1
|
Wu X, Liu R, Zhang Z, Yang J, Liu X, Jiang L, Fang M, Wang S, Lai L, Song Y, Li Z. The RhoB p.S73F mutation leads to cerebral palsy through dysregulation of lipid homeostasis. EMBO Mol Med 2024; 16:2002-2023. [PMID: 39080495 PMCID: PMC11393352 DOI: 10.1038/s44321-024-00113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/14/2024] Open
Abstract
Cerebral palsy (CP) is a prevalent neurological disorder that imposes a significant burden on children, families, and society worldwide. Recently, the RhoB p.S73F mutation was identified as a de novo mutation associated with CP. However, the mechanism by which the RhoB p.S73F mutation causes CP is currently unclear. In this study, rabbit models were generated to mimic the human RhoB p.S73F mutation using the SpG-BE4max system, and exhibited the typical symptoms of human CP, such as periventricular leukomalacia and spastic-dystonic diplegia. Further investigation revealed that the RhoB p.S73F mutation could activate ACAT1 through the LYN pathway, and the subsequently altered lipid levels may lead to neuronal and white matter damage resulting in the development of CP. This study presented the first mammalian model of genetic CP that accurately replicates the RhoB p.S73F mutation in humans, provided further insights between RhoB and lipid metabolism, and novel therapeutic targets for human CP.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruonan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhongtian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liqiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mengmeng Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoutang Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China.
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Hamper M, Schmidt-Kastner R. Sleep Disorder Kleine-Levin Syndrome (KLS) Joins the List of Polygenic Brain Disorders Associated with Obstetric Complications. Cell Mol Neurobiol 2023; 43:3393-3403. [PMID: 37553546 DOI: 10.1007/s10571-023-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Kleine-Levin Syndrome is a rare neurological disorder with onset typically during adolescence that is characterized by recurrent episodes of hypersomnia, behavioral changes, and cognitive abnormalities, in the absence of structural changes in neuroimaging. As for many functional brain disorders, the exact disease mechanism in Kleine-Levin Syndrome is presently unknown, preventing the development of specific treatment approaches or protective measures. Here we review the pathophysiology and genetics of this functional brain disorder and then present a specific working hypothesis. A neurodevelopmental mechanism has been suspected based on associations with obstetric complications. Recent studies have focused on genetic factors whereby the first genome-wide association study (GWAS) in Kleine-Levin Syndrome has defined a linkage at the TRANK1 locus. A Gene x Environment interaction model involving obstetric complications was proposed based on concepts developed for other functional brain disorders. To stimulate future research, we here performed annotations of the genes under consideration for Kleine-Levin Syndrome in relation to factors expected to be associated with obstetric complications. Annotations used data-mining of gene/protein lists related to for hypoxia, ischemia, and vascular factors and targeted literature searches. Tentative links for TRANK1, four additional genes in the TRANK1 locus, and LMOD3-LMO2 are described. Protein interaction data for TRANK1 indicate links to CBX2, CBX4, and KDM3A, that in turn can be tied to hypoxia. Taken together, the neurological sleep disorder, Kleine-Levin Syndrome, shows genetic and mechanistic overlap with well analyzed brain disorders such as schizophrenia, autism spectrum disorder and ADHD in which polygenic predisposition interacts with external events during brain development, including obstetric complications.
Collapse
Affiliation(s)
- Michael Hamper
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA
| | - Rainald Schmidt-Kastner
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA.
- Dept. Clinical Neurosciences, CE Schmidt College of Medicine, Florida Atlantic University (FAU), 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
3
|
Yang L, Zhang Y, Yu X, Li D, Liu N, Xue X, Fu J. Periventricular Microglia Polarization and Morphological Changes Accompany NLRP3 Inflammasome-Mediated Neuroinflammation after Hypoxic-Ischemic White Matter Damage in Premature Rats. J Immunol Res 2023; 2023:5149306. [PMID: 37636861 PMCID: PMC10460280 DOI: 10.1155/2023/5149306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
White matter damage (WMD) is a primary cause of cerebral palsy and cognitive impairment in preterm infants, and no effective treatments are available. Microglia are a major component of the innate immune system. When activated, they form typical pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes and regulate myelin development and synapse formation. Therefore, they may play a pivotal role in hypoxic-ischemic (HI) WMD. Herein, we investigated neural inflammation and long-term microglia phenotypic polarization in a neonatal rat model of hypoxia-ischemia-induced WMD and elucidated the underlying pathophysiological processes. We exposed 3-day-old (P3) Sprague-Dawley rats to hypoxia (8% oxygen) for 2.5 hr after unilateral common carotid artery ligation. The activation of NLRP3 inflammatory bodies, microglia M1/M2 polarization, myelination, and synaptic development in our model were monitored 7, 14, and 21 days after birth. In addition, the Morris water maze test was performed on postnatal Day 28. We confirmed myelination disturbance in the periventricular white matter, abnormal synaptic development, and behavioral changes in the periventricular area during the development of HI WMD. In addition, we found an association between the occurrence and development of HI WMD and activation of the NLRP3 inflammasome, microglial M1/M2 polarization, and the release of inflammatory factors. NLRP3 inhibition can play an anti-inflammatory role by inhibiting the differentiation of microglia into the M1 phenotype, thereby improving myelination and synapse formation. In conclusion, microglia are key mediators of the inflammatory response and exhibit continuous phenotypic polarization 7-21 days after HI-induced WMD. This finding can potentially lead to a new treatment regimen targeting the phenotypic polarization of microglia early after HI-induced brain injury.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian 116021, Liaoning, China
| | - Yajun Zhang
- Department of Anesthesiology, Dalian Municipal Maternal and Child Health Care Hospital, Dalian 116021, Liaoning, China
| | - Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
4
|
Zaghloul N, Cohen NS, Ayasolla KR, Li HL, Kurepa D, Ahmed MN. Galantamine ameliorates hyperoxia-induced brain injury in neonatal mice. Front Neurosci 2023; 17:890015. [PMID: 37424990 PMCID: PMC10323435 DOI: 10.3389/fnins.2023.890015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Prolonged oxygen therapy in preterm infants often leads to cognitive impairment. Hyperoxia leads to excess free radical production with subsequent neuroinflammation, astrogliosis, microgliosis and apoptosis. We hypothesized that Galantamine, an acetyl choline esterase inhibitor and an FDA approved treatment of Alzheimer's disease, will reduce hyperoxic brain injury in neonatal mice and will improve learning and memory. Methods Mouse pups at postnatal day 1 (P1) were placed in a hyperoxia chamber (FiO2 95%) for 7 days. Pups were injected IP daily with Galantamine (5 mg/kg/dose) or saline for 7 days. Results Hyperoxia caused significant neurodegeneration in cholinergic nuclei of the basal forebrain cholinergic system (BFCS), laterodorsal tegmental (LDT) nucleus and nucleus ambiguus (NA). Galantamine ameliorated this neuronal loss. Treated hyperoxic group showed a significant increase of choline acetyl transferase (ChAT) expression and a decrease of acetyl choline esterase activity, thus increasing acetyl choline levels in hyperoxia environment. Hyperoxia increased pro-inflammatory cytokines namely IL -1β, IL-6 and TNF α, HMGB1, NF-κB activation. Galantamine showed its potent anti- inflammatory effect, by blunting cytokines surges among treated group. Treatment with Galantamine increased myelination while reducing apoptosis, microgliosis, astrogliosis and ROS production. Long term neurobehavioral outcomes at P60 showed improved locomotor activity, coordination, learning and memory, along with increased hippocampal volumes on MRI with Galantamine treated versus non treated hyperoxia group. Conclusion Together our findings suggest a potential therapeutic role for Galantamine in attenuating hyperoxia-induced brain injury.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Steele Children's Research Center, Division of Neonatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Naomi S. Cohen
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Hsiu-Ling Li
- Department of Physiology and Pharmacology, SUNY-Downstate Medical Center, New York, NY, United States
| | - Dalibor Kurepa
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Mohamed N. Ahmed
- Steele Children's Research Center, Division of Neonatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Alshareef M, Hatchell D, Vasas T, Mallah K, Shingala A, Cutrone J, Alawieh A, Guo C, Tomlinson S, Eskandari R. Complement Drives Chronic Inflammation and Progressive Hydrocephalus in Murine Neonatal Germinal Matrix Hemorrhage. Int J Mol Sci 2023; 24:10171. [PMID: 37373319 PMCID: PMC10299267 DOI: 10.3390/ijms241210171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Germinal matrix hemorrhage (GMH) is a pathology that occurs in infancy, with often devastating long-term consequences. Posthemorrhagic hydrocephalus (PHH) can develop acutely, while periventricular leukomalacia (PVL) is a chronic sequala. There are no pharmacological therapies to treat PHH and PVL. We investigated different aspects of the complement pathway in acute and chronic outcomes after murine neonatal GMH induced at postnatal day 4 (P4). Following GMH-induction, the cytolytic complement membrane attack complex (MAC) colocalized with infiltrating red blood cells (RBCs) acutely but not in animals treated with the complement inhibitor CR2-Crry. Acute MAC deposition on RBCs was associated with heme oxygenase-1 expression and heme and iron deposition, which was reduced with CR2-Crry treatment. Complement inhibition also reduced hydrocephalus and improved survival. Following GMH, there were structural alterations in specific brain regions linked to motor and cognitive functions, and these changes were ameliorated by CR2-Crry, as measured at various timepoints through P90. Astrocytosis was reduced in CR2-Crry-treated animals at chronic, but not acute, timepoints. At P90, myelin basic protein and LAMP-1 colocalized, indicating chronic ongoing phagocytosis of white matter, which was reduced by CR2-Crry treatment. Data indicate acute MAC-mediated iron-related toxicity and inflammation exacerbated the chronic effects of GMH.
Collapse
Affiliation(s)
- Mohammed Alshareef
- Department of Neurological Surgery, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Devin Hatchell
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (A.S.)
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
| | - Aakash Shingala
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (A.S.)
| | - Jonathan Cutrone
- Department of Family Medicine, AnMed Health Medical Center, Anderson, SC 29621, USA;
| | - Ali Alawieh
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Chunfang Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
- Ralph Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Ramin Eskandari
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Strauss E, Gotz-Więckowska A, Sobaniec A, Chmielarz-Czarnocińska A, Szpecht D, Januszkiewicz-Lewandowska D. Hypoxia-Inducible Pathway Polymorphisms and Their Role in the Complications of Prematurity. Genes (Basel) 2023; 14:genes14050975. [PMID: 37239335 DOI: 10.3390/genes14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive oxidative stress resulting from hyperoxia or hypoxia is a recognized risk factor for diseases of prematurity. However, the role of the hypoxia-related pathway in the development of these diseases has not been well studied. Therefore, this study aimed to investigate the association between four functional single nucleotide polymorphisms (SNPs) in the hypoxia-related pathway, and the development of complications of prematurity in relation to perinatal hypoxia. A total of 334 newborns born before or on the 32nd week of gestation were included in the study. The SNPs studied were HIF1A rs11549465 and rs11549467, VEGFA rs2010963, and rs833061. The findings suggest that the HIF1A rs11549465T allele is an independent protective factor against necrotizing enterocolitis (NEC), but may increase the risk of diffuse white matter injury (DWMI) in newborns exposed to hypoxia at birth and long-term oxygen supplementation. In addition, the rs11549467A allele was found to be an independent protective factor against respiratory distress syndrome (RDS). No significant associations with VEGFA SNPs were observed. These findings indicate the potential involvement of the hypoxia-inducible pathway in the pathogenesis of complications of prematurity. Studies with larger sample sizes are needed to confirm these results and explore their clinical implications.
Collapse
Affiliation(s)
- Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland
| | - Alicja Sobaniec
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Anna Chmielarz-Czarnocińska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland
| | - Dawid Szpecht
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Danuta Januszkiewicz-Lewandowska
- Department of Medical Diagnostics, Poznan University of Medical Sciences, Dobra Street 38a, 60-595 Poznan, Poland
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| |
Collapse
|
7
|
Xie Y, Yang Y, Yuan T. Brain Damage in the Preterm Infant: Clinical Aspects and Recent Progress in the Prevention and Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:27-40. [PMID: 35209835 DOI: 10.2174/1871527321666220223092905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022]
Abstract
Although the prevalence of brain injury and related neurodevelopmental disabilities resulting from preterm birth are major public health concerns, there are no definite neuroprotective strategies to prevent or reduce brain injury. The pattern of brain injury seen in preterm infants has evolved into more subtle lesions that are still essential to diagnose regarding neurodevelopmental outcomes. There is no specific effective method for the treatment of premature infant brain injury, and the focus of clinical treatment is still on prevention. Prevention of this injury requires insight into the pathogenesis, but many gaps exist in our understanding of how neonatal treatment procedures and medications impact cerebral hemodynamics and preterm brain injury. Many studies provide evidence about the prevention of premature infant brain injury, which is related to some drugs (such as erythropoietin, melatonin, mesenchymal stem cells, etc.). However, there are still some controversies about the quality of research and the effectiveness of therapy. This review aims to recapitulate the results of preclinical studies and provide an update on the latest developments around etiological pathways, prevention, and treatment.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| | - Yue Yang
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| | - Tianming Yuan
- Department of Neonatology, Children\'s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, P.R. China
| |
Collapse
|
8
|
Lin Q, Hu DW, Hao XH, Zhang G, Lin L. Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. Neural Plast 2023; 2023:4226139. [PMID: 37124874 PMCID: PMC10139812 DOI: 10.1155/2023/4226139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Hypoxic-ischemic white matter injury (WMI) pathogenesis in preterm infants is not well established, and iron-related proteins in the brain may play an important role in imbalanced iron metabolism. We aimed to investigate the iron-related protein changes in neonatal rats after hypoxia-ischemia (HI), clarify the role of iron-related proteins in hypoxic-ischemic WMI, and potentially provide a new target for the clinical treatment of hypoxic-ischemic WMI in preterm infants. We adopted a WMI animal model of bilateral common carotid artery electrocoagulation combined with hypoxia in neonatal 3-day-old Sprague-Dawley rats. We observed basic myelin protein (MBP) and iron-related protein expression in the brain (ferritin, transferrin receptor [TfR], and membrane iron transporter 1 [FPN1]) via Western blot and double immunofluorescence staining. The expression of MBP in the WMI group was significantly downregulated on postoperative days (PODs) 14, 28, and 56. Ferritin levels were significantly increased on PODs 3, 7, 14, and 28 and were most significant on POD 28, returning to the sham group level on POD 56. FPN1 levels were significantly increased on PODs 7, 28, and 56 and were still higher than those in the sham group on POD 56. TfR expression was significantly upregulated on PODs 1, 7, and 28 and returned to the sham group level on POD 56. Immunofluorescence staining showed that ferritin, TfR, and FPN1 were expressed in neurons, blood vessels, and oligodendrocytes in the cortex and corpus callosum on POD 28. Compared with the sham group, the immune-positive markers of three proteins in the WMI group were significantly increased. The expression of iron-related proteins in the brain (ferritin, FPN1, and TfR) showed spatiotemporal dynamic changes and may play an important role in hypoxic-ischemic WMI.
Collapse
Affiliation(s)
- Qing Lin
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ding-Wang Hu
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Xin-Hui Hao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Geng Zhang
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
9
|
Vannucci SJ, Back SA. The Vannucci Model of Hypoxic-Ischemic Injury in the Neonatal Rodent: 40 years later. Dev Neurosci 2022; 44:186-193. [PMID: 35263745 DOI: 10.1159/000523990] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Perinatal hypoxic-ischemic (HI) brain damage has long been a major cause of acute mortality and chronic neurologic morbidity in infants and children. Experimental animal models are essential to gain insights into the pathogenesis and management of perinatal HI brain damage. Prior to 1980 only large animal models were available. The first small animal model was developed in the postnatal 7 (P7) rat in 1981, now known as the Vannucci model. This model combines unilateral carotid artery ligation with subsequent hypoxia to produce transient hemispheric hypoxia-ischemia in the hemisphere ipsilateral to the ligation while the contralateral hemisphere is exposed to hypoxia only. This model has been characterized with studies of cerebral hemodynamics, cerebral metabolic changes, and acute and chronic neuropathology. Over the past 40 year this animal model has been utilized in numerous laboratories around the world, has been adapted to the immature mouse, as well as to immature rodents at various stages of development. This brief review describes the validation and characterization studies of the original model and some of the adaptations. A discussion of all of the studies focused on specific cell types is beyond the scope of this review. Rather, we present the application of the model to the study of a specific cell type, the pre-oligodendrocyte, and the role this cell plays in the development of white matter injury in the preterm brain.
Collapse
Affiliation(s)
- Susan J Vannucci
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Stephen A Back
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Caffeine treatment started before injury reduces hypoxic-ischemic white-matter damage in neonatal rats by regulating phenotypic microglia polarization. Pediatr Res 2022; 92:1543-1554. [PMID: 35220399 PMCID: PMC9771815 DOI: 10.1038/s41390-021-01924-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Reducing neuroinflammatory damage is an effective strategy for treating white-matter damage (WMD) in premature infants. Caffeine can ameliorate hypoxia-ischemia-induced brain WMD; however, its neuroprotective effect and mechanism against hypoxic-ischemic WMD remain unclear. METHODS We used 3-day-old Sprague-Dawley rats to establish a model of cerebral hypoxia-ischemia-induced brain WMD after unilateral common carotid artery ligation and hypoxia exposure (8% O2 + 92% N2) for 2.5 h. Mechanism experiments were conducted to detect M1/M2 polarization and activation of microglia and NLRP3 inflammasome. RESULTS Caffeine inhibited NLRP3 inflammasome activation, reduced microglial Iba-1 activation, inhibited microglia M1 polarization, and promoted microglia M2 polarization by downregulating CD86 and iNOS protein expression, inhibiting the transcription of the proinflammatory TNF-α and IL-1β, upregulating CD206 and Arg-1 expression, and promoting the transcription of the anti-inflammatory factors IL-10 and TGF-β. Importantly, we found that these caffeine-mediated effects could be reversed after inhibiting A2aR activity. CONCLUSIONS Caffeine improved long-term cognitive function in neonatal rats with hypoxic-ischemic WMD via A2aR-mediated inhibition of NLRP3 inflammasome activation, reduction of microglial activation, regulation of the phenotypic polarization of microglia and the release of inflammatory factors, and improvement of myelination development. IMPACT The direct protective effect of caffeine on hypoxic-ischemic white-matter damage (WMD) and its mechanism remains unclear. This study elucidated this mechanism using neonatal rats as an animal model of hypoxia-ischemia-induced cerebral WMD. The findings demonstrated caffeine as a promising therapeutic tool against immature WMD to protect neonatal cognitive function. We found that caffeine pretreatment reduced WMD in immature brains via regulation of microglial activation and polarization by adenosine A2a receptor, thereby, providing a scientific basis for future clinical application of caffeine.
Collapse
|
11
|
da Conceição Pereira S, Manhães-de-Castro R, Visco DB, de Albuquerque GL, da Silva Calado CMS, da Silva Souza V, Toscano AE. Locomotion is impacted differently according to the perinatal brain injury model: Meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods 2021; 360:109250. [PMID: 34116077 DOI: 10.1016/j.jneumeth.2021.109250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Different approaches to reproduce cerebral palsy (CP) in animals, contribute to the knowledge of the pathophysiological mechanism of this disease and provide a basis for the development of intervention strategies. Locomotion and coordination are the main cause of disability in CP, however, few studies highlight the quantitative differences of CP models, on locomotion parameters, considering the methodologies to cause brain lesions in the perinatal period. METHODS Studies with cerebral palsy animal models that assess locomotion parameters were systematically retrieved from Medline/PubMed, SCOPUS, LILACS, and Web of Science. Methodological evaluation of included studies and quantitative assessment of locomotion parameters were performed after eligibility screening. RESULTS CP models were induced by hypoxia-ischemia (HI), Prenatal ischemia (PI), lipopolysaccharide inflammation (LPS), intraventricular haemorrhage (IVH), anoxia (A), sensorimotor restriction (SR), and a combination of different models. Overall, 63 studies included in qualitative synthesis showed a moderate quality of evidence. 16 studies were included in the quantitative meta-analysis. Significant reduction was observed in models that combined LPS with HI related to distance traveled (SMD -7.24 95 % CI [-8.98, -5.51], Z = 1.18, p < 0.00001) and LPS with HI or anoxia with sensory-motor restriction (SMD -6.01, 95 % CI [-7.67, -4.35], Z = 7.11), or IVH (SMD -4.91, 95 % CI [-5.84, -3.98], Z = 10.31, p < 0.00001) related to motor coordination. CONCLUSION The combination of different approaches to reproduce CP in animals causes greater deficits in locomotion and motor coordination from the early stages of life to adulthood. These findings contribute to methodological refinement, reduction, and replacement in animal experimentation, favoring translational purposes.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Vanessa da Silva Souza
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
12
|
Jasper EA, Cho H, Breheny PJ, Bao W, Dagle JM, Ryckman KK. Perinatal determinants of growth trajectories in children born preterm. PLoS One 2021; 16:e0245387. [PMID: 33507964 PMCID: PMC7842887 DOI: 10.1371/journal.pone.0245387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A growing amount of evidence indicates in utero and early life growth has profound, long-term consequences for an individual's health throughout the life course; however, there is limited data in preterm infants, a vulnerable population at risk for growth abnormalities. OBJECTIVE To address the gap in knowledge concerning early growth and its determinants in preterm infants. METHODS A retrospective cohort study was performed using a population of preterm (< 37 weeks gestation) infants obtained from an electronic medical record database. Weight z-scores were acquired from discharge until roughly two years corrected age. Linear mixed effects modeling, with random slopes and intercepts, was employed to estimate growth trajectories. RESULTS Thirteen variables, including maternal race, hypertension during pregnancy, preeclampsia, first trimester body mass index, multiple status, gestational age, birth weight, birth length, head circumference, year of birth, length of birth hospitalization stay, total parenteral nutrition, and dextrose treatment, were significantly associated with growth rates of preterm infants in univariate analyses. A small percentage (1.32% - 2.07%) of the variation in the growth of preterm infants can be explained in a joint model of these perinatal factors. In extremely preterm infants, additional variation in growth trajectories can be explained by conditions whose risk differs by degree of prematurity. Specifically, infants with periventricular leukomalacia or retinopathy of prematurity experienced decelerated rates of growth compared to infants without such conditions. CONCLUSIONS Factors found to influence growth over time in children born at term also affect growth of preterm infants. The strength of association and the magnitude of the effect varied by gestational age, revealing that significant heterogeneity in growth and its determinants exists within the preterm population.
Collapse
Affiliation(s)
- Elizabeth A. Jasper
- Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| | - Hyunkeun Cho
- Department of Biostatistics, University of Iowa, Iowa City, IA, United States of America
| | - Patrick J. Breheny
- Department of Biostatistics, University of Iowa, Iowa City, IA, United States of America
| | - Wei Bao
- Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - John M. Dagle
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Kelli K. Ryckman
- Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
13
|
Zaghloul N, Kurepa D, Bader MY, Nagy N, Ahmed MN. Prophylactic inhibition of NF-κB expression in microglia leads to attenuation of hypoxic ischemic injury of the immature brain. J Neuroinflammation 2020; 17:365. [PMID: 33261624 PMCID: PMC7709340 DOI: 10.1186/s12974-020-02031-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Background Periventricular leukomalacia (PVL), a devastating brain injury affecting premature infants, is the most common cause of cerebral palsy. PVL is caused by hypoxia ischemia (HI) and is characterized by white matter necrotic lesions, microglial activation, upregulation of NF-κB, and neuronal death. The microglia is the main cell involved in PVL pathogenesis. The goal of this study was to investigate the role of microglial NF-κB activity and its prophylactic inhibition in a neonate mouse model of HI. Methods Transgenic mice with specific knockout NF-κB in microglia and colony stimulating factor 1 receptor Cre with floxed IKKβ (CSF-1R Cre + IKKβflox/wt ) were used. Postnatal day 5 (P5) mice underwent sham or bilateral temporary carotid artery ligation followed by hypoxia. After HI insult, inflammatory cytokines, volumetric MRI, histopathology, and immunohistochemistry for oligodendroglia and microglial activation markers were analyzed. Long-term neurobehavioral assessment, including grip strength, rotarod, and open field testing, was performed at P60. Results We demonstrate that selective inhibition of NF-κB in microglia decreases HI-induced brain injury by decreasing microglial activation, proinflammatory cytokines, and nitrative stress. Rescue of oligodendroglia is evidenced by immunohistochemistry, decreased ventriculomegaly on MRI, and histopathology. This selective inhibition leads to attenuation of paresis, incoordination, and improved grip strength, gait, and locomotion. Conclusion We conclude that NF-κb activation in microglia plays a major role in the pathogenesis of hypoxic ischemic injury of the immature brain, and its prophylactic inhibition offers significant neuroprotection. Using a specific inhibitor of microglial NF-κB may offer a new prophylactic or therapeutic alternative in preterm infants affected by HI and possibly other neurological diseases in which microglial activation plays a role.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA.
| | - Dalibor Kurepa
- Department of Pediatrics, Division of Neonatology, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohammad Y Bader
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| | - Nadia Nagy
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| | - Mohamed N Ahmed
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| |
Collapse
|
14
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
15
|
Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice? Mol Neurobiol 2019; 56:6883-6900. [PMID: 30941732 PMCID: PMC6728419 DOI: 10.1007/s12035-019-1548-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Cerebral palsy (CP) is one of the most common childhood-onset motor disabilities, attributed to injuries of the immature brain in the foetal or early postnatal period. The underlying mechanisms are poorly understood, rendering prevention and treatment strategies challenging. The aim of the present study was to establish a mouse model of CP for preclinical assessment of new interventions. For this purpose, we explored the impact of a double neonatal insult (i.e. systemic inflammation combined with hypoxia) on behavioural and cellular outcomes relevant to CP during the prepubertal to adolescent period of mice. Pups were subjected to intraperitoneal lipopolysaccharide (LPS) injections from postnatal day (P) 3 to P6 followed by hypoxia at P7. Gene expression analysis at P6 revealed a strong inflammatory response in a brain region-dependent manner. A comprehensive battery of behavioural assessments performed between P24 and P47 showed impaired limb placement and coordination when walking on a horizontal ladder in both males and females. Exposed males also displayed impaired performance on a forelimb skilled reaching task, altered gait pattern and increased exploratory activity. Exposed females showed a reduction in grip strength and traits of anxiety-like behaviour. These behavioural alterations were not associated with gross morphological changes, white matter lesions or chronic inflammation in the brain. Our results indicate that the neonatal double-hit with LPS and hypoxia can induce subtle long-lasting deficits in motor learning and fine motor skills, which partly reflect the symptoms of children with CP who have mild gross and fine motor impairments.
Collapse
Affiliation(s)
- Adamantia F Fragopoulou
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Yu Qian
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden.,INSERM U1239, University of Rouen Normandy, 76130, Mont-Saint-Aignan, France
| | - Hans Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| |
Collapse
|
16
|
Zaghloul N, Ahmed M. Pathophysiology of periventricular leukomalacia: What we learned from animal models. Neural Regen Res 2017; 12:1795-1796. [PMID: 29239318 PMCID: PMC5745826 DOI: 10.4103/1673-5374.219034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nahla Zaghloul
- Neonatology division, Pediatric Department, Cohen Children's Medical Center at New York, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY; Hofstra University, Hempstead, NY, USA
| | - Mohamed Ahmed
- Neonatology division, Pediatric Department, Cohen Children's Medical Center at New York, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY; Hofstra University, Hempstead, NY, USA
| |
Collapse
|