1
|
Starr C, Chen B. Adeno-associated virus mediated gene therapy for neuroprotection of retinal ganglion cells in glaucoma. Vision Res 2023; 206:108196. [PMID: 36812679 PMCID: PMC10085843 DOI: 10.1016/j.visres.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Glaucoma is a group of diseases typically characterized by the degeneration of the optic nerve and is one of the world's leading causes of blindness. Although there is no cure for glaucoma, reducing intraocular pressure is an approved treatment to delay optic nerve degeneration and retinal ganglion cell (RGC) death in most patients. Recent clinical trials have evaluated the safety and efficacy of gene therapy vectors for the treatment of inherited retinal degenerations (IRDs), and the results are promising, generating enthusiasm for the treatment of other retinal diseases. While there have been no reports on successful clinical trials for gene therapy-based neuroprotective treatment of glaucoma, and only a few studies assessing the efficacy of gene therapy vectors for the treatment of Leber hereditary optic neuropathy (LHON), the potential for neuroprotective treatment of glaucoma and other diseases affecting RGCs is still widely recognized. Here, we review recent progress and cover current limitations pertaining to targeting RGCs with adeno-associated virus-based gene therapy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Christopher Starr
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Optometry and Vision Science, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Sellitto C, Li L, White TW. Double Deletion of PI3K and PTEN Modifies Lens Postnatal Growth and Homeostasis. Cells 2022; 11:cells11172708. [PMID: 36078116 PMCID: PMC9455000 DOI: 10.3390/cells11172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously shown that the conditional deletion of either the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), or its opposing phosphatase, phosphatase and tensin homolog (PTEN), had distinct effects on lens growth and homeostasis. The deletion of p110α reduced the levels of phosphorylated Akt and equatorial epithelial cell proliferation, and resulted in smaller transparent lenses in adult mice. The deletion of PTEN increased levels of phosphorylated Akt, altered lens sodium transport, and caused lens rupture and cataract. Here, we have generated conditional p110α/PTEN double-knockout mice, and evaluated epithelial cell proliferation and lens homeostasis. The double deletion of p110α and PTEN rescued the defect in lens size seen after the single knockout of p110α, but accelerated the lens rupture phenotype seen in PTEN single-knockout mice. Levels of phosphorylated Akt in double-knockout lenses were significantly higher than in wild-type lenses, but not as elevated as those reported for PTEN single-knockout lenses. These results showed that the double deletion of the p110α catalytic subunit of PI3K and its opposing phosphatase, PTEN, exacerbated the rupture defect seen in the single PTEN knockout and alleviated the growth defect observed in the single p110α knockout. Thus, the integrity of the PI3K signaling pathway was absolutely essential for proper lens homeostasis, but not for lens growth.
Collapse
|
3
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
4
|
Oshitari T. Understanding intrinsic survival and regenerative pathways through in vivo and in vitro studies: implications for optic nerve regeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1912595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Japan
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|
5
|
Induction of Differentiation of Mesenchymal Stem Cells into Retinal Pigment Epithelial Cells for Retinal Regeneration by Using Ciliary Neurotrophic Factor in Diabetic Rats. Curr Med Sci 2021; 41:145-152. [PMID: 33582919 DOI: 10.1007/s11596-021-2329-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/18/2020] [Indexed: 10/22/2022]
Abstract
Diabetic retinopathy (DR) is a common cause of blindness all over the world. Bone marrow mesenchymal stem cells (BMSCs) have been considered as a promising strategy for retinal regeneration in the treatment of DR. However, the poor viability and low levels of BMSCs engraftment limit the therapeutic potential of BMSCs. The present study aimed to examine the direct induction of BMSCs differentiation into the cell types related to retinal regeneration by using soluble cytokine ciliary neurotrophic factor (CNTF). We observed remarkably increased expression of cellular retinaldehyde-binding protein (CRALBP) and retinoid isomerohydrolase (RPE65) in BMSCs treated with CNTF in vitro, indicating the directional differentiation of BMSCs into the retinal pigment epithelium (RPE) cells, which are crucial for retinal healing. In vivo, the diabetic rat model was established by use of streptozotocin (STZ), and animals treated with BMSCs+CNTF exhibited better viability and higher delivery efficiency of the transplanted cells than those treated with BMSCs injection alone. Similar to the in-vitro result, treatment with BMSCs and CNTF combined led to the differentiation of BMSCs into beneficial cells (RPE cells), and accelerated retinal healing characterized by the activation of rod photoreceptor cells and phagocytosis function of RPE cells. In conclusion, CNTF contributes to the differentiation of BMSCs into RPE cells, which may help overcome the current stem cell therapy limitations in the field of retinal regeneration.
Collapse
|
6
|
Thompson A, Berry M, Logan A, Ahmed Z. Activation of the BMP4/Smad1 Pathway Promotes Retinal Ganglion Cell Survival and Axon Regeneration. Invest Ophthalmol Vis Sci 2019; 60:1748-1759. [PMID: 31022296 DOI: 10.1167/iovs.18-26449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate if the BMP4/Smad1 intracellular signaling pathway is neuroprotective and axogenic in adult rodent retinal ganglion cells (RGC) in vivo and in vitro. Methods Adult retinal cultures were prepared from intact and after optic nerve crush (ONC) injured rats that have been stimulated to survive and regenerate using an intravitreal peripheral nerve (PN) graft. Laser capture microdissection (LCM) then was used to isolate RGC with and without neurites. Quantitative RT-PCR determined changes in BMP4/Smad1 signaling pathway mRNA. Immunohistochemistry confirmed localization of BMP4 and activation of Smad1 in ONC+PN-stimulated RGC in vivo. BMP4 peptide was used to stimulate RGC survival and neurite/axon regeneration in vitro and in vivo. Finally, the rapamycin sensitivity of the effects was determined in BMP4-stimulated RGC in vitro and in vivo. Results In retinal cultures prepared from intact and ONC+PN-stimulated rats, RGC with neurites had upregulated regeneration-related and BMP4/Smad1 signaling pathway mRNA levels, while low levels of these mRNAs were present in RGC isolated without neurites. An optimal dose of 200 ng/mL BMP4 peptide in vitro promoted approximately 30% RGC survival and disinhibited RGC neurite outgrowth, despite the presence of inhibitory CNS myelin extracts. BMP4 also promoted approximately 30% RGC survival in vivo and stimulated significant RGC axon regeneration at 100, 200, and 400 μm beyond the lesion site. Finally, the response of RGC to BMP4 treatment in vitro and in vivo was rapamycin-insensitive. Conclusions Activation of the BMP4/Smad1 pathway promotes survival and axon regeneration independent of mTOR and, therefore, may be of therapeutic interest.
Collapse
Affiliation(s)
- Adam Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
7
|
Xu B, Turner SD, Hinton BT. Alteration of transporter activities in the epididymides of infertile initial segment-specific Pten knockout mice. Biol Reprod 2019; 99:536-545. [PMID: 29590317 DOI: 10.1093/biolre/ioy073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
A fully functional initial segment, the most proximal region of the epididymis, is important for male fertility. Our previous study generated a mouse model to investigate the importance of initial segment function in male fertility. In that model, phosphatase and tensin homolog (Pten) was conditionally removed from the initial segment epithelium, which resulted in epithelial de-differentiation. When spermatozoa progressed through the de-differentiated epithelial duct, they developed angled flagella, suggesting compromised sperm maturation, which eventually resulted in male infertility. To understand the molecular mechanisms, by which PTEN regulates epididymal sperm maturation, we compared the transcriptome profile of the initial segment between controls and initial segment-specific Pten knockouts and revealed that water, ion, and organic solute transporter activities were one of the top molecular and cellular functions altered following loss of Pten. Alteration in protein levels and localization of several transporters following loss of Pten were also observed by immunofluorescence analysis. Epithelial cells of the initial segment from knockouts were more permeable to fluorescein isothiocyanate-dextran (4000 Da) compared to controls. Interestingly, conditional deletion of Pten from other organs also resulted in changes in transporter activity, suggesting a common role of PTEN in regulation of transporter activity. Taken together, our data support the hypothesis that loss of Pten from the initial segment epithelium results in changes in the transporting and permeability characteristics of the epithelium, which in turn altered the luminal fluid microenvironment that is so important for sperm maturation and male fertility.
Collapse
Affiliation(s)
- Bingfang Xu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Stephen D Turner
- Bioinformatics Core, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Farrukh F, Davies E, Berry M, Logan A, Ahmed Z. BMP4/Smad1 Signalling Promotes Spinal Dorsal Column Axon Regeneration and Functional Recovery After Injury. Mol Neurobiol 2019; 56:6807-6819. [PMID: 30924076 PMCID: PMC6728286 DOI: 10.1007/s12035-019-1555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
Signalling through the BMP4/Smad1 pathway promotes corticospinal tract axon regeneration and functional recovery in mice. However, unlike humans and rats, mice do not cavitate. Here, we investigated if activation of the BMP4/Smad1 pathway promotes axon regeneration and functional recovery in a rat model that cavitates. We show that dorsal root ganglion neurons (DRGN) in injury models, including the non-regenerating dorsal column (DC) and the regenerating sciatic nerve (SN) crush and preconditioning (p) SN + DC (pSN + DC) paradigms, regulate the BMP4/Smad1 signalling pathway. For example, mRNA expression of positive regulators of the BMP4/Smad1 pathway was highly up-regulated whilst negative regulators were significantly down-regulated in DRGN in the regenerating SN and pSN + DC models compared to non-regenerating DC models, matched by concomitant changes in protein expression detected in DRGN by immunohistochemistry. BMP4 peptide promoted significant DRGN survival and disinhibited neurite outgrowth in vitro, whilst AAV-BMP4 delivery in vivo stimulated DC axon regeneration and functional recovery in a model that cavitates. Our results show that activation of the BMP4/Smad1 pathway is a potential therapeutic target in the search for axon regenerative signalling pathways in the CNS.
Collapse
Affiliation(s)
- Fatima Farrukh
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elise Davies
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Song Z, Han X, Zou H, Zhang B, Ding Y, Xu X, Zeng J, Liu J, Gong A. PTEN-GSK3β-MOB1 axis controls neurite outgrowth in vitro and in vivo. Cell Mol Life Sci 2018; 75:4445-4464. [PMID: 30069702 PMCID: PMC11105474 DOI: 10.1007/s00018-018-2890-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Mps One binder 1 (MOB1) is a core component of NDR/LATS kinase and a positive regulator of the Hippo signaling pathway. However, its role in neurite outgrowth still remains to be clarified. Here, we confirmed, for the first time, that MOB1 promoted neurite outgrowth and was involved in functional recovery after spinal cord injury (SCI) in mice. Mechanistically, we found that MOB1 stability was regulated by the PTEN-GSK3β axis. The MOB1 protein was significantly up-regulated in PTEN-knockdown neuronal cells. This effect was dependent on the lipid phosphatase activity of PTEN. Moreover, MOB1 was found to be a novel substrate for GSK3β that is phosphorylated on serine 146 and degraded via the ubiquitin-proteasome system (UPS). Finally, in vivo lentiviral-mediated silencing of PTEN promoted neurite outgrowth and functional recovery after SCI and this effect was reversed by down-regulation of MOB1. Taken together, this study provided mechanistic insight into how MOB1 acts as a novel and a necessary regulator in PTEN-GSK3β axis that controls neurite outgrowth after SCI.
Collapse
Affiliation(s)
- Zhiwen Song
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xiu Han
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hongjun Zou
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Ya Ding
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xu Xu
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Jian Zeng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jinbo Liu
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B 2018; 19:293-304. [PMID: 29616505 DOI: 10.1631/jzus.b1700179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed-forward loops (FFLs), seven important genes (Nap1l1, Arhgef12, Sema6d, Akt3, Trim2, Rab11fip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-15b-5p), and eight important TFs (Smada2, Fli1, Wt1, Sp6, Sp3, Smad4, Smad5, and Creb1), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.
Collapse
Affiliation(s)
- Li-Ning Su
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Xiao-Qing Song
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Zhan-Xia Xue
- Department of Pharmacy, Hebei North University, Zhangjiakou 075029, China
| | - Chen-Qing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen 518081, China
| | - Hai-Feng Yin
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Hui-Ping Wei
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| |
Collapse
|
11
|
Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection. Mol Ther 2018; 27:424-441. [PMID: 30341011 DOI: 10.1016/j.ymthe.2018.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.
Collapse
|
12
|
Yin H, Shen L, Xu C, Liu J. Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochem Res 2018; 43:2038-2046. [PMID: 30173324 DOI: 10.1007/s11064-018-2625-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs as a novel class of endogenous small non-coding RNAs, modulate negative gene expression at the post-transcriptional level. Our previous work has demonstrated that miR-29a reduces PTEN expression by directly targeting the 3'-UTRs (untranslated regions) of its mRNA, thus promoting neurite outgrowth. To further confirm the role of miR-29a in the recovery of SCI and its potential mechanisms, a recombinant lentiviral vector was used to promote miR-29a expression in the injured spinal cord. As compared with the LV-eGFP group and normal saline group, a significantly increased level of miR-29a expression and a markedly decreased level of PTEN expression were observed in the LV-miR-29a group. Overexpression of miR-29a increased the phosphorylation of two proteins (Akt and S6) of PI3K-AKT-mTOR signaling pathway and the expression of axonal regeneration associated key marker protein (neurofiament-200). Moreover, quantitative imaging analysis was performed to confirm that LV-miR-29a group expressed axonal regeneration at 4.0 ± 0.2-fold as much as the other two groups. Besides, miR-29a overexpression promoted hindlimb motor functional recovery. Collectively, these results suggested that miR-29a may be an important regulator for axon regeneration, and a potential therapeutic target for SCI recovery.
Collapse
Affiliation(s)
- Hua Yin
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.,Department of Orthopedics, The Jintan Affiliated Hospital of Jiangsu University, Jintan, 213200, Jiangsu, China
| | - Liming Shen
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
13
|
Wang Q, Zhang H, Xu H, Zhao Y, Li Z, Li J, Wang H, Zhuge D, Guo X, Xu H, Jones S, Li X, Jia X, Xiao J. Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. Am J Cancer Res 2018; 8:4429-4446. [PMID: 30214630 PMCID: PMC6134929 DOI: 10.7150/thno.26717] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Proper selection and effective delivery of combination drugs targeting multiple pathophysiological pathways key to spinal cord injury (SCI) hold promise to address the thus far scarce clinical therapeutics for improving recovery after SCI. In this study, we aim to develop a clinically feasible way for targeted delivery of multiple drugs with different physiochemical properties to the SCI site, detail the underlying mechanism of neural recovery, and detect any synergistic effect related to combination therapy. Methods: Liposomes (LIP) modified with a scar-targeted tetrapeptide (cysteine-alanine-glutamine-lysine, CAQK) were first constructed to simultaneously encapsulate docetaxel (DTX) and brain-derived neurotrophic factor (BDNF) and then were further added into a thermosensitive heparin-modified poloxamer hydrogel (HP) with affinity-bound acidic fibroblast growth factor (aFGF-HP) for local administration into the SCI site (CAQK-LIP-GFs/DTX@HP) in a rat model. In vivo fluorescence imaging was used to examine the specificity of CAQK-LIP-GFs/DTX binding to the injured site. Multiple comprehensive evaluations including biotin dextran amine anterograde tracing and magnetic resonance imaging were used to detect any synergistic effects and the underlying mechanisms of CAQK-LIP-GFs/DTX@HP both in vivo (rat SCI model) and in vitro (primary neuron). Results: The multiple drugs were effectively delivered to the injured site. The combined application of GFs and DTX supported neuro-regeneration by improving neuronal survival and plasticity, rendering a more permissive extracellular matrix environment with improved regeneration potential. In addition, our combination therapy promoted axonal regeneration via moderation of microtubule function and mitochondrial transport along the regenerating axon. Conclusion: This novel multifunctional therapeutic strategy with a scar-homing delivery system may offer promising translational prospects for the clinical treatment of SCI.
Collapse
|
14
|
Wang PQ, Liu Q, Xu WJ, Yu YN, Zhang YY, Li B, Liu J, Wang Z. Pure mechanistic analysis of additive neuroprotective effects between baicalin and jasminoidin in ischemic stroke mice. Acta Pharmacol Sin 2018; 39:961-974. [PMID: 29345255 PMCID: PMC6256271 DOI: 10.1038/aps.2017.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023] Open
Abstract
Both baicalin (BA) and jasminoidin (JA) are active ingredients in Chinese herb medicine Scutellaria baicalensis and Fructus gardeniae, respectively. They have been shown to exert additive neuroprotective action in ischemic stroke models. In this study we used transcriptome analysis to explore the pure therapeutic mechanisms of BA, JA and their combination (BJ) contributing to phenotype variation and reversal of pathological processes. Mice with middle cerebral artery obstruction were treated with BA, JA, their combination (BJ), or concha margaritifera (CM). Cerebral infarct volume was examined to determine the effect of these compounds on phenotype. Using the hippocampus microarray and ingenuity pathway analysis (IPA) software, we exacted the differentially expressed genes, networks, pathways, and functions in positive-phenotype groups (BA, JA and BJ) by comparing with the negative-phenotype group (CM). In the BA, JA, and BJ groups, a total of 7, 4, and 11 specific target molecules, 1, 1, and 4 networks, 51, 59, and 18 canonical pathways and 70, 53, and 64 biological functions, respectively, were identified. Pure therapeutic mechanisms of BA and JA were mainly overlapped in specific target molecules, functions and pathways, which were related to the nervous system, inflammation and immune response. The specific mechanisms of BA and JA were associated with apoptosis and cancer-related signaling and endocrine and hormone regulation, respectively. In the BJ group, novel target profiles distinct from mono-therapies were revealed, including 11 specific target molecules, 10 functions, and 10 pathways, the majority of which were related to a virus-mediated immune response. The pure additive effects between BA and JA were based on enhanced action in virus-mediated immune response. This pure mechanistic analysis may provide a clearer outline of the target profiles of multi-target compounds and combination therapies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Flavonoids/pharmacology
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Gene Regulatory Networks/drug effects
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/metabolism
- Hippocampus/pathology
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Iridoids/pharmacology
- Male
- Mice
- Neuroprotective Agents/pharmacology
- Oligonucleotide Array Sequence Analysis
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Systems Biology/methods
- Transcriptome/drug effects
Collapse
Affiliation(s)
- Peng-qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen-juan Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ya-nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying-ying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Chen H, Xiang J, Wu J, He B, Lin T, Zhu Q, Liu X, Zheng C. Expression patterns and role of PTEN in rat peripheral nerve development and injury. Neurosci Lett 2018; 676:78-84. [DOI: 10.1016/j.neulet.2018.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 12/13/2022]
|
16
|
|
17
|
Wang X, Pang L, Zhang Y, Xu J, Ding D, Yang T, Zhao Q, Wu F, Li F, Meng H, Yu D. Lycium barbarum Polysaccharide Promotes Nigrostriatal Dopamine Function by Modulating PTEN/AKT/mTOR Pathway in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Murine Model of Parkinson's Disease. Neurochem Res 2018; 43:938-947. [PMID: 29594732 DOI: 10.1007/s11064-018-2499-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/27/2017] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Abstract
To investigate the effects of Lycium barbarum polysaccharide (LBP) on pathological symptoms and behavioral deficits in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. The therapeutic effects of LBP were monitored with an Open field test, a Rotarod test and a Morris water maze test. We also investigated the mechanisms with qRT-PCR and Western blotting analyses. After a relatively short-term LBP treatment, the total distance and walking time of PD mice significantly increased. The staying duration on the rod of PD mice increased in the Rotarod test. LBP can up-regulate levels of SOD2, CAT and GPX1 and inhibit the abnormal aggregation of α-synuclein induced by MPTP. LBP treatment can also up-regulate the phosphorylation of AKT and mTOR, and may play its protective role by activating the PTEN/AKT/mTOR signaling axis. These results suggest that LBP can effectively alleviate the degeneration in the nigrostriatal system induced by MPTP treatment. It may be a potential candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lei Pang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yanqing Zhang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiang Xu
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Dongyi Ding
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China
| | - Tianli Yang
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Qian Zhao
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Fan Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China
| | - Fei Li
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China
| | - Haiwei Meng
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, 250012, China.
| | - Duonan Yu
- School of Medicine, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Wei Z, Zhao W, Schachner M. Electroacupuncture Restores Locomotor Functions After Mouse Spinal Cord Injury in Correlation With Reduction of PTEN and p53 Expression. Front Mol Neurosci 2018; 11:411. [PMID: 30505267 PMCID: PMC6250832 DOI: 10.3389/fnmol.2018.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Background: We previously showed that electroacupuncture (EA) at Jiaji points promotes expression of adhesion molecule L1 in spinal cord tissue after mouse spinal cord injury (SCI) and contributes to recovery of neural functions. Objective: We investigated the effects of EA on downstream signaling molecules of L1 and molecules relevant to apoptosis with the aim to understand the underlying molecular mechanisms. Methods: Female C57BL/6 mice were divided into a sham group, injury group, injury+acupuncture (AP) group and injury+EA group. We investigated the changes in cognate L1-triggered signaling molecules after SCI by immunofluorescence staining and immunoblot analysis. Results: Protein levels of phosphatase and tensin homolog (PTEN) and p53 were decreased by EA at different time points after injury, whereas the levels of phosphorylated mammalian target of rapamycin (pmTOR), p-Akt and phosphorylated extracellular signal-regulatedkinase (p-Erk) were increased. Also, levels of myelin basic protein (MBP) were increased by EA. AP alone showed less pronounced changes in expression of the investigated molecules, when compared to EA. Conclusion: We propose that EA contributes to neuroprotection by inhibiting PTEN and p53 expression and by increasing the levels of pmTOR/Akt/Erk and of MBP after SCI. These observations allow novel insights into the beneficial effects of EA via L1-triggered signaling molecules after injury.
Collapse
Affiliation(s)
- Zhe Wei
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Faculty of Medicine and Health, Lishui University, Lishui, China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner
| |
Collapse
|
19
|
McLoughlin NM, Mueller C, Grossmann TN. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein. Cell Chem Biol 2018; 25:19-29. [DOI: 10.1016/j.chembiol.2017.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
|
20
|
Abstract
PURPOSE OF REVIEW Recent advances in experimental studies of optic nerve regeneration to better understand the pathophysiology of axon regrowth and provide insights into the future treatment of numerous optic neuropathies. RECENT FINDINGS The optic nerve is part of the central nervous system and cannot regenerate if injured. There are several steps that regenerating axons of retinal ganglion cells (RGCs) must take following optic nerve injury that include: maximizing the intrinsic growth capacity of RGCs, overcoming the extrinsic growth-inhibitory environment of the optic nerve, and optimizing the reinnervation of regenerated axons to their targets in the brain. Recently, some degree of experimental optic nerve regeneration has been achieved by factors associated with inducing intraocular inflammation, providing exogenous neurotrophic factors, reactivating intrinsic growth capacity of mature RGCs, or by modifying the extrinsic growth-inhibitory environment of the optic nerve. In some experiments, regenerating axons have been shown to reinnervate their central targets in the brain. SUMMARY Further approaches to the combination of aforementioned treatments will be necessary to develop future therapeutic strategy to promote ultimate regeneration of the optic nerve and functional vision recovery after optic nerve injury.
Collapse
|