recruitment success. Gregarious larval settlement, as exhibited by many other ecologically important marine invertebrates, can catalyse population growth and replenishment. However, whether conspecific cues induce or influence the settlement of COTS larvae remains a critical information gap. This experimental study examined the induction of COTS settlement in response to a range of conspecific cues associated with early- and late-stage herbivorous juveniles, corallivorous juveniles and adults. Competent COTS larvae were generally not induced to settle by the presence of conspecifics or cues associated with conspecifics, while the settlement success of COTS in the presence of coralline algae was not inhibited or enhanced by adding conspecific conditioned seawater. Rather than being reinforced by gregarious settlement, the recruitment of COTS populations appears dependent on associative settlement cues (i.e., coralline algae and/or associated microbial communities) signalling suitable benthic habitat.
Collapse
Affiliation(s)
- Peter C Doll
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Ciemon F Caballes
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- University of Guam - Marine Laboratory, Mangilao, GU, 96923, USA
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | | | - Bethan J Lang
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Morgan S Pratchett
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
5
|
Maganhe BL, Andrade LS, Camilo LDO, Neto HG, Sanches EG. Food-related substrate preference in juveniles seastar Echinaster (Othilia) brasiliensis (Müller & Troschel,1842) in captivity. Zoo Biol 2023; 42:675-682. [PMID: 37171149 DOI: 10.1002/zoo.21777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
There are only a few studies that describe the larval development of Echinaster or aspects on culture systems for the genus. For starfishes, the choice of suitable substrates has received special attention since it could influence the acid-base balance of the water, movement capacity and predation rate. The objective of this study was to evaluate the ideal food-related substrate for the rearing of juvenile Echinaster brasiliensis. A batch of fertilized eggs released in spontaneous spawning was collected and kept in a plankton-kreisel until metamorphosis. Data on preference of food-related substrate was recorded for 10 weeks from day 58 post-release. From release to 132 days old, arm length increased from 0.81 mm to 1.31 ± 0.03 mm. Considering the sudden increase in arm length (AL), it was estimated that feeding started around 40 days of age. Regarding food-related substrate preferences, biofilm grown on "rocks" showed a significant difference among other treatments, adding up to 50% of preference (p < .05). For sponge and biofilm from bio media, there was no statistical difference for the whole period. In this study, sponges showed to be the least preferred food-related substrate for post-settlement juveniles. Considering that Echinaster and other starfish are commonly maintained on a diet of collected or cultured sponges, difficulties in sourcing a ready supply throughout the year represent limitations to their sole use within commercial or laboratory-scale production. In this sense, the use of biofilm from biological media for the feeding of juvenile starfish is not yet reported in the literature and showed to be an easy and promising option.
Collapse
Affiliation(s)
- Bruna L Maganhe
- Postgraduate Program in Aquaculture and Fisheries, Fisheries Institute, Secretariat of Agriculture and Supply, São Paulo, São Paulo, Brazil
- Ubatuba Aquarium, Ubatuba, São Paulo, Brazil
| | | | - Laura de O Camilo
- Postgraduate Program in Aquaculture and Fisheries, Fisheries Institute, Secretariat of Agriculture and Supply, São Paulo, São Paulo, Brazil
- Ubatuba Aquarium, Ubatuba, São Paulo, Brazil
| | - Hugo G Neto
- Ubatuba Aquarium, Ubatuba, São Paulo, Brazil
| | - Eduardo G Sanches
- Marine Fish Laboratory, Fisheries Institute, Ubatuba, São Paulo, Brazil
| |
Collapse
|
6
|
Lang BJ, Donelson JM, Bairos‐Novak KR, Wheeler CR, Caballes CF, Uthicke S, Pratchett MS. Impacts of ocean warming on echinoderms: A meta-analysis. Ecol Evol 2023; 13:e10307. [PMID: 37565029 PMCID: PMC10409743 DOI: 10.1002/ece3.10307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 08/12/2023] Open
Abstract
Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly variable across controlled laboratory-based studies. Accordingly, synthesis of these studies will facilitate the better understanding of broad patterns in responses of echinoderms to ocean warming. Herein, a meta-analysis incorporating the results of 85 studies (710 individual responses) is presented, exploring the effects of warming on various performance predictors. The mean responses of echinoderms to all magnitudes of warming were compared across multiple biological responses, ontogenetic life stages, taxonomic classes, and regions, facilitated by multivariate linear mixed effects models. Further models were conducted, which only incorporated responses to warming greater than the projected end-of-century mean annual temperatures at the collection sites. This meta-analysis provides evidence that ocean warming will generally accelerate metabolic rate (+32%) and reduce survival (-35%) in echinoderms, and echinoderms from subtropical (-9%) and tropical (-8%) regions will be the most vulnerable. The relatively high vulnerability of echinoderm larvae to warming (-20%) indicates that this life stage may be a significant developmental bottleneck in the near-future, likely reducing successful recruitment into populations. Furthermore, asteroids appear to be the class of echinoderms that are most negatively affected by elevated temperature (-30%). When considering only responses to magnitudes of warming representative of end-of-century climate change projections, the negative impacts on asteroids, tropical species and juveniles were exacerbated (-51%, -34% and -40% respectively). The results of these analyses enable better predictions of how keystone and invasive echinoderm species may perform in a warmer ocean, and the possible consequences for populations, communities and ecosystems.
Collapse
Affiliation(s)
- Bethan J. Lang
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kevin R. Bairos‐Novak
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Carolyn R. Wheeler
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- School for the EnvironmentThe University of Massachusetts BostonBostonMassachusettsUSA
| | - Ciemon F. Caballes
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- National Science Foundation EPSCoR—Guam Ecosystems Collaboratorium for Corals and OceansUniversity of Guam Marine LaboratoryMangilaoGuamUSA
| | - Sven Uthicke
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Morgan S. Pratchett
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
7
|
A Distinct Saponin Profile Drives an Olfactory-Mediated Aggregation in the Aquacultivated Sea Cucumber Holothuria scabra. Mar Drugs 2023; 21:md21030184. [PMID: 36976233 PMCID: PMC10053547 DOI: 10.3390/md21030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Intraspecific chemical communication between echinoderms has often been limited to prespawning aggregation. However, sea cucumber farmers have long observed year-round adult aggregation as a potential source of disease propagation and the suboptimal use of available sea pen acreage and food resources. In this study, through spatial distribution statistics, we demonstrated the significant aggregation of the aquacultivated sea cucumber Holothuria scabra both as adults in large sea-based pens and as juveniles in laboratory-based aquaria, proving that aggregation in these animals is not only observed during spawning. The role of chemical communication in aggregation was investigated using olfactory experimental assays. Our study established that the sediment that H. scabra feeds on as well as the water preconditioned by conspecifics induced positive chemotaxis in juvenile individuals. More specifically, through comparative mass spectrometry, a distinct triterpenoid saponin profile/mixture was identified to be a pheromone allowing sea cucumber intraspecific recognition and aggregation. This “attractive” profile was characterized as containing disaccharide saponins. This “attractive” aggregation-inducing saponin profile was, however, not conserved in starved individuals that were no longer attractive to other conspecifics. In summary, this study sheds new light on the pheromones in echinoderms. It highlights the complexity of the chemical signals detected by sea cucumbers and suggests a role of saponins well beyond that of a simple toxin.
Collapse
|
8
|
Mendoza-Porras O, Nguyen TV, Shah RM, Thomas-Hall P, Bastin L, Deaker DJ, Motti CA, Byrne M, Beale DJ. Biochemical metabolomic profiling of the Crown-of-Thorns Starfish (Acanthaster): New insight into its biology for improved pest management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160525. [PMID: 36574554 DOI: 10.1016/j.scitotenv.2022.160525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The Crown-of-Thorns Starfish (COTS), Acanthaster species, is a voracious coral predator that destroys coral reefs when in outbreak status. The baseline metabolite and lipid biomolecules of 10 COTS tissues, including eggs from gravid females, were investigated in this study to provide insight into their biology and identify avenues for control. Targeted and untargeted metabolite- and lipidomics-based mass spectrometry approaches were used to obtain tissue-specific metabolite and lipid profiles. Across all COTS tissues, 410 metabolites and 367 lipids were identified. Most abundant were amino acids and peptides (18.7%) and wax esters (17%). There were 262 metabolites and 192 lipids identified in COTS eggs. Wax esters were more abundant in the eggs (30%) followed by triacylglycerols (TG), amino acids, and peptides. The diversity of asterosaponins in eggs (34) was higher than in tissues (2). Several asterosaponins known to modulate sperm acrosome reaction were putatively identified, including glycoside B, asterosaponin-4 (Co-Aris III), and regularoside B (asterosaponin A). The saponins saponin A, thornasteroside A, hillaside B, and non-saponins dictyol J and axinellamine B which have been shown to possess defensive properties, were found in abundance in gonads, skin, and radial nerve tissues. Inosine and 2-hexyldecanoic acid are the most abundant metabolites in tissues and eggs. As a secondary metabolite of purine degradation, inosine plays an important role in purine biosynthesis, while 2-hexyldecanoic acid is known to suppress side-chain crystallization during the synthesis of amphiphilic macromolecules (i.e., phospholipids). These significant spatial changes in metabolite, lipid, and asterosaponin profiles enabled unique insights into key biological tissue-specific processes that could be manipulated to better control COTS populations. Our findings highlight COTS as a novel source of molecules with therapeutic and cosmetic properties (ceramides, sphingolipids, carnosine, and inosine). These outcomes will be highly relevant for the development of strategies for COTS management including chemotaxis-based biocontrol and exploitation of COTS carcasses for the extraction of commercial molecules.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thao V Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Peter Thomas-Hall
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Lee Bastin
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Dione J Deaker
- Marine Studies Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Maria Byrne
- Marine Studies Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
9
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Jönsson M, Morin M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol 2022; 20:288. [PMID: 36528687 PMCID: PMC9759900 DOI: 10.1186/s12915-022-01491-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Collapse
Affiliation(s)
- Mathias Jönsson
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marie Morin
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Zhadan PM, Vaschenko MA, Permyakov PA. Quantitative study of the behavior of two broadcast spawners, the sea urchins Strongylocentrotus intermedius and Mesocentrotus nudus, during mass spawning events in situ. PeerJ 2021; 9:e11058. [PMID: 33868807 PMCID: PMC8034357 DOI: 10.7717/peerj.11058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background The spatial distribution of spawners and temporal parameters of spawning in motile invertebrates with external fertilization might influence reproductive success. However, to date, data on the prespawning and spawning behaviors of broadcast spawners in the field have been scarce and mostly qualitative. The present study was intended to clarify the behavioral adaptations of two sea urchin species, Strongylocentrotus intermedius and Mesocentrotus nudus, using quantitative analysis of their behavior during mass spawning events under natural conditions. Methods We analyzed in situ video recordings of sea urchin behavior obtained during six spawning seasons (2014–2019). The total number of specimens of each sea urchin species and the numbers of spawning males and females were counted. Quantitative parameters of sea urchin spawning (numbers of gamete batches, release duration of one gamete batch, time intervals between gamete batches and total duration of spawning) and movement (step length of spawners and nonspawners before and during spawning and changes in distances between males/nonspawners and females) were determined. Results For each species, 12 mass spawning events were recorded in which 10 or more individuals participated. The temporal dynamics of the numbers of males and females participating in mass spawning were well synchronized in both species; however, males began to spawn earlier and ended their spawning later than females. In both species, the most significant intersex difference was the longer spawning duration in males due to the longer pause between gamete batches. The total duration of gamete release did not differ significantly between sexes. The average duration of sperm release during mass spawning events was longer than solitary male spawning. Males and females showed significant increases in the locomotion rate 35 min before the start of spawning and continued to actively move during spawning. An increase in movement rate before spawning in males and females was induced by environmental factor(s). Nonspawners of both species showed increased locomotion activity but in the presence of spawning neighbors and less prominently than spawners. On a vertical surface, both echinoids moved strictly upward. On flat surfaces, males, females and nonspawners of both echinoids became closer during spawning. Discussion We showed that two sea urchin species with planktotrophic larvae display similar behavioral adaptations aimed at enhancing reproductive success. The high sensitivity of sea urchins, primarily males, to some environmental factors, most likely phytoplankton, may be considered a large-scale adaptation promoting the development of mass spawning events. The longer spawning duration in males and increased movement activity before and during spawning in both sexes may be considered small-scale adaptations promoting approach of males and females and enhancing the chances of egg fertilization.
Collapse
Affiliation(s)
- Peter M Zhadan
- Department of Geochemistry and Ecology of the Ocean, V. I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Primorsky Krai, Russia
| | - Marina A Vaschenko
- Laboratory of Physiology, A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS, Vladivostok, Primorsky Krai, Russia
| | - Peter A Permyakov
- Department of Geochemistry and Ecology of the Ocean, V. I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Primorsky Krai, Russia
| |
Collapse
|
12
|
Roberts RE, Powell D, Wang T, Hall MH, Motti CA, Cummins SF. Putative chemosensory receptors are differentially expressed in the sensory organs of male and female crown-of-thorns starfish, Acanthaster planci. BMC Genomics 2018; 19:853. [PMID: 30497381 PMCID: PMC6267866 DOI: 10.1186/s12864-018-5246-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chemosensation is a critical signalling process for all organisms and is achieved through the interaction between chemosensory receptors and their ligands. The Crown-of-thorns starfish, Acanthaster planci species complex (COTS), is a predator of coral polyps and Acanthaster cf. solaris is currently considered to be one of the main drivers of coral loss on the Great Barrier Reef in Queensland, Australia. RESULTS This study reveals the presence of putative variant Ionotropic Receptors (IRs) which are differentially expressed in the olfactory organs of COTS. Several other types of G protein-coupled receptors such as adrenergic, metabotropic glutamate, cholecystokinin, trace-amine associated, GRL101 and GPCR52 receptors have also been identified. Several receptors display male-biased expression within the sensory tentacles, indicating possible reproductive significance. CONCLUSIONS Many of the receptors identified in this study may have a role in reproduction and are therefore key targets for further investigation. Based on their differential expression within the olfactory organs and presence in multiple tissues, it is possible that several of these receptor types have expanded within the Echinoderm lineage. Many are likely to be species-specific with novel ligand-binding affinity and a diverse range of functions. This study is the first to describe the presence of variant Ionotropic Glutamate Receptors in any Echinoderm, and is only the second study to investigate chemosensory receptors in any starfish or marine pest. These results represent a significant step forward in understanding the chemosensory abilities of COTS.
Collapse
Affiliation(s)
- R. E. Roberts
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - D. Powell
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - T. Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| | - M. H. Hall
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD 4810 Australia
| | - C. A. Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, QLD 4810 Australia
| | - S. F. Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558 Australia
| |
Collapse
|
13
|
Wilmes JC, Caballes CF, Cowan ZL, Hoey AS, Lang BJ, Messmer V, Pratchett MS. Contributions of pre- versus post-settlement processes to fluctuating abundance of crown-of-thorns starfishes (Acanthaster spp.). MARINE POLLUTION BULLETIN 2018; 135:332-345. [PMID: 30301045 DOI: 10.1016/j.marpolbul.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Numerous hypotheses have been put forward to account for population outbreaks of crown-of-thorns starfishes (CoTS, Acanthaster spp.), which place specific importance on either pre- or post-settlement mechanisms. The purpose of this review is to specifically assess the contributions of pre- versus post-settlement processes in the population dynamics of CoTS. Given the immense reproductive potential of CoTS (>100 million eggs per female), persistent high densities would appear inevitable unless there were significant constraints on larval development, settlement success, and/or early post-settlement growth and survival. In terms of population constraints, pre- and post-settlement processes are both important and have additive effects to suppress densities of juvenile and adult CoTS within reef ecosystems. It is difficult, however, to assess the relative contributions of pre- versus post-settlement processes to population outbreaks, especially given limited data on settlement rates, as well as early post-settlement growth and mortality. Prioritising this research is important to resolve potential effects of anthropogenic activities (e.g., fishing) and habitat degradation on changing population dynamics of CoTS, and will also improve management effectiveness.
Collapse
Affiliation(s)
- Jennifer C Wilmes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Red Fish Blue Fish Marine, Cairns, QLD 4870, Australia
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Ultra Coral Australia, Paget, QLD 4740, Australia
| | - Zara-Louise Cowan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Bethan J Lang
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Vanessa Messmer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
14
|
Chemical Ecology of Chemosensation in Asteroidea: Insights Towards Management Strategies of Pest Species. J Chem Ecol 2018; 44:147-177. [PMID: 29362949 DOI: 10.1007/s10886-018-0926-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
Within the Phylum Echinodermata, the class Asteroidea, commonly known as starfish and sea stars, encompasses a large number of benthos inhabiting genera and species with various feeding modalities including herbivores, carnivores, omnivores and detritivores. The Asteroidea rely on chemosensation throughout their life histories including hunting prey, avoiding or deterring predators, in the formation of spawning aggregations, synchronizing gamete release and targeting appropriate locations for larval settlement. The identities of many of the chemical stimuli that mediate these physiological and behavioural processes remain unresolved even though evidence indicates they play pivotal roles in the functionality of benthic communities. Aspects of chemosensation, as well as putative chemically-mediated behaviours and the molecular mechanisms of chemoreception, within the Asteroidea are reviewed here, with particular reference to the coral reef pest the Crown-of-Thorns starfish Acanthaster planci species complex, in the context of mitigation of population outbreaks.
Collapse
|
15
|
Marquet N, Hubbard PC, da Silva JP, Afonso J, Canário AVM. Chemicals released by male sea cucumber mediate aggregation and spawning behaviours. Sci Rep 2018; 8:239. [PMID: 29321586 PMCID: PMC5762768 DOI: 10.1038/s41598-017-18655-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 11/09/2022] Open
Abstract
The importance of chemical communication in reproduction has been demonstrated in many marine broadcast spawners. However, little is known about the use of chemical communication by echinoderms, the nature of the compounds involved and their mechanism(s) of action. Here, the hypothesis that the sea cucumber Holothuria arguinensis uses chemical communication for aggregation and spawning was tested. Water conditioned by males, but not females, attracted both males and females; gonad homogenates and coelomic fluid had no effect on attraction. Male spawning water, but not female spawning water, stimulated males and females to release their gametes; the spermatozoa alone did not induce spawning. H. arguinensis male spawning water also induced spawning in the phylogenetically related H. mammata. This indicates that males release pheromones together with their gametes that induce spawning in conspecifics and possibly sympatric species. Finally, the male pheromone seems to be a mixture with at least one labile compound (biological activity is lost after four hours at ambient temperature) possibly including phosphatidylcholines. The identification of pheromones in sea cucumbers offers a new ecological perspective and may have practical applications for their aquaculture.
Collapse
Affiliation(s)
- Nathalie Marquet
- CCMAR-Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Peter C Hubbard
- CCMAR-Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - José P da Silva
- CCMAR-Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João Afonso
- CCMAR-Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canário
- CCMAR-Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
16
|
Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040041] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|