1
|
Qadir M, Hussain A, Shah M, Hamayun M, Al-Huqail AA, Iqbal A, Ali S. Improving sunflower growth and arsenic bioremediation in polluted environments: Insights from ecotoxicology and sustainable mitigation approaches. Heliyon 2024; 10:e33078. [PMID: 38988560 PMCID: PMC11234106 DOI: 10.1016/j.heliyon.2024.e33078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Mohib Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amjad Iqbal
- Department of Food Science & Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
2
|
Arsić B, Mrmošanin J, Petrović S, Kostić D, Pavlović A, Tošić S, Georgijev A. Creation of products made from honey based on the content of elements determined by ICP-OES. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40530-40537. [PMID: 36752916 DOI: 10.1007/s11356-023-25768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
People of different age can consume honey, but the taste is often not accepted easily. Therefore, products made from honey with a pleasant taste and high nutritional and health benefits are highly demanded on the market. Honey is a bioindicator of environmental pollution. Certain plants are known as high accumulators of toxic elements. Here on the example of three honey-based prototypes, with sesame, shelled pumpkin, sunflower seeds, plums, walnut, almond, hazel, and cinnamon as minor ingredients, we demonstrated the creation of new products putting the accent on the content of toxic and potentially toxic elements, usually treated as irrelevant in making products. Nineteen elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, Si, and Zn) were determined by ICP-OES after oven-based and wet digestion methods in blossom honey and prototypes samples. Among the investigated elements, the most abundant element in blossom honey for the products and the investigated products was potassium in most cases. Investigated honey (used for the products) and two of the products contain small quantities of toxic and potentially toxic elements. However, the second product, containing besides honey two accumulators of toxic metals (sesame, sunflower seeds), shows higher values for toxic elements. Therefore, the ICP-OES analysis can be a good step in making new products with high nutritional and health values but almost free from toxic and potentially toxic elements.
Collapse
Affiliation(s)
- Biljana Arsić
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska, 33, Niš, Republic of Serbia.
| | - Jelena Mrmošanin
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska, 33, Niš, Republic of Serbia
| | - Stefan Petrović
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska, 33, Niš, Republic of Serbia
| | - Danijela Kostić
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska, 33, Niš, Republic of Serbia
| | - Aleksandra Pavlović
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska, 33, Niš, Republic of Serbia
| | - Snežana Tošić
- Faculty of Sciences and Mathematics, Department of Chemistry, University of Niš, Višegradska, 33, Niš, Republic of Serbia
| | - Aneta Georgijev
- Timomed d.o.o., Kej Veljka Vlahovića 7a, Knjaževac, Republic of Serbia
| |
Collapse
|
3
|
Sorour AA, Badr R, Mahmoud N, Abdel-Latif A. Cadmium and zinc accumulation and tolerance in two Egyptian cultivars (S53 and V120) of Helianthus annuus L. as potential phytoremediator. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1643-1654. [PMID: 38644603 DOI: 10.1080/15226514.2024.2343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.
Collapse
Affiliation(s)
- Ahmed A Sorour
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Reem Badr
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermen Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amani Abdel-Latif
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Seltenrich N. Untested, Unsafe? Cannabis Users Show Higher Lead and Cadmium Levels. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:94001. [PMID: 37747406 PMCID: PMC10519194 DOI: 10.1289/ehp13519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
|
5
|
Majeed A, Amjad M, Imran M, Murtaza B, Naeem MA, Jawad H, Qaisrani SA, Akhtar SS. Iron enriched quinoa biochar enhances Nickel phytoremediation potential of Helianthus annuus L. by its immobilization and attenuation of oxidative stress: implications for human health. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1830-1843. [PMID: 37088874 DOI: 10.1080/15226514.2023.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present study was performed to assess Ni-immobilization and the phytoremediation potential of sunflower by the application of quinoa stalks biochar (QSB) and its magnetic nanocomposite (MQSB). The QSB and MQSB were characterized with FTIR, SEM, EDX, and XRD to get an insight of their surface properties. Three-week-old seedlings of sunflower were transplanted to soil spiked with Ni (0, 15, 30, 60, 90 mg kg-1), QSB and MQSB (0, 1, and 2%) in the wire house under natural conditions. The results showed that increasing Ni levels inhibited sunflower growth and yield due to the high production of reactive oxygen species (ROS) and lipid peroxidation. Enzyme activities like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POX) also increased as Ni levels increased. However, the application of QSB and MQSB reduced Ni uptake, root-shoot, and shoot-seed translocation and decreased the generation of ROS, and lowered the activity of SOD, CAT, APX, and POX, leading to improved growth and yield, especially with MQSB. This was verified through SEM, EDX, XRD, and FTIR. It can be concluded that QSB and MQSB can effectively enhance Ni-tolerance in sunflowers and mitigate oxidative stress and human health risks.
Collapse
Affiliation(s)
- Afshan Majeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Husnain Jawad
- Plant Physiology Section, Agronomic Research Institute, AARI, Faisalabad, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Poudel P, Di Gioia F, Lambert JD, Connolly EL. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. FRONTIERS IN PLANT SCIENCE 2023; 14:1177844. [PMID: 37139105 PMCID: PMC10150129 DOI: 10.3389/fpls.2023.1177844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023]
Abstract
Micronutrient deficiencies caused by malnutrition and hidden hunger are a growing concern worldwide, exacerbated by climate change, COVID-19, and conflicts. A potentially sustainable way to mitigate such challenges is the production of nutrient-dense crops through agronomic biofortification techniques. Among several potential target crops, microgreens are considered suitable for mineral biofortification because of their short growth cycle, high content of nutrients, and low level of anti-nutritional factors. A study was conducted to evaluate the potential of zinc (Zn) biofortification of pea and sunflower microgreens via seed nutri-priming, examining the effect of different Zn sources (Zn sulfate, Zn-EDTA, and Zn oxide nanoparticles) and concentrations (0, 25, 50, 100, and 200 ppm) on microgreen yield components; mineral content; phytochemical constituents such as total chlorophyll, carotenoids, flavonoids, anthocyanin, and total phenolic compounds; antioxidant activity; and antinutrient factors like phytic acid. Treatments were arranged in a completely randomized factorial block design with three replications. Seed soaked in a 200 ppm ZnSO4 solution resulted in higher Zn accumulation in both peas (126.1%) and sunflower microgreens (229.8%). However, an antagonistic effect on the accumulation of other micronutrients (Fe, Mn, and Cu) was seen only in pea microgreens. Even at high concentrations, seed soaking in Zn-EDTA did not effectively accumulate Zn in both microgreens' species. ZnO increased the chlorophyll, total phenols, and antioxidant activities compared to Zn-EDTA. Seed soaking in ZnSO4 and ZnO solutions at higher concentrations resulted in a lower phytic acid/Zn molar ratio, suggesting the higher bioaccessibility of the biofortified Zn in both pea and sunflower microgreens. These results suggest that seed nutrient priming is feasible for enriching pea and sunflower microgreens with Zn. The most effective Zn source was ZnSO4, followed by ZnO. The optimal concentration of Zn fertilizer solution should be selected based on fertilizer source, target species, and desired Zn-enrichment level.
Collapse
Affiliation(s)
- Pradip Poudel
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Francesco Di Gioia,
| | - Joshua D. Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Erin L. Connolly
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Sorour AA, Khairy H, Zaghloul EH, Zaghloul HAH. Microbe- plant interaction as a sustainable tool for mopping up heavy metal contaminated sites. BMC Microbiol 2022; 22:174. [PMID: 35799112 PMCID: PMC9261045 DOI: 10.1186/s12866-022-02587-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.
Collapse
Affiliation(s)
- Ahmed A Sorour
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Eman H Zaghloul
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Heba A H Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt.
| |
Collapse
|
8
|
Kostić AŽ, Dojčinović B, Špirović Trifunović B, Milinčić DD, Nedić N, Stanojević S, Pešić M. Micro/trace/toxic elements and insecticide residues level in monofloral bee-collected sunflower pollen- health risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:568-575. [PMID: 35611769 DOI: 10.1080/03601234.2022.2079348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the current research was to determine the content of (potentially) toxic elements and insecticide residues in monofloral sunflower bee-collected pollen. For micro- and trace elements determination Inductively Coupled Plasma Optical Emission (ICP-OES) analytical method was used while insecticide residue content was monitored by applying Liquid Chromatography-Mass Spectrometry (LC-MS/MS) technique. In total, seventeen micro/trace elements were quantified. None of the twenty four examined insecticides were detected above the limit of detection (LOD) which makes studied sunflower bee-collected pollen eco-friendly both to bees and humans. Based on presence of several toxic as well as potentially toxic elements calculations for estimated weekly intakes (EWI), and oral intakes (OI) were made and used for health risk assessment based on the computation of two different health risk quotients (HQ)- acute (HQA) and long-term (HQL). The obtained results proved that all HQ values for adults were negligible or low except in case of HQL value for arsenic (0.32) which can be characterized as medium. However, in case of children much more precaution is needed due to significant HQL risk for arsenic (1.511). The attained data can help to make additional linkage between bee-collected pollen as food ingredients and potential benefits/risks for human health.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Danijel D Milinčić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Nebojša Nedić
- Faculty of Agriculture, Chair for Breeding and Reproduction of Domestic and Bred Animals, University of Belgrade, Belgrade, Serbia
| | - Sladjana Stanojević
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana Pešić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Dridi N, Ferreira R, Bouslimi H, Brito P, Martins-Dias S, Caçador I, Sleimi N. Assessment of Tolerance to Lanthanum and Cerium in Helianthus Annuus Plant: Effect on Growth, Mineral Nutrition, and Secondary Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070988. [PMID: 35406967 PMCID: PMC9002919 DOI: 10.3390/plants11070988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Rare earth elements (REEs) present a group of nonessential metals for the growth and development of plants. At high concentrations, they can induce internal stress and disturb the physiological and biochemical mechanisms in plants. The potential uptake of lanthanum (La) and cerium (Ce) by the horticultural plant Helianthus annuus and the effect of these elements on its growth, its absorption of macroelements, and the contents of phenolic compounds and flavonoids were assessed. The plants were exposed to 0, 1, 2.5, 5, and 10 µM of La and Ce for 14 days. The results showed a remarkable accumulation of the two REEs, especially in the roots, which was found to be positively correlated with the total phenolic compound and flavonoid content in the plant shoots and roots. The plant's growth parameter patterns (such as dry weight and water content); the levels of potassium, calcium, and magnesium; and the tolerance index varied with the concentrations of the two studied elements. According to the tolerance index values, H. annuus had more affinity to La than to Ce. Although these metals were accumulated in H. annuus tissues, this Asteraceae plant cannot be considered as a hyperaccumulator species of these two REEs, since the obtained REE content in the plant's upper parts was less than 1000 mg·Kg-1 DW.
Collapse
Affiliation(s)
- Nesrine Dridi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Renata Ferreira
- CERENA, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Houda Bouslimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Pedro Brito
- IPMA, Division of Oceanography and Marine Environment, Instituto Português do Mar e da Atmosfera, 1495-165 Algés, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Susete Martins-Dias
- CERENA, Centro de Recursos Naturais e Ambiente, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Isabel Caçador
- MARE-FCUL, Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Noomene Sleimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| |
Collapse
|
10
|
Bayat M, Faramarzi A, Ajalli J, Abdi M, Nourafcan H. Bioremediation of potentially toxic elements of sewage sludge using sunflower (Heliantus annus L.) in greenhouse and field conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1217-1227. [PMID: 34374925 DOI: 10.1007/s10653-021-01018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of sewage sludge, containing potentially toxic elements (heavy metals), by the hyperaccumulator sunflower (Helianthus annus L.), was determined in greenhouse (G) and field (F) conditions in Isfahan, Iran. The soil pots, mixed with dried sewage sludge at 0, 15, 30, 45, and 60 mg/kg, were planted with sunflower seedlings and kept in the greenhouse (G) and in the field (F). Different soil physicochemical and plant biochemical properties including heavy metal uptake of nickel (Ni), chromium (Cr), lead (Pb), and cadmium (Cd) were determined. In contrast with the soil pH, soil salinity, organic matter, nitrogen, and not soil CaCO3, were significantly enhanced by increasing sewage sludge. Sewage sludge was significant on plant uptake of Ni (2.27-4.25 mg/kg), Cr (3.27-4.75 mg/kg), Cd (13.85-15.27 mg/kg), and total chlorophyll (1.69-1.99 mg/g) in the greenhouse, and plant uptake of Ni (1.75-2.75 mg/kg) and Cd (1.37-2.25 mg/kg), and chlorophyll b (0.06-0.26 mg/g), total chlorophyll (0.57-1.16 mg/g), and carotenoids (1.10-1.61 mg/g) in the field. Although Pb was not significantly affected by sewage sludge, it showed the highest bioaccumulation factor of 0.96 at 15 mg/kg. Interestingly, the heavy metals were all positively and significantly correlated with each other and with plant carotenoids, similar to the positive and significant correlations between Pb with chlorophyll a and b. Accordingly, the increased levels of carotenoids, acting as antioxidant, may be an indicator of oxidative stress. Sunflower plants can be used as an efficient method for the bioremediation of the soils polluted with sewage sludge including Ni, Cr, and Cd.
Collapse
Affiliation(s)
- Masih Bayat
- Department of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Ali Faramarzi
- Department of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran.
| | - Jalil Ajalli
- Department of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Mehrdad Abdi
- Department of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Hassan Nourafcan
- Department of Horticulture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
11
|
Muratova AY, Zelenova NA, Sungurtseva IY, Gorelova SV, Kolbas AP, Pleshakova YV. Comparative Study of the Rhizospheric Microflora of Sunflower Cultivars of Helianthus annuus (Asteraceae, Magnoliópsida) Grown on Soils with Anthropogenic Polyelemental Anomalies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021100198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. PHYSIOLOGIA PLANTARUM 2021; 173:148-166. [PMID: 33219524 DOI: 10.1111/ppl.13285] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 05/19/2023]
Abstract
Most of the heavy metals (HMs), and metals/metalloids are released into the nature either by natural phenomenon or anthropogenic activities. Being sessile organisms, plants are constantly exposed to HMs in the environment. The metal non-hyperaccumulating plants are susceptible to excess metal concentrations. They tend to sequester metals in their root vacuoles by forming complexes with metal ligands, as a detoxification strategy. In contrast, the metal-hyperaccumulating plants have adaptive intrinsic regulatory mechanisms to hyperaccumulate or sequester excess amounts of HMs into their above-ground tissues rather than accumulating them in roots. They have unique abilities to successfully carry out normal physiological functions without showing any visible stress symptoms unlike metal non-hyperaccumulators. The unique abilities of accumulating excess metals in hyperaccumulators partly owes to constitutive overexpression of metal transporters and ability to quickly translocate HMs from root to shoot. Various metal ligands also play key roles in metal hyperaccumulating plants. These metal hyperaccumulating plants can be used in metal contaminated sites to clean-up soils. Exploiting the knowledge of natural populations of metal hyperaccumulators complemented with cutting-edge biotechnological tools can be useful in the future. The present review highlights the recent developments in physiological and molecular mechanisms of metal accumulation of hyperaccumulator plants in the lights of metal ligands and transporters. The contrasting mechanisms of metal accumulation between hyperaccumulators and non-hyperaccumulators are thoroughly compared. Moreover, uses of different metal hyperaccumulators for phytoremediation purposes are also discussed in detail.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Plant Biology, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Supriya Ghosh
- Department of Botany, University of Kalyani, Kalyani, Nadia-741235, India
| | - Hana Malinska
- Department of Biology, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
McKenzie EC, Guerra JC, Middleton JR, Kim DY, Williams F, Garcia TM, Russell DS. Black oil sunflower seed ingestion associated with renal azotemia, gastroesophageal ulceration, and a high mortality rate in four alpacas and two llamas. J Am Vet Med Assoc 2021; 259:406-414. [PMID: 34337963 DOI: 10.2460/javma.259.4.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION 4 alpacas and 2 llamas (11 months to 11 years old) from 2 properties were examined for lethargy (6/6), salivation and regurgitation (4/6), and recumbency (3/6). Signs developed approximately 48 to 72 hours after accidental access to black oil sunflower seeds. CLINICAL FINDINGS 3 alpacas died suddenly prior to treatment and were necropsied. One llama survived, and 1 alpaca and 1 llama died after days of medical treatment. All 3 treated animals had systemic inflammatory signs including tachycardia, fever, and hematologic changes. Biochemical anomalies included azotemia, hyperglycemia, hyponatremia, hypochloremia, and hypoalbuminemia. Necropsy identified numerous sunflower seeds in the gastrointestinal tract of all 5 animals that died, with pulmonary congestion (5/5 animals), mild centrilobular vacuolar hepatic degeneration (4/5), and erosions of the esophagus (3/5) and first (3/5) and third (1/5) compartments of the forestomach. Renal tubular necrosis was found in the 2 animals that died on day 4 of treatment. TREATMENT AND OUTCOME One llama responded successfully to intensive medical management including supplemented IV fluid therapy, oral and partial parenteral nutrition, and administration of antimicrobials, furosemide, and insulin and was clinically normal with plasma biochemical analysis values within reference range 12 weeks later. Vitamin D, oxalates, heavy metals, and mycotoxins were excluded as the cause of clinical signs on the basis of screening of uneaten seeds and tissue samples and gastric content from the treated llama that died. CLINICAL RELEVANCE Inadvertent large volume black oil sunflower seed ingestion resulted in a high mortality rate in camelids. A specific toxic principle was not identified. Feeding this product to camelids is not recommended to avoid the risk of accidental overingestion and subsequent disease.
Collapse
|
14
|
Havryliuk ОA, Hovorukha VM, Sachko AV, Gladka GV, Bida IO, Tashyrev OB. Bioremoval of hazardous cobalt, nickel, chromium, copper and cadmium compounds from contaminated soil by Nicotiana tabacum plants and associated microbiome. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Contamination of soils with heavy metals leads to reduction of soil fertility, destruction of natural ecosystems and detrimental effects on the health of society by increasing content of metals in the food chains from microorganisms to plants, animals and humans. Bioremediation is one of the most promising and cost-effective methods of cleaning soils polluted with toxic metals. According to current researchers, microorganisms and plants have the genetic potential to remove toxic metals from contaminated sites. The method of thermodynamic prediction was used to theoretically substantiate the mechanisms of interaction of soil microorganisms and plants with heavy metals. According to the our prediction, exometabolite chelators of anaerobic microorganisms may increase the mobility of metals and thereby contribute to the active transport of metals and their accumulation in plants. Plants of Nicotiana tabacum L. of Djubek cultivar were used as plant material for the current investigation. The examined toxicants were heavy metals, namely cobalt (II), nickel (II), chromium (VI), copper (II) and cadmium (II). The aqueous solutions of metal salts were added to the boxes after two months of plants growing to the final super-high concentration – 500 mg/kg of absolutely dry weight of soil. Quantitative assessments of copper and chromium-resistant microorganisms were made by cultivation on agar nutrient medium NA with a gradient of Cu(II) and Cr(VI). The concentration of metals in soil and plant material (leaves, stems and roots) was determined by atomic absorption method. The study revealed that heavy metals inhibited the growth of the examined tobacco plants. This was expressed by the necrosis of plant tissues and, ultimately, their complete death. Despite this, all investigated heavy metals were accumulated in plant tissues during 3–7 days before death of plants. The uptake of metals was observed in all parts of plants – leaves, stems and roots. The highest concentrations of Co(II), Ni(II), Cd(II), Cr(VI) were found in the leaves, Cu(II) – in the roots. The results show that the bioremoval efficiency of the investigated metals ranged 0.60–3.65%. Given the super-high initial concentration of each of the metals (500 mg/kg), the determined removal efficiency was also high. Cadmium was the most toxic to plants. Thus, the basic points of the thermodynamic prognosis of the possibility of accumulation of heavy metals by phytomicrobial consortium were experimentally confirmed on the example of N. tabacum plants and metal-resistant microorganisms. The study demonstrated that despite the high initial metals concentration, rate of damage and death of plants, metals are accumulated inplant tissues in extremely hight concentrations. Soil microorganisms were observed to have high adaptation potencial to Cu(II) and Cr(VI). In anaerobic conditions, microorganisms presumably mobilize heavy metals, which later are absorbed by plants. The obtained results are the basis for the development of environmental biotechnologies for cleaning contaminated soils from heavy metal compounds.
Collapse
|
15
|
Sepehri M, Khatabi B. Combination of Siderophore-Producing Bacteria and Piriformospora indica Provides an Efficient Approach to Improve Cadmium Tolerance in Alfalfa. MICROBIAL ECOLOGY 2021; 81:717-730. [PMID: 33099662 DOI: 10.1007/s00248-020-01629-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/19/2020] [Indexed: 05/22/2023]
Abstract
Application of siderophore-producing microorganisms (SPMs), as an environmentally friendly approach, facilitates plant growth and survival under heavy metals toxicity. This study evaluated the effectiveness of SPMs, belonging to the bacterial genera Rhizobium and Pseudomonas and a root endophytic fungus (Piriformospora indica) to improve the fitness of alfalfa under cadmium (Cd) stress. A greenhouse experiment was performed as a randomized design with factorial arrangement of treatments. Treatments included microbial inoculations (Sinorhizobium meliloti, Pseudomonas fluorescence, and P. indica) and different Cd concentrations (0, 2, 5, 10 mg/kg) with three replications in potting media containing sand and sterile perlite (v/v, 2:1). The effect of Cd on plant growth and development, antioxidant enzymes activities, and accumulation of Cd and nutrients in alfalfa plant was investigated. Alfalfa inoculated with SPMs showed significantly higher biomass and nutrients uptake under both normal and Cd stress conditions than the controls. Under the highest Cd concentration (10 mg/kg), alfalfa plants inoculated with P. fluorescens and P. indica, either alone or in combination, showed the highest shoot dry weights. Cd-induced oxidative stress was mitigated by SPMs through enhanced antioxidant enzyme activities of catalase, ascorbate peroxidase, and guaiacol peroxidase. We showed that P. indica either alone or in combination with the siderophore producing bacteria (SPB) minimized the toxicity of Cd by enhanced growth rate and the lower Cd concentration in the shoots. In conclusion, metal-resistant SPMs could assist alfalfa to survive in Cd-contaminated soil by enhancing plant growth and development. Application of plant-associated microbes is an efficient, environmentally friendly approach to surmount the adverse effects of heavy metals toxicity on plants, animals, and humans. Graphical abstract.
Collapse
Affiliation(s)
- Mozhgan Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA.
| |
Collapse
|
16
|
Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072982] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytoremediation is an attractive strategy for cleaning soils polluted with a wide spectrum of organic and inorganic toxic compounds. Among these pollutants, heavy metals have attracted global attention due to their negative effects on human health and terrestrial ecosystems. As a result of this, numerous studies have been carried out to elucidate the mechanisms involved in removal processes. These studies have employed many plant species that might be used for phytoremediation and the obtention of end bioproducts such as biofuels and biogas useful in combustion and heating. Phytotechnologies represent an attractive segment that is increasingly gaining attention worldwide due to their versatility, economic profitability, and environmental co-benefits such as erosion control and soil quality and functionality improvement. In this review, the process of valorizing biomass from phytoremediation is described; in addition, relevant experiments where polluted biomass is used as feedstock or bioenergy is produced via thermo- and biochemical conversion are analyzed. Besides, pretreatments of biomass to increase yields and treatments to control the transfer of metals to the environment are also mentioned. Finally, aspects related to the feasibility, benefits, risks, and gaps of converting toxic-metal-polluted biomass are discussed.
Collapse
|
17
|
Islam M, Yuan Q. Fungal treatment of mature landfill leachate utilizing woodchips and wheat-straw as co-substrates. Biodegradation 2020; 31:109-122. [PMID: 32249363 DOI: 10.1007/s10532-020-09897-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/31/2020] [Indexed: 11/25/2022]
Abstract
Mature landfill leachate (MLL) tend to be highly contaminated due to the presence of refractory contaminants such as humic-fulvic substances, xenobiotic compounds, and heavy metals. This study investigated the treatment efficiency of MLL by deploying Cladosporium sp., Trichoderma asperellum, and Tyromyces chioneus fungal strains. Chemical oxygen demand (COD) and soluble COD (sCOD) removal efficiencies were assessed along with the evaluation of lignocellulosic enzymatic activities of laccase (Lac), lignin-peroxidase (LiP), and manganese-peroxidase (MnP). Glucose, woodchips, and wheat straw were utilized as co-substrates. Higher percentage of COD and sCOD reduction efficiencies and lignocellulosic enzymatic activities were found for woodchips than glucose and wheat-straw. The highest sCOD removal rates were 44%, 38% and 59% by Cladosporium sp., T. asperellum, and T. chioneus, respectively. Overall, Lac activity was significantly higher than LiP and MnP activity for all three species. Tyromyces chioneus was the most effective strain among the three selected fungi in terms of COD and sCOD reduction efficiencies and high enzymatic activities of 165, 14 and 20 U/L were detected for Lac, LiP, and MnP, respectively. Tyromyces chioneus is a potentially effective fungal strain for the enhanced bioremediation of MLL and its further investigation is recommended to explore the removal of recalcitrant contaminants from problematic wastewater.
Collapse
Affiliation(s)
- Mofizul Islam
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| |
Collapse
|
18
|
Mench MJ, Dellise M, Bes CM, Marchand L, Kolbas A, Le Coustumer P, Oustrière N. Phytomanagement and Remediation of Cu-Contaminated Soils by High Yielding Crops at a Former Wood Preservation Site: Sunflower Biomass and Ionome. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
19
|
Farid M, Ali S, Zubair M, Saeed R, Rizwan M, Sallah-Ud-Din R, Azam A, Ashraf R, Ashraf W. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25390-25400. [PMID: 29951756 DOI: 10.1007/s11356-018-2508-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/04/2018] [Indexed: 05/15/2023]
Abstract
Phytoremediation is a cost-effective and eco-friendly technique for the removal of heavy metal-contaminated soils and water. The less availability and mobility of heavy metals in medium decreased the efficiency of this technique. The mobility and availability of these metals in the medium can be enhanced by the addition of organic chelators. The present study was conducted to investigate the possibility of glutamic acid (GA) in improving silver (Ag) phytoextraction by sunflower (Helianthus annuus L.). Different concentrations of Ag and GA were supplied in solution form in different combinations after defined intervals. Results depicted that increasing concentration of Ag significantly reduced the plant biomass, photosynthetic pigments, and antioxidant enzyme activities (like catalase, peroxidase, ascorbate, peroxidase, superoxide dismutase). Furthermore, Ag stress increased the Ag concentration and the production of reactive oxygen species (ROS) in sunflower plants. The addition of GA alleviated the Ag-induced toxicity in plants and enhanced Ag concentration and accumulation in sunflower. The addition of GA enhanced Ag accumulation in sunflower roots by 70, 79, 58, and 66% at 0-, 100-, 250-, and 500-μM Ag treatments, respectively, as compared to control plants. In conclusion, the results showed that Ag significantly reduced the physiological and biochemical attributes in term of reduced growth of sunflower and the addition of GA alleviated the Ag induced toxicity and enhanced Ag uptake. The results suggested that sunflower can be used as hyper-accumulator plant for the removal of Ag under GA. Further studies are required to understand the role of GA at gene and microscopic level in plants.
Collapse
Affiliation(s)
- Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Rashid Saeed
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Rasham Sallah-Ud-Din
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| | - Ahmad Azam
- Department of Physics, University of Education, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Rehman Ashraf
- Environmental Hydro-geochemistry Laboratory, Quaid-e-Azam University, Islamabad, Pakistan
| | - Wasim Ashraf
- Department of Environmental Sciences, University of Gujrat, Gujrat, 50700, Pakistan
| |
Collapse
|
20
|
Shahbaz AK, Lewińska K, Iqbal J, Ali Q, Iqbal M, Abbas F, Tauqeer HM, Ramzani PMA. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:256-270. [PMID: 29684778 DOI: 10.1016/j.jenvman.2018.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
Nickel (Ni) contaminated soils pose a potential ecological risk to the environment, soil health, and quality of food produced on them. We hypothesized that application of miscanthus biochar (BC) and cationic zeolite (ZE) at various proportions into a Ni contaminated soil can efficiently immobilize Ni and reduce its bioavailability to sunflower (Helianthus annuus L.) and maize (Zea mays L.). An electroplating effluent contaminated soil was amended with BC and ZE, as sole treatments (2% w/w) and their combinations of various ratios (BC, ZE, BC25%ZE75%, BC50%ZE50% and BC75%ZE25%) for immobilization of Ni in the soil. Furthermore, the associated effects of these treatments on residual and DTPA-extractable Ni from the soil; concentrations of Ni in shoots, roots, and grain; growth, physiology, biochemistry and the antioxidant defence mechanisms of sunflower and maize were investigated. Results revealed that BC50%ZE50% treatment efficiently reduced DTPA-extractable Ni in the soil, Ni concentrations in shoots, roots, and grain, while improved selective parameters of both plants. Interestingly, the BC75%ZE25% treatment significantly improved the biomass, grain yield, physiology, biochemistry and antioxidant defense machinery, while decreased Ni oxidative stress in both sunflower and maize, compared to rest of the treatments. The results demonstrate that the BC50%ZE50% treatment can efficiently reduce Ni concentrations in the roots, shoots and grain of both sunflower and maize whereas, an improvement in biomass, grain yield, physiological, biochemical, and antioxidant defense machinery of both crops can only be achieved with the application of BC75%ZE25% treatment in a Ni contaminated soil.
Collapse
Affiliation(s)
- Ali Khan Shahbaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Karolina Lewińska
- Adam Mickiewicz University in Poznan, Faculty of Geographical and Geological Sciences, Department of Soil Science and Remote Sensing of Soilsul, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Javed Iqbal
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Tauqeer
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Pia Muhammad Adnan Ramzani
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
21
|
Guidi Nissim W, Cincinelli A, Martellini T, Alvisi L, Palm E, Mancuso S, Azzarello E. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. ENVIRONMENTAL RESEARCH 2018; 164:356-366. [PMID: 29567421 DOI: 10.1016/j.envres.2018.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/24/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Phytoremediation is a green technique being increasingly used worldwide for various purposes including the treatment of municipal sewage sludge (MSS). Most plants proposed for this technique have high nutrient demands, and fertilization is often required to maintain soil fertility and nutrient balance while remediating the substrate. In this context, MSS could be a valuable source of nutrients (especially N and P) and water for plant growth. The aim of this study was to determine the capacity willow (Salix matsudana, cv Levante), poplar (Populus deltoides × Populus nigra, cv Orion), eucalyptus (Eucalyptus camaldulensis) and sunflower (Helianthus annuus) to clean MSS, which is slightly contaminated by trace elements (TEs) and organic pollutants, and to assess their physiological response to this medium. In particular, we aimed to evaluate the TE accumulation by different species as well as the decrease of TEs and organic pollutants in the sludge after one cropping cycle and the effect of MSS on plant growth and physiology. Since MSS did not show any detrimental effect on the biomass yield of any of the species tested, it was found to be a suitable growing medium for these species. TE phytoextraction rates depended on the species, with eucalyptus showing the highest accumulation for Cr, whereas sunflower exhibited the best performance for As, Cu and Zn. At the end of the trial, some TEs (i.e. Cr, Pb and Zn), n-alkanes and PCBs showed a significant concentration decrease in the sludge for all tested species. The highest Cr decrease was observed in pots with eucalyptus (57.4%) and sunflower (53.4%), whereas sunflower showed the highest Cu decrease (44.2%), followed by eucalyptus (41.2%), poplar (16.2%) and willow (14%). A significant decrease (41.1%) of Pb in the eucalyptus was observed. Zn showed a high decrease rate with sunflower (59.5%) and poplar (52%) and to a lesser degree with willow (35.3%) and eucalyptus (25.4%). The highest decrease in n-alkanes concentration in the sludge was found in willow (98.3%) and sunflower (97.3%), whereas eucalyptus has the lowest PCBs concentration (91.8%) in the sludge compared to the beginning of the trial. These results suggest new strategies (e.g. crop rotation and intercropping) to be adopted for a better management of this phytotechnology.
Collapse
Affiliation(s)
- Werther Guidi Nissim
- Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Italy
| | - Laura Alvisi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Italy
| | - Emily Palm
- Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, Italy
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Agrifood Production and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Dhiman SS, David A, Shrestha N, Johnson GR, Benjamin KM, Gadhamshetty V, Sani RK. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria. BIORESOURCE TECHNOLOGY 2017; 244:733-740. [PMID: 28822285 DOI: 10.1016/j.biortech.2017.07.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process was developed for simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic (growing at 65°C) anaerobic bacteria. Unlike existing waste to energy technologies, the CRUDE process obviates the need for any pre-treatment or enzyme addition. A High-Temperature-High-Pressure (HTHP) distillation technique was also applied that facilitated efficient use of fermentation medium, inoculum recycling, and in-situ ethanol collection. For material balancing of the process, each characterized component was represented in terms of C-mol. Recovery of 94% carbon at the end confirmed the operational efficiency of CRUDE process. The overall energy retaining efficiency calculated from sugars to ethanol was 1262.7kJdryweightkg-1 of volatile solids using HTHP. These results suggest that the CRUDE process can be a starting point for the development of a commercial ethanol production process.
Collapse
Affiliation(s)
- Saurabh Sudha Dhiman
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM/Bio Center), Rapid City, SD 57701, USA
| | - Aditi David
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Namita Shrestha
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Glenn R Johnson
- Hexpoint Technologies LLC, 1159, Panama City, Florida 32402, USA
| | - Kenneth M Benjamin
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Surface Engineering Research Center, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; Composite and Nanocomposite Advanced Manufacturing Center - Biomaterials (CNAM/Bio Center), Rapid City, SD 57701, USA.
| |
Collapse
|
23
|
Correction: Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification. PLoS One 2017; 12:e0179746. [PMID: 28598981 PMCID: PMC5466327 DOI: 10.1371/journal.pone.0179746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0175845.].
Collapse
|