1
|
Zahedi S, Riemondy K, Griesinger AM, Donson AM, Fu R, Crespo M, DeSisto J, Groat MM, Bratbak E, Green A, Hankinson TC, Handler M, Vibhakar R, Willard N, Foreman NK, Levy JM. Multi-pronged analysis of pediatric low-grade glioma reveals a unique tumor microenvironment associated with BRAF alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588294. [PMID: 38645202 PMCID: PMC11030246 DOI: 10.1101/2024.04.05.588294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pediatric low-grade gliomas (pLGG) comprise 35% of all brain tumors. Despite favorable survival, patients experience significant morbidity from disease and treatments. A deeper understanding of pLGG biology is essential to identify novel, more effective, and less toxic therapies. We utilized single cell RNA sequencing (scRNA-seq), spatial transcriptomics, and cytokine analyses to characterize and understand tumor and immune cell heterogeneity across pLGG. scRNA-seq revealed tumor and immune cells within the tumor microenvironment (TME). Tumor cell subsets revealed a developmental hierarchy with progenitor and mature cell populations. Immune cells included myeloid and lymphocytic cells. There was a significant difference between the prevalence of two major myeloid subclusters between pilocytic astrocytoma (PA) and ganglioglioma (GG). Bulk and single-cell cytokine analyses evaluated the immune cell signaling cascade with distinct immune phenotypes among tumor samples. KIAA1549-BRAF tumors appeared more immunogenic, secreting higher levels of immune cell activators and chemokines, compared to BRAF V600E tumors. Spatial transcriptomics revealed the differential gene expression of these chemokines and their location within the TME. A multi-pronged analysis of pLGG demonstrated the complexity of the pLGG TME and differences between genetic drivers that may influence their response to immunotherapy. Further investigation of immune cell infiltration and tumor-immune interactions is warranted. Key points There is a developmental hierarchy in neoplastic population comprising of both progenitor-like and mature cell types in both PA and GG.A more immunogenic, immune activating myeloid population is present in PA compared to GG. Functional analysis and spatial transcriptomics show higher levels of immune mobilizing chemokines in KIAA1549-BRAF fusion PA tumor samples compared to BRAF V600E GG samples. Importance of the Study While scRNA seq provides information on cellular heterogeneity within the tumor microenvironment (TME), it does not provide a complete picture of how these cells are interacting or where they are located. To expand on this, we used a three-pronged approach to better understand the biology of pediatric low-grade glioma (pLGG). By analyzing scRNA-seq, secreted cytokines and spatial orientation of cells within the TME, we strove to gain a more complete picture of the complex interplay between tumor and immune cells within pLGG. Our data revealed a complex heterogeneity in tumor and immune populations and identified an interesting difference in the immune phenotype among different subtypes.
Collapse
|
2
|
Kulac I, Yenidogan I, Oflaz Sozmen B, Baygul A, Cha S, Pekmezci M, Tihan T. Pathological perspectives in pilocytic astrocytomas: Extent of resection as the sole critical factor for recurrence-free survival, and the challenge of evaluating conclusions derived from limited data. FREE NEUROPATHOLOGY 2023; 4:4-17. [PMID: 37901684 PMCID: PMC10601208 DOI: 10.17879/freeneuropathology-2023-5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Introduction: Pilocytic astrocytoma (PA) is one of the most common primary intracranial neoplasms in childhood with an overall favorable prognosis. Despite decades of experience, there are still diagnostic and treatment challenges and unresolved issues regarding risk factors associated with recurrence, most often due to conclusions of publications with limited data. We analyzed 499 patients with PA diagnosed in a single institution over 30 years in order to provide answers to some of the unresolved issues. Materials and Methods: We identified pilocytic astrocytomas diagnosed at the University of California, San Francisco, between 1989 and 2019, confirmed the diagnoses using the WHO 2021 essential and desirable criteria, and performed a retrospective review of the demographic and clinical features of the patients and the radiological, pathologic and molecular features of the tumors. Results: Among the patients identified from pathology archives, 499 cases fulfilled the inclusion criteria. Median age at presentation was 12 years (range 3.5 months - 73 years) and the median follow-up was 78.5 months. Tumors were predominantly located in the posterior fossa (52.6%). There were six deaths, but there were confounding factors that prevented a clear association of death to tumor progression. Extent of resection was the only significant factor for recurrence-free survival. Recurrence-free survival time was 321.0 months for gross total resection, compared to 160.9 months for subtotal resection (log rank, p <0.001). Conclusion: Multivariate analysis was able to identify extent of resection as the only significant variable to influence recurrence-free survival. We did not find a statistically significant association between age, NF1 status, tumor location, molecular alterations, and outcome. Smaller series with apparently significant results may have suffered from limited sample size, limited variables, acceptance of univariate analysis findings as well as a larger p value for biological significance. PA still remains a predominantly surgical disease and every attempt should be made to achieve gross total resection since this appears to be the most reliable predictor of recurrence-free survival.
Collapse
Affiliation(s)
- Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Irem Yenidogan
- Department of Pediatrics, Koc University School of Medicine, Istanbul, Turkey
| | - Banu Oflaz Sozmen
- Department of Pediatrics, Koc University School of Medicine, Istanbul, Turkey
- Division of Pediatric Hematology and Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Arzu Baygul
- Department of Biostatistics, Koc University School of Medicine, Istanbul, Turkey
| | - Soonmee Cha
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Tarik Tihan
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Jesus-Ribeiro J, Rebelo O, Ribeiro IP, Pires LM, Melo JD, Sales F, Santana I, Freire A, Melo JB. The landscape of common genetic drivers and DNA methylation in low-grade (epilepsy-associated) neuroepithelial tumors: A review. Neuropathology 2022; 42:467-482. [PMID: 35844095 DOI: 10.1111/neup.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Low-grade neuroepithelial tumors (LNETs) represent an important group of central nervous system neoplasms, some of which may be associated to epilepsy. The concept of long-term epilepsy-associated tumors (LEATs) includes a heterogenous group of low-grade, cortically based tumors, associated to drug-resistant epilepsy, often requiring surgical treatment. LEATs entities can sometimes be poorly discriminated by histological features, precluding a confident classification in the absence of additional diagnostic tools. This study aimed to provide an updated review on the genomic findings and DNA methylation profiling advances in LNETs, including histological entities of LEATs. A comprehensive search strategy was conducted on PubMed, Embase, and Web of Science Core Collection. High-quality peer-reviewed original manuscripts and review articles with full-text in English, published between 2003 and 2022, were included. Results were screened based on titles and abstracts to determine suitability for inclusion, and when addressed the topic of the review was screened by full-text reading. Data extraction was performed through a qualitative content analysis approach. Most LNETs appear to be driven mainly by a single genomic abnormality and respective affected signaling pathway, including BRAF p.V600E mutations in ganglioglioma, FGFR1 abnormalities in dysembryoplastic neuroepithelial tumor, MYB alterations in angiocentric glioma, BRAF fusions in pilocytic astrocytoma, PRKCA fusions in papillary glioneuronal tumor, between others. However, these molecular alterations are not exclusive, with some overlap amongst different tumor histologies. Also, clustering analysis of DNA methylation profiles allowed the identification of biologically similar molecular groups that sometimes transcend conventional histopathological classification. The exciting developments on the molecular basis of these tumors reinforce the importance of an integrative histopathological and (epi)genetic classification, which can be translated into precision medicine approaches.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Neurology Department, Centro Hospitalar de Leiria, Leiria, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Daniel Melo
- Internal Medicine Department, CUF Coimbra Hospital, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António Freire
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra Luz Hospital, Coimbra, Portugal
| | - Joana Barbosa Melo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
DELAND LILY, KEANE SIMON, OLSSON BONTELL THOMAS, FAGMAN HENRIK, SJÖGREN HELENE, LIND ANDERSE, CARÉN HELENA, TISELL MAGNUS, NILSSON JONASA, EJESKÄR KATARINA, SABEL MAGNUS, ABEL FRIDA. Novel TPR::ROS1 Fusion Gene Activates MAPK, PI3K and JAK/STAT Signaling in an Infant-type Pediatric Glioma. Cancer Genomics Proteomics 2022; 19:711-726. [PMID: 36316040 PMCID: PMC9620451 DOI: 10.21873/cgp.20354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/AIM Although fusion genes involving the proto-oncogene receptor tyrosine kinase ROS1 are rare in pediatric glioma, targeted therapies with small inhibitors are increasingly being approved for histology-agnostic fusion-positive solid tumors. PATIENT AND METHODS Here, we present a 16-month-old boy, with a brain tumor in the third ventricle. The patient underwent complete resection but relapsed two years after diagnosis and underwent a second operation. The tumor was initially classified as a low-grade glioma (WHO grade 2); however, methylation profiling suggested the newly WHO-recognized type: infant-type hemispheric glioma. To further refine the molecular background, and search for druggable targets, whole genome (WGS) and whole transcriptome (RNA-Seq) sequencing was performed. RESULTS Concomitant WGS and RNA-Seq analysis revealed several segmental gains and losses resulting in complex structural rearrangements and fusion genes. Among the top-candidates was a novel TPR::ROS1 fusion, for which only the 3' end of ROS1 was expressed in tumor tissue, indicating that wild type ROS1 is not normally expressed in the tissue of origin. Functional analysis by Western blot on protein lysates from transiently transfected HEK293 cells showed the TPR::ROS1 fusion gene to activate the MAPK-, PI3K- and JAK/STAT- pathways through increased phosphorylation of ERK, AKT, STAT and S6. The downstream pathway activation was also confirmed by immunohistochemistry on tumor tissue slides from the patient. CONCLUSION We have mapped the activated oncogenic pathways of a novel ROS1-fusion gene and broadened the knowledge of the newly recognized infant-type glioma subtype. The finding facilitates suitable targeted therapies for the patient in case of relapse.
Collapse
Affiliation(s)
- LILY DELAND
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - SIMON KEANE
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - THOMAS OLSSON BONTELL
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - HENRIK FAGMAN
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - HELENE SJÖGREN
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - ANDERS E. LIND
- Clinical Genomics Gothenburg, SciLife Labs, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - HELENA CARÉN
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - MAGNUS TISELL
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - JONAS A. NILSSON
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - KATARINA EJESKÄR
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - MAGNUS SABEL
- Childhood Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden,Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - FRIDA ABEL
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Zhou Z, Li P, Zhang X, Xu J, Xu J, Yu S, Wang D, Dong W, Cao X, Yan H, Sun M, Ding X, Xing J, Zhang P, Zhai L, Fan T, Tian S, Yang X, Hu M. Mutational landscape of nasopharyngeal carcinoma based on targeted next-generation sequencing: implications for predicting clinical outcomes. Mol Med 2022; 28:55. [PMID: 35562651 PMCID: PMC9107145 DOI: 10.1186/s10020-022-00479-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to draw a comprehensive mutational landscape of nasopharyngeal carcinoma (NPC) tumors and identify the prognostic factors for distant metastasis-free survival (DMFS). Methods A total of forty primary nonkeratinizing NPC patients underwent targeted next-generation sequencing of 450 cancer-relevant genes. Analysis of these sequencing and clinical data was performed comprehensively. Univariate Cox regression analysis and multivariate Lasso-Cox regression analyses were performed to identify factors that predict distant metastasis and construct a risk score model, and seventy percent of patients were randomly selected from among the samples as a validation cohort. A receiver operating characteristic (ROC) curve and Harrell’s concordance index (C-index) were used to investigate whether the risk score was superior to the TNM stage in predicting the survival of patients. The survival of patients was determined by Kaplan–Meier curves and log-rank tests. Results The twenty most frequently mutated genes were identified, such as KMT2D, CYLD, and TP53 et al. Their mutation frequencies of them were compared with those of the COSMIC database and cBioPortal database. N stage, tumor mutational burden (TMB), PIK3CA, and SF3B1 were identified as predictors to build the risk score model. The risk score model showed a higher AUC and C-index than the TNM stage model, regardless of the training cohort or validation cohort. Moreover, this study found that patients with tumors harboring PI3K/AKT or RAS pathway mutations have worse DMFS than their wild-type counterparts. Conclusions In this study, we drew a mutational landscape of NPC tumors and established a novel four predictor-based prognostic model, which had much better predictive capacity than TNM stage. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00479-4.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Oncology, Weifang Medical University, Weifang, Shandong, China.,Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peifeng Li
- Department of Pathology, The 960Th Hospital of PLA, Jinan, China
| | - Xianbin Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Juan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shui Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dongqing Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Dong
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujuan Cao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hongjiang Yan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingping Sun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiuping Ding
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jun Xing
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Limin Zhai
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingyong Fan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shiyu Tian
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinhua Yang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Man Hu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Deland L, Keane S, Olsson Bontell T, Sjögren H, Fagman H, Øra I, De La Cuesta E, Tisell M, Nilsson JA, Ejeskär K, Sabel M, Abel F. Discovery of a rare GKAP1-NTRK2 fusion in a pediatric low-grade glioma, leading to targeted treatment with TRK-inhibitor larotrectinib. Cancer Biol Ther 2021; 22:184-195. [PMID: 33820494 PMCID: PMC8043191 DOI: 10.1080/15384047.2021.1899573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we report a case of an 11-year-old girl with an inoperable tumor in the optic chiasm/hypothalamus, who experienced several tumor progressions despite three lines of chemotherapy treatment. Routine clinical examination classified the tumor as a BRAF-negative pilocytic astrocytoma. Copy-number variation profiling of fresh frozen tumor material identified two duplications in 9q21.32–33 leading to breakpoints within the GKAP1 and NTRK2 genes. RT-PCR Sanger sequencing revealed a GKAP1-NTRK2 exon 10–16 in-frame fusion, generating a putative fusion protein of 658 amino acids with a retained tyrosine kinase (TK) domain. Functional analysis by transient transfection of HEK293 cells showed the GKAP1-NTRK2 fusion protein to be activated through phosphorylation of the TK domain (Tyr705). Subsequently, downstream mediators of the MAPK- and PI3K-signaling pathways were upregulated in GKAP1-NTRK2 cells compared to NTRK2 wild-type; phosphorylated (p)ERK (3.6-fold), pAKT (1.8- fold), and pS6 ribosomal protein (1.4-fold). Following these findings, the patient was enrolled in a clinical trial and treated with the specific TRK-inhibitor larotrectinib, resulting in the arrest of tumor growth. The patient’s condition is currently stable and the quality of life has improved significantly. Our findings highlight the value of comprehensive clinical molecular screening of BRAF-negative pediatric low-grade gliomas, to reveal rare fusions serving as targets for precision therapy.
Collapse
Affiliation(s)
- Lily Deland
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Øra
- Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,HOPE/ITCC Phase I/II Trial Unit, Pediatric Oncology, Karolinska Hospital, Stockholm, Sweden
| | - Esther De La Cuesta
- Pharmaceuticals, Global Medical Affairs - Oncology, Bayer U.S., Whippany, USA
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Cancer Center, Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Magnus Sabel
- Childhood Cancer Centre, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Gregory TA, Chumbley LB, Henson JW, Theeler BJ. Adult pilocytic astrocytoma in the molecular era: a comprehensive review. CNS Oncol 2021; 10:CNS68. [PMID: 33448230 PMCID: PMC7962176 DOI: 10.2217/cns-2020-0027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Adult pilocytic astrocytoma (PA) is less prevalent than pediatric PA and is associated with a worse prognosis. In a literature review, we found that 88.3% of the molecular alterations in adult PA are associated with MAPK pathway dysregulation. The most common alterations are fusions of BRAF. Understanding of the mechanisms underlying this pathway has evolved substantially, heralding advancements in specific targeted therapy. Here, we review clinical and molecular features of adult PA, characteristics predicting aggressive behavior and approaches to standard and investigational therapies. We highlight epigenetic profiling and integrated diagnosis as an essential component of classifying PA.
Collapse
Affiliation(s)
- Timothy A Gregory
- Department of Medicine, Neurology, Madigan Army Medical Center, Tacoma, WA 98431, USA
| | - Lyndon B Chumbley
- University of Rochester School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John W Henson
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Medical Center, Seattle, WA 98122, USA
| | - Brett J Theeler
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- John P Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- NIH/NCI Neuro-Oncology Branch, Bethesda, MD 20892-8202, USA
| |
Collapse
|
8
|
Bobach IS, Stougaard M. SNP-based detection of allelic imbalance: A novel approach for identifying KIAA1549-BRAF fusion in pilocytic astrocytoma using DNA sequencing. Exp Mol Pathol 2021; 120:104621. [PMID: 33626378 DOI: 10.1016/j.yexmp.2021.104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common glioma subtype found in children, and it is a non-malignant tumor type. The majority of PAs is caused by an approximately 2 Mb tandem duplication within 7q34 which creates an in-frame KIAA1549-BRAF fusion gene. The kinase domain of BRAF is fused to the N-terminal of KIAA1549, whereby BRAF is constitutively activated. We here present a novel approach for identifying KIAA1549-BRAF fusion based on single nucleotide polymorphism (SNP) analysis and next generation sequencing (NGS). Highly polymorphic SNPs in the duplicated area and in adjacent areas were selected and a custom targeted amplicon based NGS panel was designed. The panel was tested on DNA extracted from formalin fixed and paraffin embedded tissue from a retrospective cohort, consisting of biopsies from patients with PA, anaplastic astrocytoma, oligodendroglioma and glioblastoma as well as two non-tumor biopsies. The panel could distinguish chromosome 7 gain from BRAF fusion and correctly identified 8/9 PA samples with KIAA1549-BRAF fusion confirmed by RNA sequencing. The one biopsy where no fusion was detected was fresh frozen and from the RNA sequencing expected to have very low tumor content. No allelic imbalance was detected in either oligodendroglioma or in the non-tumor biopsies.
Collapse
Affiliation(s)
- Ida Schwartz Bobach
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| |
Collapse
|
9
|
Legrand M, Jourdan ML, Tallet A, Collin C, Audard V, Larousserie F, Aubert S, Gomez-Brouchet A, Bouvier C, de Pinieux G. Novel partners of USP6 gene in a spectrum of bone and soft tissue lesions. Virchows Arch 2021; 479:147-156. [PMID: 33558945 DOI: 10.1007/s00428-021-03047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Nodular fasciitis, primary aneurysmal bone cyst, myositis ossificans, and their related lesions are benign tumors that share common histological features and a chromosomal rearrangement involving the ubiquitin-specific peptidase 6 (USP6) gene. The identification of an increasing number of new partners implicated in USP6 rearrangements demonstrates a complex tumorogenesis of this tumor spectrum. In this study on a series of 77 tumors (28 nodular fasciitis, 42 aneurysmal bone cysts, and 7 myositis ossificans) from the database of the French Sarcoma Group, we describe 7 new partners of the USP6 gene. For this purpose, rearrangements were first researched by multiplexed RT-qPCRs in the entire population. A targeted RNA sequencing was then used on samples selected according to a high USP6-transcription level expression estimated by RT-qPCR. Thanks to this multistep approach, besides the common USP6 fusions observed, we detected novel USP6 partners: PDLIM7 and MYL12A in nodular fasciitis and TPM4, DDX17, GTF2I, KLF3, and MEF2A in aneurysmal bone cysts. In order to try to bring to light the role played by the recently identified USP6 partners in this lesional spectrum, their functions are discussed. Taking into account that a traumatic participation has long been mentioned in the histogenesis of most of these lesions and because of their morphological resemblance to organizing granulation reparative tissue or callus, a focus is placed on their relationship with tissue remodeling and, to a lesser extent, with bone metabolism.
Collapse
Affiliation(s)
- Mélanie Legrand
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, Avenue de la République, 37044 Cedex 9, Tours, France
| | - Marie-Lise Jourdan
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Anne Tallet
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Christine Collin
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Virginie Audard
- Service d'anatomie et cytologie pathologiques, Hôpital Cochin, Paris, France
| | | | - Sébastien Aubert
- Service d'anatomie et cytologie pathologiques, CHU de Lille, Lille, France
| | | | - Corinne Bouvier
- Service d'anatomie et cytologie pathologiques, CHU de Marseille La Timone, Marseille, France
| | - Gonzague de Pinieux
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, Avenue de la République, 37044 Cedex 9, Tours, France. .,PRES Centre-Val de Loire Université, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
10
|
Appay R, Fina F, Barets D, Gallardo C, Nanni-Metellus I, Scavarda D, Henaff D, Vincent J, Grewis L, Pourquier P, Colin C, Figarella-Branger D. Multiplexed Droplet Digital PCR Assays for the Simultaneous Screening of Major Genetic Alterations in Tumors of the Central Nervous System. Front Oncol 2020; 10:579762. [PMID: 33282733 PMCID: PMC7689380 DOI: 10.3389/fonc.2020.579762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023] Open
Abstract
The increased integration of molecular alterations to define tumor type or grade in central nervous system (CNS) tumor classification brings new challenges for the pathologist to make the best use of a precious limited tissue specimen for molecular studies. Within the different methods available to identify gene alterations, the droplet digital PCR (dPCR) constitutes a rapid, cost-effective, and very sensitive tool. In this study, we describe the development and validation of five multiplexed dPCR assays to detect major CNS biomarkers by using only small amounts of DNA extracted from formalin-fixed paraffin-embedded specimens. When compared to HRM-sequencing, NGS-sequencing, RNA-sequencing, or simplex digital PCR assays used as “gold standard” methods, these multiplexed dPCR assays displayed 100% specificity and sensitivity for the simultaneous detection of: 1/BRAF V600E mutation and KIAA1549:BRAF fusion; 2/FGFR1 N546K and K656E mutations and FGFR1 duplication; 3/H3F3A K27M and G34R/V mutations; 4/IDH1 R132X and IDH2 R172X mutations; and 5/TERT promoter mutations C228T and C250T. In light of the increased integration of molecular alteration, we believe that such strategies might help laboratories to optimize their screening strategies for routine diagnosis of pediatric and adult CNS tumors.
Collapse
Affiliation(s)
- Romain Appay
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Frederic Fina
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,ID Solutions, Research and Development, Grabels, France
| | - Doriane Barets
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Catherine Gallardo
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Isabelle Nanni-Metellus
- APHM, CHU Nord, Service de Transfert d'Oncologie Biologique, Laboratoire de Biologie Médicale, Marseille, France
| | - Didier Scavarda
- APHM, CHU Timone, Service de Neurochirurgie pédiatrique, Marseille, France
| | - Daniel Henaff
- ID Solutions, Research and Development, Grabels, France
| | | | - Lise Grewis
- ID Solutions, Research and Development, Grabels, France
| | | | - Carole Colin
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
11
|
Salles D, Laviola G, Malinverni ACDM, Stávale JN. Pilocytic Astrocytoma: A Review of General, Clinical, and Molecular Characteristics. J Child Neurol 2020; 35:852-858. [PMID: 32691644 DOI: 10.1177/0883073820937225] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pilocytic astrocytomas are the primary tumors most frequently found in children and adolescents, accounting for approximately 15.6% of all brain tumors and 5.4% of all gliomas. They are mostly found in infratentorial structures such as the cerebellum and in midline cerebral structures such as the optic nerve, hypothalamus, and brain stem. The present study aimed to list the main characteristics about this tumor, to better understand the diagnosis and treatment of these patients, and was conducted on search of the published studies available in NCBI, PubMed, MEDLINE, Scielo, and Google Scholar. It was possible to define the main histologic findings observed in these cases, such as mitoses, necrosis, and Rosenthal fibers. We described the locations usually most affected by tumor development, and this was associated with the most frequent clinical features. The comparison between the molecular diagnostic methods showed great use of fluorescent in situ hybridization, polymerase chain reaction (PCR), and reverse transcriptase-PCR, important techniques for the detection of BRAF V600E mutation and BRAF-KIAA1549 fusion, characteristic molecular alterations in pilocytic astrocytomas.
Collapse
Affiliation(s)
- Débora Salles
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Gabriela Laviola
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andréa Cristina de Moraes Malinverni
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - João Norberto Stávale
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
12
|
Detection of BRAF V600E Mutation in Ganglioglioma and Pilocytic Astrocytoma by Immunohistochemistry and Real-Time PCR-Based Idylla Test. DISEASE MARKERS 2020; 2020:8880548. [PMID: 32879641 PMCID: PMC7448243 DOI: 10.1155/2020/8880548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022]
Abstract
The BRAF V600E mutation is an important oncological target in certain central nervous system (CNS) tumors, for which a possible application of BRAF-targeted therapy grows continuously. In the present study, we aim to determine the prevalence of BRAF V600E mutations in a series of ganglioglioma (GG) and pilocytic astrocytoma (PA) cases. Simultaneously, we decided to verify whether the combination of fully automated tests—BRAF-VE1 immunohistochemistry (IHC) and Idylla BRAF mutation assay—may be useful to accurately predict it in the case of specified CNS tumors. The study included 49 formalin-fixed, paraffin-embedded tissues, of which 15 were GG and 34 PA. Immunohistochemistry with anti-BRAF V600E (VE1) antibody was performed on tissue sections using the VentanaBenchMark ULTRA platform. All positive or equivocal cases on IHC and selected negative ones were further assessed using the Idylla BRAF mutation assay coupled with the Idylla platform. The BRAF-VE1 IHC was positive in 6 (6/49; 12.3%) and negative in 39 samples (39/49; 79.6%). The interpretation of immunostaining results was complicated in 4 cases, of which 1 tested positive for the Idylla BRAF mutation assay. Therefore, the overall positivity rate was 14.3%. This included 2 cases of GG and 5 cases of PA. Our study found that BRAF V600E mutations are moderately frequent in PA and GG and that for these tumor entities, IHC VE1 is suitable for screening purposes, but all negative, equivocal, and weak positive cases should be further tested with molecular biology techniques, of which the Idylla system seems to be a promising tool.
Collapse
|
13
|
Stangl C, Post JB, van Roosmalen MJ, Hami N, Verlaan-Klink I, Vos HR, van Es RM, Koudijs MJ, Voest EE, Snippert HJG, Kloosterman WP. Diverse BRAF Gene Fusions Confer Resistance to EGFR-Targeted Therapy via Differential Modulation of BRAF Activity. Mol Cancer Res 2020; 18:537-548. [PMID: 31911540 DOI: 10.1158/1541-7786.mcr-19-0529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
Fusion genes can be oncogenic drivers in a variety of cancer types and represent potential targets for targeted therapy. The BRAF gene is frequently involved in oncogenic gene fusions, with fusion frequencies of 0.2%-3% throughout different cancers. However, BRAF fusions rarely occur in the same gene configuration, potentially challenging personalized therapy design. In particular, the impact of the wide variety of fusion partners on the oncogenic role of BRAF during tumor growth and drug response is unknown. Here, we used patient-derived colorectal cancer organoids to functionally characterize and cross-compare BRAF fusions containing various partner genes (AGAP3, DLG1, and TRIM24) with respect to cellular behavior, downstream signaling activation, and response to targeted therapies. We demonstrate that 5' fusion partners mainly promote canonical oncogenic BRAF activity by replacing the auto-inhibitory N-terminal region. In addition, the 5' partner of BRAF fusions influences their subcellular localization and intracellular signaling capacity, revealing distinct subsets of affected signaling pathways and altered gene expression. Presence of the different BRAF fusions resulted in varying sensitivities to combinatorial inhibition of MEK and the EGF receptor family. However, all BRAF fusions conveyed resistance to targeted monotherapy against the EGF receptor family, suggesting that BRAF fusions should be screened alongside other MAPK pathway alterations to identify patients with metastatic colorectal cancer to exclude from anti-EGFR-targeted treatment. IMPLICATIONS: Although intracellular signaling and sensitivity to targeted therapies of BRAF fusion genes are influenced by their 5' fusion partner, we show that all investigated BRAF fusions confer resistance to clinically relevant EGFR inhibition.
Collapse
Affiliation(s)
- Christina Stangl
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Division of Molecular Oncology, Netherlands Cancer Institute, and Oncode Institute, Amsterdam, the Netherlands
| | - Jasmin B Post
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, the Netherlands
| | - Nizar Hami
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Ingrid Verlaan-Klink
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Harmjan R Vos
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Robert M van Es
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco J Koudijs
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Center for Personalized Cancer Treatment, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology, Netherlands Cancer Institute, and Oncode Institute, Amsterdam, the Netherlands.
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, and Oncode Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - W P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands. .,Cyclomics, Utrecht, the Netherlands.,Frame Cancer Therapeutics, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Sommerkamp AC, Uhrig S, Stichel D, St-Onge P, Sun P, Jäger N, von Deimling A, Sahm F, Pfister SM, Korshunov A, Sinnett D, Jabado N, Wefers AK, Jones DTW. An optimized workflow to improve reliability of detection of KIAA1549:BRAF fusions from RNA sequencing data. Acta Neuropathol 2020; 140:237-239. [PMID: 32476062 PMCID: PMC7360662 DOI: 10.1007/s00401-020-02167-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander C. Sommerkamp
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Pediatric Glioma Research Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Uhrig
- grid.461742.2Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pascal St-Onge
- grid.411418.90000 0001 2173 6322Division of Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montreal, Canada
| | - Pengbo Sun
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Sinnett
- grid.411418.90000 0001 2173 6322Division of Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montreal, Canada ,grid.14848.310000 0001 2292 3357Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC Canada
| | - Nada Jabado
- grid.14709.3b0000 0004 1936 8649Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Canada
| | - Annika K. Wefers
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T. W. Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Pediatric Glioma Research Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathol 2019; 138:827-835. [PMID: 31278449 DOI: 10.1007/s00401-019-02039-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Abstract
Molecular markers have become pivotal in brain tumor diagnostics. Mutational analyses by targeted next-generation sequencing of DNA and array-based DNA methylation assessment with copy number analyses are increasingly being used in routine diagnostics. However, the broad variety of gene fusions occurring in brain tumors is marginally covered by these technologies and often only assessed by targeted assays. Here, we assessed the feasibility and clinical value of investigating gene fusions in formalin-fixed paraffin-embedded (FFPE) tumor tissues by next-generation mRNA sequencing in a routine diagnostic setting. After establishment and optimization of a workflow applicable in a routine setting, prospective diagnostic application in a neuropathology department for 26 months yielded relevant fusions in 66 out of 101 (65%) analyzed cases. In 43 (43%) cases, the fusions were of decisive diagnostic relevance and in 40 (40%) cases the fusion genes rendered a druggable target. A major strength of this approach was its ability to detect fusions beyond the canonical alterations for a given entity, and the unbiased search for any fusion event in cases with uncertain diagnosis and, thus, uncertain spectrum of expected fusions. This included both rare variants of established fusions which had evaded prior targeted analyses as well as the detection of previously unreported fusion events. While the impact of fusion detection on diagnostics is highly relevant, it is especially the detection of "druggable" fusions which will most likely provide direct benefit to the patients. The wider application of this approach for unbiased fusion identification therefore promises to be a major advance in identifying alterations with immediate impact on patient care.
Collapse
|
16
|
Oncogenic BRAF Alterations and Their Role in Brain Tumors. Cancers (Basel) 2019; 11:cancers11060794. [PMID: 31181803 PMCID: PMC6627484 DOI: 10.3390/cancers11060794] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations of the v-raf murine sarcoma viral oncogene homolog B (BRAF) have been extensively studied in several tumor entities and are known to drive cell growth in several tumor entities. Effective targeted therapies with mutation-specific small molecule inhibitors have been developed and established for metastasized malignant melanoma. The BRAF V600E mutation and KIAA1549-BRAF fusion are alterations found in several brain tumors and show a distinct prognostic impact in some entities. Besides the diagnostic significance for the classification of central nervous system tumors, these alterations present possible therapy targets that may be exploitable for oncological treatments, as it has been established for malignant melanomas. In this review the different central nervous system tumors harboring BRAF alterations are presented and the diagnostic significance, prognostic role, and therapeutic potential are discussed.
Collapse
|
17
|
Appay R, Fina F, Macagno N, Padovani L, Colin C, Barets D, Ordioni J, Scavarda D, Giangaspero F, Badiali M, Korshunov A, M Pfister S, T W Jones D, Figarella-Branger D. Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas. Mod Pathol 2018; 31:1490-1501. [PMID: 29802359 DOI: 10.1038/s41379-018-0050-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Abstract
Pilocytic astrocytomas represent the most common glioma subtype in young patients and account for 5.4% of all gliomas. They are characterized by alterations in the RAS-MAP kinase pathway, the most frequent being a tandem duplication on chromosome 7q34 involving the BRAF gene, resulting in oncogenic BRAF fusion proteins. BRAF fusion involving the KIAA1549 gene is a hallmark of pilocytic astrocytoma, but it has also been recorded in rare cases of gangliogliomas, 1p/19q co-deleted oligodendroglial tumors, and it is also a common feature of disseminated oligodendroglial-like leptomeningeal neoplasm. In some difficult cases, evidence for KIAA1549-BRAF fusion is of utmost importance for the diagnosis. Moreover, because the KIAA1549-BRAF fusion constitutively activates the MAP kinase pathway, it represents a target for drugs such as MEK inhibitors, and therefore, the detection of this genetic abnormality is highly relevant in the context of clinical trials applying such new approaches. In the present study, we aimed to use the high sensitivity of Droplet Digital PCR (DDPCR™) to predict KIAA1549-BRAF fusion on very small amounts of formalin-fixed paraffin-embedded tissue in routine practice. Therefore, we analyzed a training cohort of 55 pilocytic astrocytomas in which the KIAA1549-BRAF fusion status was known by RNA sequencing used as our gold standard technique. Then, we analyzed a prospective cohort of 40 pilocytic astrocytomas, 27 neuroepithelial tumors remaining difficult to classify (pilocytic astrocytoma versus ganglioglioma or diffuse glioma), 15 dysembryoplastic neuroepithelial tumors, and 18 gangliogliomas. We could demonstrate the usefulness and high accuracy (100% sensitivity and specificity when compared to RNA sequencing) of DDPCR™ to assess the KIAA1549-BRAF fusion from very low amounts of DNA isolated from formalin-fixed paraffin-embedded specimens. BRAF duplication is both necessary and sufficient to predict this fusion in most cases and we propose that this single analysis could be used in routine practice to save time, money, and precious tissue.
Collapse
Affiliation(s)
- Romain Appay
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Frédéric Fina
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,APHM, Unité Développement Technique, Marseille, France
| | - Nicolas Macagno
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Laëtitia Padovani
- APHM, Hôpital de la Timone, Service de Radiothérapie, Marseille, France
| | - Carole Colin
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Doriane Barets
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Joanna Ordioni
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Didier Scavarda
- APHM, Hôpital de la Timone, Service de Neurochirurgie Pédiatrique, Marseille, France
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Science, Sapienza University, Rome, Italy.,Neuromed Institute, IRCCS, Isernia, Pozzilli, Italy
| | - Manuela Badiali
- Laboratory of Genetics and Genomics, Microcitemico Pediatric Hospital, Cagliari, Italy
| | - Andrey Korshunov
- CCU Neuropathology, German Cancer Research Center and Department of Neuropathology, Heidelberg University, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella-Branger
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France. .,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
18
|
Ding Y, Wang C, Li X, Jiang Y, Mei P, Huang W, Song G, Wang J, Ping G, Hu R, Miao C, He X, Chen G, Li H, Zhu Y, Zhang Z. Novel clinicopathological and molecular characterization of metanephric adenoma: a study of 28 cases. Diagn Pathol 2018; 13:54. [PMID: 30111351 PMCID: PMC6094885 DOI: 10.1186/s13000-018-0732-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Background Metanephric adenoma is a rare, benign renal neoplasm with occasional misdiagnosis. However, its molecular characterization is not fully understood. Methods In this study, we use the hybrid capture-based Next-Generation Sequencing to sequence a panel of 295 well-established oncogene or tumor suppressor genes in 28 cases of MA patients in China. Novel clinicopathological markers associated with the mitogen-activated protein kinase (MAPK) pathway in metanephric adenoma were detected by immunohistochemistry. Results It was found that except for BRAF (22/28) mutations (c.1799 T > A, p.V600E), NF1 (6/28), NOTCH1 (5/28), SPEN (5/28), AKT2 (4/28), APC (4/28), ATRX (3/28), and ETV4 (3/28) mutations could also be detected. Meanwhile, a novel and rare gene fusion of STARD9-BRAF, CUX1-BRAF, and LOC100507389-BRAF was detected in one MA patient. In addition, although MEK phosphorylation was normally activated, the phosphorylation level of ERK was low in metanephric adenoma cases. Highly expressed p16 and DUSP6 may have contributed to these results, which maintained MA as a benign renal tumor. Conclusions This study provides novel molecular and pathological markers for metanephric adenoma, which could improve its diagnosis and increase the understanding of its pathologic mechanism. Electronic supplementary material The online version of this article (10.1186/s13000-018-0732-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Ding
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Cong Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xuejie Li
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang Unversity, Hangzhou, 310003, China
| | - Yangyang Jiang
- Department of Pathology, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Ping Mei
- Department of Pathology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing, 210000, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jinsong Wang
- Department of Pathology, Nanjing First Hospital, Nanjing, 210000, China
| | - Guoqiang Ping
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ran Hu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiao He
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yan Zhu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
19
|
Liu Y, Wei S, Zou Q, Luo Y. Stachydrine suppresses viability & migration of astrocytoma cells via CXCR4/ERK & CXCR4/Akt pathway activity. Future Oncol 2018; 14:1443-1459. [PMID: 29873242 DOI: 10.2217/fon-2017-0562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Pilocytic astrocytomas (PAs) are a common adolescent malignancy. We evaluated the effects of the betaine stachydrine on human PA cells as well as its associated molecular mechanism(s). MATERIALS & METHODS Various experiments assessing stachydrine's effects on the human PA cell line Res186 were performed. RESULTS & CONCLUSION Stachydrine dose-dependently suppressed proliferation and colony formation in Res186 cells with no such effect on normal astrocytes. Stachydrine downregulated CXCR4 transcription through enhancing IκBα-based NF-κB inhibition. Stachydrine promoted apoptosis and cyclin D1/p27Kip1-associated G0/G1 phase arrest in a CXCR4/ERK- and CXCR4/Akt-dependent manner. Stachydrine suppressed MMP-associated migration and invasiveness via inhibiting CXCR4/Akt/MMP-9/2 and CXCR4/ERK/MMP-9/2 pathway activity. Stachydrine inhibits the viability, migration and invasiveness of human PA cells via inhibiting CXCR4/ERK and CXCR4/Akt signaling.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Songzhi Wei
- Department of Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Qin Zou
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yan Luo
- Department of Nursing, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
20
|
Bae JM, Won JK, Park SH. Recent Advancement of the Molecular Diagnosis in Pediatric Brain Tumor. J Korean Neurosurg Soc 2018; 61:376-385. [PMID: 29742887 PMCID: PMC5957317 DOI: 10.3340/jkns.2018.0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022] Open
Abstract
Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of prognosis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed.
Collapse
Affiliation(s)
- Jeong-Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Neuroscience Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Management and Survival of Adult Patients with Pilocytic Astrocytoma in the National Cancer Database. World Neurosurg 2018; 112:e881-e887. [PMID: 29427814 DOI: 10.1016/j.wneu.2018.01.208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adult pilocytic astrocytomas (PAs) are relatively rare central nervous system (CNS) tumors with a favorable prognosis. We sought to investigate existing clinical management strategies and overall survival (OS) as a function of various clinical characteristics in a cohort of adult patients with PA. METHODS The study cohort comprised all patients age >18 years diagnosed with a CNS PA diagnosed between 2004 and 2014 and included in the National Cancer Database. Clinical and treatment-related characteristics were recorded and analyzed for associations with OS following diagnosis using univariate and multivariate analyses. RESULTS A total of 3057 adult patients, with a median age of 32 years, met the inclusion criteria. At diagnosis, 1138 patients (41%) had cerebral tumors, 832 (30%) had cerebellar tumors, 252 (9%) had tumors of the spinal cord, and 534 (19%) had tumors of unspecified location. More than three-quarters (77%) of the patients underwent surgery alone as local therapy, with the remainder split among surgery plus radiation (11.9%), radiation alone (4.5%), and biopsy alone (6.9%). On multivariate analysis, factors associated with inferior OS included older age (hazard ratio [HR], 1.05; P < 0.001), lower income (P < 0.001), higher Charlson/Deyo score (P = 0.023), larger tumor size (P = 0.023), and radiation therapy technique (P < 0.001; HR, 3.37 for external beam radiation therapy [EBRT]). CONCLUSIONS Our data provide large-scale prognostic information from a contemporary cohort of patients with PA, confirming that age, median income, Charlson/Deyo Score, and tumor size have significant effects on OS. Although resection status, tumor size, and location likely bias against EBRT, novel therapeutics are clearly needed in patients with tumors not amenable to resection or radiosurgery.
Collapse
|
22
|
Dai X, Theobard R, Cheng H, Xing M, Zhang J. Fusion genes: A promising tool combating against cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:149-160. [PMID: 29357299 DOI: 10.1016/j.bbcan.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
Abstract
The driving roles of fusion genes during tumorigenesis have been recognized for decades, with efficacies demonstrated in clinical diagnosis and targeted therapy. With advances in sequencing technologies and computational biology, a surge in the identification of fusion genes has been witnessed during the past decade. The discovery and presence of splicing based fusions in normal tissues have challenged our canonical conceptions on fusion genes and offered us novel medical opportunities. The specificity of fusion genes to neoplastic tissues and their diverse functionalities during carcinogenesis foster them as promising tools in the battle against cancer. It is time to re-visit and comb through our cutting-edge knowledge on fusion genes to accelerate clinical translation of these internal markers. Urged as such, we are encouraged to categorize fusion events according to mechanisms leading to their generation, oncological consequences and clinical implications, offer insights on fusion occurrence across tumors from the system level, highlight feasible practices in fusion-related pharmaceutical development, and identify understudied yet important niches that may lead future research trend in this field.
Collapse
Affiliation(s)
- Xiaofeng Dai
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Rutaganda Theobard
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongye Cheng
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengtao Xing
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Jianying Zhang
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA; Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
23
|
Tomić TT, Olausson J, Wilzén A, Sabel M, Truvé K, Sjögren H, Dósa S, Tisell M, Lannering B, Enlund F, Martinsson T, Åman P, Abel F. Correction: A new GTF2I-BRAF fusion mediating MAPK pathway activation in pilocytic astrocytoma. PLoS One 2017; 12:e0184715. [PMID: 28880959 PMCID: PMC5589245 DOI: 10.1371/journal.pone.0184715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|