1
|
Chang H, Gu C, Wang M, Chen J, Yue M, Zhou J, Chang Z, Zhang C, Liu F, Feng Z. Screening and characterizing indigenous yeasts, lactic acid bacteria, and acetic acid bacteria from cocoa fermentation in Hainan for aroma Development. J Food Sci 2025; 90:e17612. [PMID: 39812519 DOI: 10.1111/1750-3841.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography. Additionally, gas chromatography-mass spectrometry was employed for the quantification of volatile compounds. The fermentation potentials of isolated yeast, lactic acid bacteria, and acetic acid bacteria were analyzed from multiple perspectives. Pichia fermentans XY23.1 and Hanseniaspora uvarum XY23.1 exhibited significant pectinolytic activity, essential for breaking down pectin in cocoa pulp. Moreover, H. uvarum XY23.1, H. occidentalis XY23.1, Saccharomyces cerevisiae XY23.2, and P. fermentans XY23.1 were identified as producers of notable amounts of alcohols and esters, contributing sweet and floral notes to the fermentation profile. Furthermore, Levilactobacillus brevis exhibited strong fructophilicity, and Lactiplantibacillus plantarum strains showed high metabolic rates and lactic acid production abilities, crucial for enhancing fermentation efficiency. Assessment of growth rate and acid production performance revealed that Gluconobacter potus XY23.2 and Acetobacter oryzifermentans XY23.1 can produce less acid during rapid growth, avoiding flavor defects caused by excessive acidity. This study demonstrates the impact of various flavor compounds on the flavor characteristics of cocoa pulp. It highlights the potential of these microbial strains for use in starter culture cocktails, which can significantly improve the quality of cocoa products by enhancing desirable flavor and aroma profiles while maintaining balanced acidity. PRACTICAL APPLICATION: This study screened and characterized microorganisms isolated from the fermentation of Hainan cocoa (Trinitario) through a series of experiments, providing new insights for the future selection of cocoa fermentation starters.
Collapse
Affiliation(s)
- Haode Chang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Mengrui Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junxia Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhe Yue
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junping Zhou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ziqing Chang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
2
|
Radu ED, Mureșan V, Emilia Coldea T, Mudura E. Unconventional raw materials used in beer and beer-like beverages production: Impact on metabolomics and sensory profile. Food Res Int 2024; 183:114203. [PMID: 38760135 DOI: 10.1016/j.foodres.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
Beer is the third most consumed beverage in the world, trailing only water and tea but ranking first among alcoholic beverages. In recent years, producers and researchers have shown a growing interest in brewing diversification and innovation, due to of the widespread consumption of beer. In order to create beers and beer-like products with unique and consumer-pleasing characteristics, the use of unconventional raw materials has become a subject of intensive research. The purpose of this paper is to identify, evaluate and summarize the findings of all relevant unconventional raw materials used in relevant scientific studies, as well as the effect on the metabolomics of beer and beer-like beverages.For the enhancement of beer characteristics, the production process may involve the use of an extremely diverse variety of unconventional raw materials that are not included on thelist of usual ingredients for the beer industry. However, the general trend is to use locally available ingredients as well as functional ingredients. Twoof the most studied functional characteristics involve phenolic compounds and antioxidant activity, which is why the fruit is by far the most commonly used adjunct category, as fruits are particularly important sources of polyphenols and antioxidants. Other uncommon adjuncts used in brewing includeplants, starch sources, spices or even propolis. Moreover, unconventional raw materials are used to enhance the sensory profile by create new characteristics such as new tastes and flavors, accentuation of the cooling sensation or even increasing acceptability among potential consumers, who do not appreciate traditional beers due to their specific characteristics.
Collapse
Affiliation(s)
- Eugen-Dan Radu
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Vlad Mureșan
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania
| | - Elena Mudura
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Kordialik-Bogacka E. Biopreservation of beer: Potential and constraints. Biotechnol Adv 2022; 58:107910. [PMID: 35038561 DOI: 10.1016/j.biotechadv.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
The biopreservation of beer, using only antimicrobial agents of natural origin to ensure microbiological stability, is of great scientific and commercial interest. This review article highlights progress in the biological preservation of beer. It describes the antimicrobial properties of beer components and microbiological spoilage risks. It discusses novel biological methods for enhancing beer stability, using natural antimicrobials from microorganisms, plants, and animals to preserve beer, including legal restrictions. The future of beer preservation will involve the skilled knowledge-based exploitation of naturally occurring components in beer, supplementation with generally regarded as safe antimicrobial additives, and mild physical treatments.
Collapse
Affiliation(s)
- Edyta Kordialik-Bogacka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wolczanska Street, 90-530 Lodz, Poland.
| |
Collapse
|
4
|
Paiva RAM, Mutz YS, Conte-Junior CA. A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds. Antioxidants (Basel) 2021; 10:antiox10091332. [PMID: 34572969 PMCID: PMC8470327 DOI: 10.3390/antiox10091332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Beer is one of the oldest and most consumed beverages worldwide, and recent trends point to increased consumption of functional beers. However, there is a lack in the scientific literature on the effects of adding functional adjuncts in distinct steps of the manufacturing process and its implications on the final physicochemical and sensorial profile. Therefore, the present review analyzes the ingredients used and their insertion stage to achieve a functional beer with bioactive compounds, higher antioxidant activity, and improved sensory characteristics. The addition of fruits, herbal extracts, plants, and mushrooms in beers was documented. Furthermore, adjuncts were successfully added in wort boiling, fermentation, maturation, and packaging. The wort boiling step stands out among these four due to the superior extraction of phenolic compounds from the added adjuncts. On the other hand, adjunct addition in the maturation step induced low increases in antioxidant and phenolic content of the respective enriched beers. Fruits represented the majority of adopted adjuncts among the studies evaluated. Furthermore, the addition of fruits represented a positive increment in the beer’s volatile profile and an increase in sensory acceptability. A gap in the literature was found regarding the analysis of phenolic compounds with appropriate techniques such as HPLC-MS. Furthermore, there is a need to study the bioavailability of the incorporated bioactive compounds to prove the health claims inferred about these beers. In conclusion, functional beers are a little-explored relevant field, with potential for new studies.
Collapse
Affiliation(s)
- Rodrigo A. M. Paiva
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo 1281, Polo de Química, Bloco C, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
| | - Yhan S. Mutz
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo 1281, Polo de Química, Bloco C, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence: (Y.S.M.); (C.A.C.-J.); Tel.: +55-21-3938-7824 (C.A.C.-J.)
| | - Carlos A. Conte-Junior
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo 1281, Polo de Química, Bloco C, Ilha do Fundão, Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence: (Y.S.M.); (C.A.C.-J.); Tel.: +55-21-3938-7824 (C.A.C.-J.)
| |
Collapse
|
5
|
Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients. Foods 2021; 10:foods10081831. [PMID: 34441608 PMCID: PMC8391379 DOI: 10.3390/foods10081831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023] Open
Abstract
Selected biological resources used as raw materials in beer production are important drivers of innovation and segmentation in the dynamic market of craft beers. Among these resources, local/regional ingredients have several benefits, such as strengthening the connection with territories, enhancing the added value of the final products, and reducing supply costs and environmental impacts. It is assumed that specific ingredients provide differences in flavours, aromas, and, more generally, sensory attributes of the final products. In particular, of interest are ingredients with features attributable and/or linked to a specific geographical origin. This review encompasses the potential contribution and exploitation of biodiversity in the main classes of beer inputs, such as cereals, hops, microbes, and adjuncts, with a specific emphasis on autochthonous biological resources, detailing the innovative paths already explored and documented in the scientific literature. This dissertation proposes an overview of the impact on beer quality for each raw material category, highlighting the benefits and limitations that influence its concrete applications and scale-up, from the field to the stain. The topics explored promote, in the sector of craft beers, trends already capitalised in the production of other alcoholic beverages, such as the preservation and revalorisation of minor and autochthonous varieties, the exploitation of yeast and bacteria strains isolated from specific sites/plant varieties, and the valorisation of the effects of peculiar terroirs on the quality of agricultural products. Finally, the examined tendencies contribute toward reducing the environmental impacts of craft beer manufacturing, and are in line with sustainable development of food systems, increasing the economic driver of biodiversity preservation.
Collapse
|
6
|
Potential Applicability of Cocoa Pulp ( Theobroma cacao L) as an Adjunct for Beer Production. ScientificWorldJournal 2020; 2020:3192585. [PMID: 32934606 PMCID: PMC7484685 DOI: 10.1155/2020/3192585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate the application of cocoa pulp as an adjunct for malt in beer production. The cocoa pulp was analyzed for humidity, proteins, lipids, sugars, total soluble solids, organic acids, and minerals. A study was carried out to reduce the cocoa pulp viscosity by enzymatic depectinization, making its use viable in beer production. The cocoa pulp showed relevant quantities of compounds important in fermentation, such as sugars, acids, and minerals. In fermentation using the adjunct, the proportions of pulp used were 10, 30, and 49%. A significant difference was found between the adjunct and all-malt worts. The 30% cocoa pulp concentration as an adjunct for malt in the fermentation medium contributed the most to the fermentative performance of the yeasts at both 15 and 22°C based on the consumption of apparent extract (°Plato), ethanol production, and cellular growth.
Collapse
|
7
|
Dysvik A, La Rosa SL, Buffetto F, Liland KH, Myhrer KS, Rukke EO, Wicklund T, Westereng B. Secondary Lactic Acid Bacteria Fermentation with Wood-Derived Xylooligosaccharides as a Tool To Expedite Sour Beer Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:301-314. [PMID: 31820631 DOI: 10.1021/acs.jafc.9b05459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xylooligosaccharides (XOS) from woody biomass were evaluated as a substrate for secondary lactic acid bacteria (LAB) fermentation in sour beer production. XOS were extracted from birch (Betula pubescens) and added to beer to promote the growth of Lactobacillus brevis BSO 464. Growth, pH, XOS degradation, and metabolic products were monitored throughout fermentations, and the final beer was evaluated sensorically. XOS were utilized, metabolic compounds were produced (1800 mg/L lactic acid), and pH was reduced from 4.1 to 3.6. Secondary fermentation changed sensory properties significantly, and the resulting sour beer was assessed as similar to a commercial reference in multiple attributes, including acidic taste. Overall, secondary LAB fermentation induced by wood-derived XOS provided a new approach to successfully produce sour beer with reduced fermentation time (from 1-3 years to 4 weeks). The presented results demonstrate how hemicellulosic biomass can be valorized for beverage production and to obtain sour beer with improved process control.
Collapse
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Fanny Buffetto
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology , Norwegian University of Life Sciences , P.O. Box 5003, N-1433 Ås , Norway
| | - Kristine S Myhrer
- NOFIMA - Norwegian Institute of Food, Fisheries and Aquaculture Research , PB 210, N-1431 Ås , Norway
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| |
Collapse
|