1
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Carlin DE, Larsen SJ, Sirupurapu V, Cho MH, Silverman EK, Baumbach J, Ideker T. Hierarchical association of COPD to principal genetic components of biological systems. PLoS One 2023; 18:e0286064. [PMID: 37228113 DOI: 10.1371/journal.pone.0286064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Many disease-causing genetic variants converge on common biological functions and pathways. Precisely how to incorporate pathway knowledge in genetic association studies is not yet clear, however. Previous approaches employ a two-step approach, in which a regular association test is first performed to identify variants associated with the disease phenotype, followed by a test for functional enrichment within the genes implicated by those variants. Here we introduce a concise one-step approach, Hierarchical Genetic Analysis (Higana), which directly computes phenotype associations against each function in the large hierarchy of biological functions documented by the Gene Ontology. Using this approach, we identify risk genes and functions for Chronic Obstructive Pulmonary Disease (COPD), highlighting microtubule transport, muscle adaptation, and nicotine receptor signaling pathways. Microtubule transport has not been previously linked to COPD, as it integrates genetic variants spread over numerous genes. All associations validate strongly in a second COPD cohort.
Collapse
Affiliation(s)
- Daniel E Carlin
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, United States of America
| | | | - Vikram Sirupurapu
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, United States of America
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Jan Baumbach
- Department of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Trey Ideker
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
3
|
Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers (Basel) 2021; 14:cancers14010018. [PMID: 35008179 PMCID: PMC8750444 DOI: 10.3390/cancers14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. Abstract The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Collapse
|
4
|
Perez-Becerril C, Evans DG, Smith MJ. Pathogenic noncoding variants in the neurofibromatosis and schwannomatosis predisposition genes. Hum Mutat 2021; 42:1187-1207. [PMID: 34273915 DOI: 10.1002/humu.24261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022]
Abstract
Neurofibromatosis type 1 (NF1), type 2 (NF2), and schwannomatosis are a group of autosomal dominant disorders that predispose to the development of nerve sheath tumors. Pathogenic variants (PVs) that cause NF1 and NF2 are located in the NF1 and NF2 loci, respectively. To date, most variants associated with schwannomatosis have been identified in the SMARCB1 and LZTR1 genes, and a missense variant in the DGCR8 gene was recently reported to predispose to schwannomas. In spite of the high detection rate for PVs in NF1 and NF2 (over 90% of non-mosaic germline variants can be identified by routine genetic screening) underlying PVs for a proportion of clinical cases remain undetected. A higher proportion of non-NF2 schwannomatosis cases have no detected PV, with PVs currently only identified in around 70%-86% of familial cases and 30%-40% of non-NF2 sporadic schwannomatosis cases. A number of variants of uncertain significance have been observed for each disorder, many of them located in noncoding, regulatory, or intergenic regions. Here we summarize noncoding variants in this group of genes and discuss their established or potential role in the pathogenesis of NF1, NF2, and schwannomatosis.
Collapse
Affiliation(s)
- Cristina Perez-Becerril
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
A novel DNA methylation-based model that effectively predicts prognosis in hepatocellular carcinoma. Biosci Rep 2021; 41:227938. [PMID: 33634306 PMCID: PMC7955104 DOI: 10.1042/bsr20203945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To build a novel predictive model for hepatocellular carcinoma (HCC) patients based on DNA methylation data. METHODS Four independent DNA methylation datasets for HCC were used to screen for common differentially methylated genes (CDMGs). Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to explore the biological roles of CDMGs in HCC. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis were performed to identify survival-related CDMGs (SR-CDMGs) and to build a predictive model. The importance of this model was assessed using Cox regression analysis, propensity score-matched (PSM) analysis and stratification analysis. A validation group from the Cancer Genome Atlas (TCGA) was constructed to further validate the model. RESULTS Four SR-CDMGs were identified and used to build the predictive model. The risk score of this model was calculated as follows: risk score = (0.01489826 × methylation level of WDR69) + (0.15868618 × methylation level of HOXB4) + (0.16674959 × methylation level of CDKL2) + (0.16689301 × methylation level of HOXA10). Kaplan-Meier analysis demonstrated that patients in the low-risk group had a significantly longer overall survival (OS; log-rank P-value =0.00071). The Cox model multivariate analysis and PSM analysis identified the risk score as an independent prognostic factor (P<0.05). Stratified analysis results further confirmed this model performed well. By analyzing the validation group, the results of receiver operating characteristic (ROC) curve analysis and survival analysis further validated this model. CONCLUSION Our DNA methylation-based prognosis predictive model is effective and reliable in predicting prognosis for patients with HCC.
Collapse
|
6
|
Zhu L, Yan F, Wang Z, Dong H, Bian C, Wang T, Yu E, Li J. Genome-wide DNA methylation profiling of primary colorectal laterally spreading tumors identifies disease-specific epimutations on common pathways. Int J Cancer 2018; 143:2488-2498. [PMID: 30183087 DOI: 10.1002/ijc.31765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/10/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Colorectal laterally spreading tumors (LSTs) grow to extremely large size while rarely invade deeply. Also, there is a low tendency to become cancerous. We used the Illumina Human Methylation 450K array to query the main epigenetic difference of LSTs. We built a discovery cohort with 10 matched cases, and a validation cohort with 9 additional matched cases. Our results suggest that LST displays significant decrease in DNA methylation, highlighted by the discovery of 1,018 hypomethylated intergenic regions (IGRs). Comparing to classic differentially methylated probes and regions that overlap transcription starting site and CpG island, IGR-regions were associated more closely with genes involved in functional biological processes and correlated with specific histone modifications. Hypomethylated IGR regions were often annotated as tissue-specific regulatory elements for noncolon tissues and were typically epigenetically silenced in normal colon mucosa. By integration of public data, we defined the commonality and specific epigenetic signatures for adenomas, LSTs and colon adenocarcinomas. Only 435 hypermethylated differentially methylated probes (DMPs) and differentially methylated regions (DMRs) and 517 hypomethylated DMPs and DMRs were shared by the three diseases. However, our pathway-level analysis discovered that genes in four pathways were common target of epimutations in LSTs, adenomas and CRCs. More interestingly, different diseases seem to employ distinct epigenetic insult to disturb specific pathways. Between LST and adenoma, we found eight pathways including Ras signaling and Rap1 signaling pathway were commonly targeted but the epimutation patterns were opposite. Comparison between precancerous conditions and invasive states revealed the key pathways governing the progression to malignancy, including PI3K-Akt pathways.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feihu Yan
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of General Surgery, The 413 Military Hospital of PLA, Zhoushan, China
| | - Zhen Wang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haiyan Dong
- Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Chengling Bian
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jing Li
- Center for Translational Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Pescatello LS, Schifano ED, Ash GI, Panza GA, Corso LML, Chen MH, Deshpande V, Zaleski A, Cilhoroz B, Farinatti P, Taylor BA, O'Neill RJ, Thompson PD. Deep-targeted sequencing of endothelial nitric oxide synthase gene exons uncovers exercise intensity and ethnicity-dependent associations with post-exercise hypotension. Physiol Rep 2017; 5:e13510. [PMID: 29180482 PMCID: PMC5704084 DOI: 10.14814/phy2.13510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
In previous studies, we found an endothelial nitric oxide synthase gene (NOS3) variant rs2070744 associated with the ambulatory blood pressure (BP) response following bouts of moderate and vigorous intensity acute exercise, termed post-exercise hypotension (PEH). In a validation cohort, we sequenced NOS3 exons for associations with PEH Obese (30.9 ± 3.6 kg.m-2) African American (n = 14) [AF] and Caucasian (n = 9) adults 42.0 ± 9.8 years with hypertension (139.8 ± 10.4/84.6 ± 6.2 mmHg) performed three random experiments: bouts of vigorous and moderate intensity cycling and control. Subjects were attached to an ambulatory BP monitor for 19 h. We performed deep-targeted exon sequencing with the Illumina TruSeq Custom Amplicon kit. Variant genotypes were coded as number of minor alleles (#MA) and selected for additional statistical analysis based upon Bonferonni or Benjamini-Yekutieli multiple testing-corrected P-values under time-adjusted linear models for 19 hourly BP measurements for each subject. After vigorous intensity over 19 h, among NOS3 variants passing multiple testing thresholds, as the #MA increased in rs891512 (P = 6.4E-04), rs867225 (P = 6.5E-04), rs743507 (P = 2.6E-06), and rs41483644 (P = 2.4E-04), systolic (SBP) decreased from 17.5 to 33.7 mmHg; and in rs891512 (P = 9.7E-05), rs867225 (P = 2.6E-05), rs41483644 (P = 1.6E-03), rs3730009 (P = 2.6E-04), and rs77325852 (P = 5.6E-04), diastolic BP decreased from 11.1 mmHg to 20.3 mmHg among AF only. In contrast, after moderate intensity over 19 h in NOS3 rs3918164, as the #MA increased, SBP increased by 16.6 mmHg (P = 2.4E-04) among AF only. NOS3 variants exhibited associations with PEH after vigorous, but not moderate intensity exercise among AF only. NOS3 should be studied further for its effects on PEH in a large, ethnically diverse sample of adults with hypertension to confirm our findings.
Collapse
Affiliation(s)
- Linda S Pescatello
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | | | - Garrett I Ash
- School of Nursing, Yale University, New Haven, Connecticut
| | - Gregory A Panza
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
- Department of Preventive Cardiology, Hartford Hospital, Hartford, Connecticut
| | - Lauren M L Corso
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - Ved Deshpande
- Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - Amanda Zaleski
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
- Department of Preventive Cardiology, Hartford Hospital, Hartford, Connecticut
| | - Burak Cilhoroz
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Paulo Farinatti
- Department of Physical Activity Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Beth A Taylor
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
- Department of Preventive Cardiology, Hartford Hospital, Hartford, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Paul D Thompson
- Department of Preventive Cardiology, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|