1
|
De Gregorio V, Barua M, Lennon R. Collagen formation, function and role in kidney disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00902-5. [PMID: 39548215 DOI: 10.1038/s41581-024-00902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Highly abundant in mammals, collagens define the organization of tissues and participate in cell signalling. Most of the 28 vertebrate collagens, with the exception of collagens VI, VII, XXVI and XXVIII, can be categorized into five subgroups: fibrillar collagens, network-forming collagens, fibril-associated collagens with interrupted triple helices, membrane-associated collagens with interrupted triple helices and multiple triple-helix domains with interruptions. Collagen peptides are synthesized from the ribosome and enter the rough endoplasmic reticulum, where they undergo numerous post-translational modifications. The collagen chains form triple helices that can be secreted to form a diverse array of supramolecular structures in the extracellular matrix. Collagens are ubiquitously expressed and have been linked to a broad spectrum of disorders, including genetic disorders with kidney phenotypes. They also have an important role in kidney fibrosis and mass spectrometry-based proteomic studies have improved understanding of the composition of fibrosis in kidney disease. A wide range of therapeutics are in development for collagen and kidney disorders, including genetic approaches, chaperone therapies, protein degradation strategies and anti-fibrotic therapies. Improved understanding of collagens and their role in disease is needed to facilitate the development of more specific treatments for collagen and kidney disorders.
Collapse
Affiliation(s)
- Vanessa De Gregorio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Moumita Barua
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK.
| |
Collapse
|
2
|
Genovese F, Bager C, Frederiksen P, Vazquez D, Sand JMB, Jenkins RG, Maher TM, Stewart ID, Molyneaux PL, Fahy WA, Wain LV, Vestbo J, Nanthakumar C, Shaker SB, Hoyer N, Leeming DJ, George J, Trebicka J, Rasmussen DGK, Hansen MK, Cockwell P, Kremer D, Bakker SJ, Selby NM, Reese-Petersen AL, González A, Núñez J, Rossing P, Nissen NI, Boisen MK, Chen IM, Zhao L, Karsdal MA, Schuppan D. The fibroblast hormone Endotrophin is a biomarker of mortality in chronic diseases. Matrix Biol 2024; 132:1-9. [PMID: 38871093 DOI: 10.1016/j.matbio.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Fibrosis, driven by fibroblast activities, is an important contributor to morbidity and mortality in most chronic diseases. Endotrophin, a signaling molecule derived from processing of type VI collagen by highly activated fibroblasts, is involved in fibrotic tissue remodeling. Circulating levels of endotrophin have been associated with an increased risk of mortality in multiple chronic diseases. We conducted a systematic literature review collecting evidence from original papers published between 2012 and January 2023 that reported associations between circulating endotrophin (PROC6) and mortality. Cohorts with data available to the study authors were included in an Individual Patient Data (IPD) meta-analysis that evaluated the association of PROC6 with mortality (PROSPERO registration number: CRD42023340215) after adjustment for age, sex and BMI, where available. In the IPD meta-analysis including sixteen cohorts of patients with different non-communicable chronic diseases (NCCDs) (N = 15,205) the estimated summary hazard ratio for 3-years all-cause mortality was 2.10 (95 % CI 1.75-2.52) for a 2-fold increase in PROC6, with some heterogeneity observed between the studies (I2=70 %). This meta-analysis is the first study documenting that fibroblast activities, as quantified by circulating endotrophin, are independently associated with mortality across a broad range of NCCDs. This indicates that, irrespective of disease, interstitial tissue remodeling, and consequently fibroblast activities, has a central role in adverse clinical outcomes, and should be considered with urgency from drug developers as a target to treat.
Collapse
Affiliation(s)
| | | | | | | | | | - R Gisli Jenkins
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - Toby M Maher
- Keck Medicine of University of Southern California, 1510 San Pablo Street, Los Angeles, CA 90033, USA
| | - Iain D Stewart
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - Philip L Molyneaux
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - William A Fahy
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Louise V Wain
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK; Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, England
| | - Carmel Nanthakumar
- Clinical Sciences (Respiratory), GSK Research & Development, GSKH, Brentford, UK
| | - Saher Burhan Shaker
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | - Nils Hoyer
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | | | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Jonel Trebicka
- Medizinische Klinik B, Universitätsklinikum Münster, Münster University, Münster, Germany
| | | | | | - Paul Cockwell
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen 9713 GZ, Groningen, The Netherlands
| | - Stephan Jl Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen 9713 GZ, Groningen, The Netherlands
| | - Nicholas M Selby
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | | | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA 31008, Pamplona, Spain; Centro de investigacion biomedica en red enfermedades cardiovasculares, Madrid, Spain
| | - Julio Núñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Mogens Karsbøl Boisen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey, USA
| | | | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| |
Collapse
|
3
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Alkaff FF, Kremer D, Thaunat O, Berger SP, van den Born J, Genovese F, Karsdal MA, Bakker SJL, Rasmussen DGK, Tepel M. Urinary Endotrophin and Long-term Outcomes in Kidney Transplant Recipients. Transplant Direct 2024; 10:e1591. [PMID: 39877646 PMCID: PMC11774563 DOI: 10.1097/txd.0000000000001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/31/2025] Open
Abstract
Background Kidney fibrosis is a suggested cause of kidney failure and premature mortality. Because collagen type VI is closely linked to kidney fibrosis, we aimed to evaluate whether urinary endotrophin, a collagen type VI fragment, is associated with graft failure and mortality among kidney transplant recipients (KTR). Methods In this prospective cohort study, KTR with a functioning graft ≥1-y posttransplantation were recruited; 24-h urinary endotrophin excretion was measured using an ELISA method. Multivariate Cox regression analyses were performed. Results A total of 621 KTR (mean age 53 y old, 43% female) at a median of 5.2 y posttransplantation were included. Median 24-h urinary endotrophin excretion was 5.6 (3.1-13.6) µg/24h. During a median follow-up of 7.5 y, 87 KTR (14%) developed graft failure and 185 KTR (30%) died; 24-h urinary endotrophin excretion was associated with increased risk of graft failure (hazard ratio [95% confidence interva] per doubling = 1.24 [1.08-1.42]) and all-cause mortality (hazard ratio [95% confidence intervals] per doubling = 1.14 [1.03-1.25]) independent of potential confounders including plasma endotrophin concentration. Twenty-four-hour urinary protein excretion was a significant effect modifier for the association with mortality (Pinteraction = 0.002). Twenty-four-hour urinary endotrophin excretion was only significantly associated with mortality in KTR with low levels of proteinuria. Conclusions Urinary endotrophin is independently associated with an increased risk of graft failure in all KTR and mortality only in KTR with low levels of proteinuria. Further studies with different KTR populations are needed to confirm these findings.
Collapse
Affiliation(s)
- Firas F. Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Niu X, Xu C, Cheuk YC, Xu X, Liang L, Zhang P, Rong R. Characterizing hub biomarkers for post-transplant renal fibrosis and unveiling their immunological functions through RNA sequencing and advanced machine learning techniques. J Transl Med 2024; 22:186. [PMID: 38378674 PMCID: PMC10880303 DOI: 10.1186/s12967-024-04971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Kidney transplantation stands out as the most effective renal replacement therapy for patients grappling with end-stage renal disease. However, post-transplant renal fibrosis is a prevalent and irreversible consequence, imposing a substantial clinical burden. Unfortunately, the clinical landscape remains devoid of reliable biological markers for diagnosing post-transplant renal interstitial fibrosis. METHODS We obtained transcriptome and single-cell sequencing datasets of patients with renal fibrosis from NCBI Gene Expression Omnibus (GEO). Subsequently, we employed Weighted Gene Co-Expression Network Analysis (WGCNA) to identify potential genes by integrating core modules and differential genes. Functional enrichment analysis was conducted to unveil the involvement of potential pathways. To identify key biomarkers for renal fibrosis, we utilized logistic analysis, a LASSO-based tenfold cross-validation approach, and gene topological analysis within Cytoscape. Furthermore, histological staining, Western blotting (WB), and quantitative PCR (qPCR) experiments were performed in a murine model of renal fibrosis to verify the identified hub genes. Moreover, molecular docking and molecular dynamics simulations were conducted to explore possible effective drugs. RESULTS Through WGCNA, the intersection of core modules and differential genes yielded a compendium of 92 potential genes. Logistic analysis, LASSO-based tenfold cross-validation, and gene topological analysis within Cytoscape identified four core genes (CD3G, CORO1A, FCGR2A, and GZMH) associated with renal fibrosis. The expression of these core genes was confirmed through single-cell data analysis and validated using various machine learning methods. Wet experiments also verified the upregulation of these core genes in the murine model of renal fibrosis. A positive correlation was observed between the core genes and immune cells, suggesting their potential role in bolstering immune system activity. Moreover, four potentially effective small molecules (ZINC000003830276-Tessalon, ZINC000003944422-Norvir, ZINC000008214629-Nonoxynol-9, and ZINC000085537014-Cobicistat) were identified through molecular docking and molecular dynamics simulations. CONCLUSION Four potential hub biomarkers most associated with post-transplant renal fibrosis, as well as four potentially effective small molecules, were identified, providing valuable insights for studying the molecular mechanisms underlying post-transplant renal fibrosis and exploring new targets.
Collapse
Affiliation(s)
- Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Lifei Liang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Pingbao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
| |
Collapse
|
6
|
Kremer D, Alkaff FF, Post A, Knobbe TJ, Tepel M, Thaunat O, Berger SP, van den Born J, Genovese F, Karsdal MA, Rasmussen DGK, Bakker SJL. Plasma endotrophin, reflecting tissue fibrosis, is associated with graft failure and mortality in KTRs: results from two prospective cohort studies. Nephrol Dial Transplant 2023; 38:1041-1052. [PMID: 36535643 PMCID: PMC10064980 DOI: 10.1093/ndt/gfac332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis is a suggested cause of graft failure and mortality among kidney transplant recipients (KTRs). Accumulating evidence suggests that collagen type VI is tightly linked to fibrosis and may be a marker of systemic fibrosis and ageing. We studied whether plasma endotrophin, a pro-collagen type VI fragment, is associated with graft failure and mortality among KTRs. METHODS In cohort A (57% male, age 53 ± 13 years), we measured plasma endotrophin in 690 prevalent KTRs ≥1 year after transplantation. The non-overlapping cohort B included 500 incident KTRs with serial endotrophin measurements before and after kidney transplantation to assess trajectories and intra-individual variation of endotrophin. RESULTS In cohort A, endotrophin was higher in KTRs compared with healthy controls. Concentrations were positively associated with female sex, diabetes, cardiovascular disease, markers of inflammation and kidney injury. Importantly, endotrophin was associated with graft failure {hazard ratio [HR] per doubling 1.87 [95% confidence interval (CI) 1.07-3.28]} and mortality [HR per doubling 2.59 (95% CI 1.73-3.87)] independent of potential confounders. Data from cohort B showed that endotrophin concentrations strongly decrease after transplantation and remain stable during post-transplantation follow-up [intra-individual coefficient of variation 5.0% (95% CI 3.7-7.6)]. CONCLUSIONS Plasma endotrophin is strongly associated with graft failure and mortality among KTRs. These findings suggest a key role of abnormal extracellular matrix turnover and fibrosis in graft and patient prognosis among KTRs and highlight the need for (interventional) studies targeting the profibrotic state of KTRs. The intra-individual stability after transplantation indicates potential use of endotrophin as a biomarker and outcome measure of fibrosis. TRIAL REGISTRATION ClinicalTrials.gov NCT02811835.
Collapse
Affiliation(s)
- Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Tepel
- Odense University Hospital, Department of Nephrology, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Serum and Urine Biomarkers Related to Kidney Fibrosis Predict Kidney Outcome in Czech Patients with IgA Nephropathy. Int J Mol Sci 2023; 24:ijms24032064. [PMID: 36768385 PMCID: PMC9917115 DOI: 10.3390/ijms24032064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
We evaluated biomarkers related to kidney fibrosis for the outcome of patients with IgA nephropathy (IgAN). Clinical parameters (estimated glomerular filtration rate, hypertension, proteinuria) and histological findings were assessed in 134 patients with IgAN at the time of diagnosis and followed up prospectively (mean follow-up time, 56.5 months). We measured biomarkers of collagen and laminin turnover in serum and urine collected at the time of kidney biopsy using a novel enzyme-linked immunosorbent assay. Linear discriminant analysis and logistic regression models were used to predict the patient's kidney outcome. Five serum and urine biomarkers of laminin and collagen turnover (sLG1M, sPRO-C3, sPRO-C6, uPRO-C6/Cr, uC3M/Cr) could significantly differentiae IgAN patients with a worse prognosis. Clinical parameters (glomerular filtration rate (GFR), proteinuria) distinguished patients at risk of IgAN progression with a specificity of 87.3% and a sensitivity of 45.2% (area under the curve-AUC 0.751). The addition of the biomarkers significantly increased the prognostic ability with a specificity of 85.1% and a sensitivity of 73.3% (AUC 0.905). We have identified three serum (sLG1M, sPRO-C3, sPRO-C6) and two urinary markers (uPRO-C6/Cr, u-C3M /Cr) that significantly improve the prognostic ability of markers of kidney function to identify an IgAN patient's risk of progressing to ESKD.
Collapse
|
8
|
Barinotti A, Radin M, Cecchi I, Foddai SG, Rubini E, Roccatello D, Sciascia S. Serum Biomarkers of Renal Fibrosis: A Systematic Review. Int J Mol Sci 2022; 23:ijms232214139. [PMID: 36430625 PMCID: PMC9697720 DOI: 10.3390/ijms232214139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a widely diffuse pathological condition which deeply impacts upon an affected patient's quality of life and its worldwide rate is predicted to further rise. The main biological mechanism underlying CKD is renal fibrosis, a non-reversible process representing, for the affected system, a point of no return of tissue damage and dysfunction, deeply reducing the possible therapeutic strategies at the disposal of physicians. The best tool clinicians can use to address the extent of renal fibrosis at any level (glomeruli, tubule-interstitium, vasculature) is kidney biopsy that, despite its overall safety, remains an invasive procedure showing some shortcomings. Thus, the identification of novel non-invasive renal fibrosis biomarkers would be of fundamental importance. Here, when systematically reviewing the available evidence on serological biomarkers associated with renal fibrosis evaluated in patients suffering from CKD in the last five years, we found that despite the presence of several promising biomarkers, the level of observed evidence is still very scattered. Probably, the use of multiple measures capable of addressing different aspects involved in this condition would be the most suitable way to capture the high complexity characterizing the renal fibrotic process, having consequently a great impact on clinical practice by maximizing prevention, diagnosis, and management.
Collapse
Affiliation(s)
- Alice Barinotti
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Massimo Radin
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Irene Cecchi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Silvia Grazietta Foddai
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Elena Rubini
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-0112402056; Fax: +39-0112402052
| |
Collapse
|
9
|
Lau TS, Bossen L, Guldager Kring Rasmussen D, Karsdal M, Genovese F, Arveschoug AK, Gronbaek H, Dam G. Association between fibrosis markers and kidney function following peptide receptor radionuclide therapy in patients with neuroendocrine tumours. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:446-453. [PMID: 36129406 DOI: 10.1080/00365513.2022.2119598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) is a treatment for neuroendocrine tumours (NET). Renal impairment is a known side effect due to kidney fibrosis. We investigated the association between novel specific fibrosis markers and kidney function following PRRT. We included 38 patients who had all finished PRRT. In serum and urine, we analysed levels of three different fibrosis markers, PRO-C6 (type VI collagen formation), PRO-C3 (type III collagen formation) and C3M (type III collagen degradation). We determined kidney function by the 51Cr-EDTA plasma clearance. We used Wilcoxon rank sum test and Spearman's rank correlation to evaluate the association between the fibrosis markers and kidney function. We included 38 NET patients, 25 small-intestinal NET, 6 pancreatic NET, 2 pulmonary NET and 5 other types of NET. Median age was 69 years (IQR: 61-73). Median time from last PRRT to inclusion was 8 months (IQR: 3-20). We found significantly increased levels of serum PRO-C6 (p = .007) and urinary PRO-C6 (p = .033) and significantly decreased levels of urinary C3M (p = .035) in patients with impaired kidney function. Further, we observed a negative association between serum PRO-C6 and kidney function (rho = -0.33, p = .04) and a positive association between urinary C3M and kidney function (rho = 0.37, p = .02). We showed an association between the three fibrosis markers, serum PRO-C6, urinary PRO-C6 and urinary C3M and kidney function. These markers may help to improve the understanding of potential pathological tissue turnover and potentially improve monitoring of kidney function after PRRT in NET patients.
Collapse
Affiliation(s)
- Tobias Stemann Lau
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bossen
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | - Henning Gronbaek
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, Aarhus, Denmark
| | - Gitte Dam
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Artificial Intelligence-Assisted Renal Pathology: Advances and Prospects. J Clin Med 2022; 11:jcm11164918. [PMID: 36013157 PMCID: PMC9410196 DOI: 10.3390/jcm11164918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Digital imaging and advanced microscopy play a pivotal role in the diagnosis of kidney diseases. In recent years, great achievements have been made in digital imaging, providing novel approaches for precise quantitative assessments of nephropathology and relieving burdens of renal pathologists. Developing novel methods of artificial intelligence (AI)-assisted technology through multidisciplinary interaction among computer engineers, renal specialists, and nephropathologists could prove beneficial for renal pathology diagnoses. An increasing number of publications has demonstrated the rapid growth of AI-based technology in nephrology. In this review, we offer an overview of AI-assisted renal pathology, including AI concepts and the workflow of processing digital image data, focusing on the impressive advances of AI application in disease-specific backgrounds. In particular, this review describes the applied computer vision algorithms for the segmentation of kidney structures, diagnosis of specific pathological changes, and prognosis prediction based on images. Lastly, we discuss challenges and prospects to provide an objective view of this topic.
Collapse
|
11
|
Lindholm M, Godskesen LE, Manon-Jensen T, Kjeldsen J, Krag A, Karsdal MA, Mortensen JH. Endotrophin and C6Ma3, serological biomarkers of type VI collagen remodelling, reflect endoscopic and clinical disease activity in IBD. Sci Rep 2021; 11:14713. [PMID: 34282237 PMCID: PMC8289827 DOI: 10.1038/s41598-021-94321-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
In inflammatory bowel disease (IBD), the chronic inflammation deeply affects the intestinal extracellular matrix. The aim of this study was to investigate if remodeling of the intestinal basement membrane type VI collagen was associated with pathophysiological changes in Crohn’s disease (CD) and ulcerative colitis (UC). Serum from IBD patients (CD: n = 65; UC: n = 107; irritable bowel syndrome: n = 18; healthy subjects: n = 20) was investigated in this study. The serological biomarkers C6Ma3 (a matrix metalloproteinase (MMP) generated fragment of the type VI collagen α3 chain) and PRO-C6, also called endotrophin (the C-terminus of the released C5 domain of the type VI collagen α3 chain) were measured by ELISAs. Serum C6Ma3 was increased in CD patients with moderate to severe and mild endoscopically active disease compared to endoscopic remission (p = 0.002, p = 0.0048), respectively, and could distinguish endoscopically active disease from remission with an AUC of 1.0 (sensitivity: 100%, specificity: 100%) (p < 0.0001), which was superior to CRP. C6Ma3 was increased in CD patients with moderate to severe clinical disease compared to mild and remission (p = 0.04; p = 0.009). Serum PRO-C6, endotrophin, was increased in CD patients in clinically remission compared to mild disease (p = 0.04) and moderate to severe disease (p = 0.065). In UC, fecal calprotectin was the only marker that alone could distinguish both clinical and endoscopic active and inactive disease. Type VI collagen degradation of the α3 chain mediated by MMPs was increased in CD patients with endoscopically active disease, measured by the serological biomarker C6Ma3, which was able to distinguish endoscopically active from inactive CD.
Collapse
Affiliation(s)
- Majken Lindholm
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark. .,Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| | - Line E Godskesen
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Tina Manon-Jensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Aleksander Krag
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Morten A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Joachim H Mortensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
12
|
Holm Nielsen S, Edsfeldt A, Tengryd C, Gustafsson H, Shore AC, Natali A, Khan F, Genovese F, Bengtsson E, Karsdal M, Leeming DJ, Nilsson J, Goncalves I. The novel collagen matrikine, endotrophin, is associated with mortality and cardiovascular events in patients with atherosclerosis. J Intern Med 2021; 290:179-189. [PMID: 33951242 PMCID: PMC8359970 DOI: 10.1111/joim.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rupture of atherosclerotic plaques is the major cause of acute cardiovascular events. The biomarker PRO-C6 measuring Endotrophin, a matrikine of collagen type VI, may provide valuable information detecting subjects in need of intensified strategies for secondary prevention. OBJECTIVE In this study, we evaluate endotrophin in human atherosclerotic plaques and circulating levels of PRO-C6 in patients with atherosclerosis, to determine the predictive potential of the biomarker. METHODS Sections from the stenotic human carotid plaques were stained with the PRO-C6 antibody. PRO-C6 was measured in serum of patients enrolled in the Carotid Plaque Imagining Project (CPIP) (discovery cohort, n = 577) and the innovative medicines initiative surrogate markers for micro- and macrovascular hard end-points for innovative diabetes tools (IMI-SUMMIT, validation cohort, n = 1,378). Median follow-up was 43 months. Kaplan-Meier curves and log-rank tests were performed in the discovery cohort. Cox proportional hazard regression analysis (HR with 95% CI) was used in the discovery cohort and binary logistic regression (OR with 95% CI) in the validation cohort. RESULTS PRO-C6 was localized in the core and shoulder of the atherosclerotic plaque. In the discovery cohort, PRO-C6 independently predicted future cardiovascular events (HR 1.089 [95% CI 1.019 -1.164], p = 0.01), cardiovascular death (HR 1.118 [95% CI 1.008 -1.241], p = 0.04) and all-cause death (HR 1.087 [95% CI 1.008 -1.172], p = 0.03). In the validation cohort, PRO-C6 predicted future cardiovascular events (OR 1.063 [95% CI 1.011 -1.117], p = 0.017). CONCLUSION PRO-C6 is present in the atherosclerotic plaque and associated with future cardiovascular events, cardiovascular death and all-cause mortality in two large prospective cohorts.
Collapse
Affiliation(s)
- S Holm Nielsen
- Nordic Bioscience, Herlev, Denmark.,Department of Biomedicine and Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | - A Edsfeldt
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden
| | - C Tengryd
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - H Gustafsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - A C Shore
- Diabetes and Vascular Medicine, University of Exeter, Medical School, National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - A Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Khan
- Division of Molecular and Clinical medicine, University of Dundee, Dundee, UK
| | | | - E Bengtsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | - J Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - I Goncalves
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
13
|
Genovese F, Akhgar A, Lim SS, Farris AB, Battle M, Cobb J, Sinibaldi D, Karsdal MA, White WI. Collagen Type III and VI Remodeling Biomarkers Are Associated with Kidney Fibrosis in Lupus Nephritis. KIDNEY360 2021; 2:1473-1481. [PMID: 35373114 PMCID: PMC8786137 DOI: 10.34067/kid.0001132021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 02/04/2023]
Abstract
Background Lupus nephritis (LN) occurs in <40% of patients with SLE. Reliable biomarkers of kidney damage are needed to identify patients with SLE at risk of developing LN to improve screening, treat the disease earlier, and halt progression to kidney failure. Novel biomarkers of extracellular matrix remodeling were evaluated as markers of kidney fibrosis and disease activity in patients with LN. Methods Biomarkers of the interstitial collagen type III (PRO-C3) and type VI (PRO-C6) formation and of collagen type III (C3M) degradation were evaluated in the serum and urine of 40 patients with LN, 20 patients with SLE but without LN, 20 healthy controls, and ten biopsy controls (histologic kidney inflammation/damage without SLE). Their association with histologic markers of interstitial fibrosis and tubular atrophy, with inflammatory cell infiltration and with disease activity and chronicity in the patients with LN was assessed. Results Despite PRO-C3 (serum) and PRO-C6 (serum and urine) being significantly elevated in patients with LN compared with healthy controls, the markers did not differentiate patients with LN from those with SLE. C3M (urine) levels were not different in LN compared with the other groups. C3M (urine) strongly correlated and PRO-C6 (serum and urine) inversely correlated with kidney function (eGFR). The biomarkers of interstitial collagen turnover PRO-C6 (serum) and C3M (urine) correlated with histologic markers of interstitial fibrosis, tubular atrophy, and monocyte infiltration. Conclusions Noninvasive collagen turnover biomarkers are promising tools to identify patients with SLE with kidney histologic modifications.
Collapse
Affiliation(s)
| | - Ahmad Akhgar
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Gaithersburg, Maryland
| | - Sung Sam Lim
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia
| | - Alton B. Farris
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| | - Monica Battle
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Jason Cobb
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Dominic Sinibaldi
- Biological and Knowledge Analytics, AstraZeneca, Gaithersburg, Maryland
| | | | - Wendy I. White
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
14
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
15
|
Staunstrup LM, Bager CL, Frederiksen P, Helge JW, Brunak S, Christiansen C, Karsdal M. Endotrophin is associated with chronic multimorbidity and all-cause mortality in a cohort of elderly women. EBioMedicine 2021; 68:103391. [PMID: 34044221 PMCID: PMC8167215 DOI: 10.1016/j.ebiom.2021.103391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The signalling peptide endotrophin is derived through proteolytic cleavage of the carboxyl-terminal during formation of type VI collagen. It is expressed by most descendants of the mesenchymal stem cells lineage, including adipocytes and fibroblasts, and have been proposed to be a central extracellular matrix hormone associated with several age-related diseases. We aimed to assess the association of endotrophin with chronic disease incidence and death in older women. METHODS 5,602 elderly Danish women from the observational, prospective cohort: The Prospective Epidemiological Risk Factor (PERF) study were included in the analysis which covered baseline (BL) and follow-up (FU) 14 years later. An elastic net was used to investigate the relative importance of 58 variables to serum endotrophin-levels. 20 chronic diseases were defined on the basis of clinical variables available along with diagnoses extracted from both the National Patient Register, the National Diabetes Register and the Danish Cancer Registry. The cross-sectional associations between endotrophin-levels and these 17 chronic age-related diseases were investigated using logistic regression and a set-analysis explored disease-combinations within multimorbidity. The association of endotrophin with mortality was assessed by Cox proportional hazard models. FINDINGS Formation of type III collagen (PRO-C3), age and creatine-levels were the most influential variables of endotrophin-levels. Several chronic diseases were significantly associated with endotrophin-levels independent of age and BMI including chronic kidney disease (BL OR=3.7, p < 0.001; FU OR = 7.9 p < 0.001), diabetes (BL OR = 1.5, p = 0.0015, FU OR=1.6, p = 0.004) and peripheral arterial disease (BL OR = 1.3, p = 0.029; FU OR=2.4, p < 0.001). Lastly, endotrophin-levels were significantly rising with number of morbidities (p < 0.001) and a predictor of death after adjusting for age and BMI (BL HR=1.95; FU HR = 2.00). INTERPRETATION Endotrophin was associated with death and increased with number of morbidities. Endotrophin may be a central hormone of fibroblast that warrant investigation and possible targeted intervention in several chronic diseases. FUNDING The funder of the PERF study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.
Collapse
Affiliation(s)
- Line Mærsk Staunstrup
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; Nordic Bioscience, DK-2730 Herlev, Denmark.
| | | | | | - Jørn Wulff Helge
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
Yepes-Calderón M, Sotomayor CG, Rasmussen DGK, Hijmans RS, te Velde-Keyzer CA, van Londen M, van Dijk M, Diepstra A, Berger SP, Karsdal MA, Bemelman FJ, de Fijter JW, Kers J, Florquin S, Genovese F, Bakker SJL, Sanders JS, Van Den Born J. Biopsy-Controlled Non-Invasive Quantification of Collagen Type VI in Kidney Transplant Recipients: A Post-Hoc Analysis of the MECANO Trial. J Clin Med 2020; 9:3216. [PMID: 33036366 PMCID: PMC7600059 DOI: 10.3390/jcm9103216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/15/2023] Open
Abstract
The PRO-C6 assay, a reflection of collagen type VI synthesis, has been proposed as a non-invasive early biomarker of kidney fibrosis. We aimed to investigate cross-sectional and longitudinal associations between plasma and urine PRO-C6 and proven histological changes after kidney transplantation. The current study is a post-hoc analysis of 94 participants of the MECANO trial, a 24-month prospective, multicenter, open-label, randomized, controlled trial aimed at comparing everolimus-based vs. cyclosporine-based immunosuppression. PRO-C6 was measured in plasma and urine samples collected 6 and 24 months post-transplantation. Fibrosis was evaluated in biopsies collected at the same time points by Banff interstitial fibrosis/tubular atrophy (IF/TA) scoring and collagen staining (Picro Sirius Red; PSR); inflammation was evaluated by the tubulo-interstitial inflammation score (ti-score). Linear regression analyses were performed. Six-month plasma PRO-C6 was cross-sectionally associated with IF/TA score (Std. β = 0.34), and prospectively with 24-month IF/TA score and ti-score (Std. β = 0.24 and 0.23, respectively) (p < 0.05 for all). No significant associations were found between urine PRO-C6 and any of the biopsy findings. Fibrotic changes and urine PRO-C6 behaved differentially over time according to immunosuppressive therapy. These results are a first step towards non-invasive fibrosis detection after kidney transplantation by means of collagen VI synthesis measurement, and further research is required.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Camilo G. Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | | | - Ryanne S. Hijmans
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Charlotte A. te Velde-Keyzer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Marco van Londen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Marja van Dijk
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | | | - Frederike J. Bemelman
- Department of Nephrology, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Johan W. de Fijter
- Department of Nephrology, Leiden University Medical Center, University of Leiden, 2300 RC Leiden, The Netherlands;
| | - Jesper Kers
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (J.K.); (S.F.)
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Leiden Transplant Center, Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sandrine Florquin
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam UMC, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (J.K.); (S.F.)
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Leiden Transplant Center, Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Federica Genovese
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (D.G.K.R.); (M.A.K.); (F.G.)
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Jan-Stephan Sanders
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| | - Jacob Van Den Born
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (M.Y.-C.); (R.S.H.); (C.A.t.V.-K.); (M.v.L.); (M.v.D.); (S.P.B.); (S.J.L.B.); (J.-S.S.); (J.V.D.B.)
| |
Collapse
|
17
|
Reese-Petersen AL, Olesen MS, Karsdal MA, Svendsen JH, Genovese F. Atrial fibrillation and cardiac fibrosis: A review on the potential of extracellular matrix proteins as biomarkers. Matrix Biol 2020; 91-92:188-203. [PMID: 32205152 DOI: 10.1016/j.matbio.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
The involvement of fibrosis as an underlying pathology in heart diseases is becoming increasingly clear. In recent years, fibrosis has been granted a causative role in heart diseases and is now emerging as a major contributor to Atrial Fibrillation (AF) pathogenesis. AF is the most common arrhythmia encountered in the clinic, but the substrate for AF is still being debated. Consensus in the field is a combination of cardiac tissue remodeling, inflammation and genetic predisposition. The extracellular matrix (ECM) is subject of growing investigation, since measuring circulatory biomarkers of ECM formation and degradation provides both diagnostic and prognostic information. However, fibrosis is not just fibrosis. Each specific collagen biomarker holds information on regulatory mechanisms, as well as information about which section of the ECM is being remodeled, providing a detailed description of cardiac tissue homeostasis. This review entails an overview of the implication of fibrosis in AF, the different collagens and their significance, and the potential of using biomarkers of ECM remodeling as tools for understanding AF pathogenesis and identifying patients at risk for further disease progression.
Collapse
Affiliation(s)
| | - Morten S Olesen
- Labratory of Molecular Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jesper H Svendsen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
18
|
Genovese F, Rasmussen DGK, Karsdal MA, Jesky M, Ferro C, Fenton A, Cockwell P. Imbalanced turnover of collagen type III is associated with disease progression and mortality in high-risk chronic kidney disease patients. Clin Kidney J 2020; 14:593-601. [PMID: 33623684 PMCID: PMC7886548 DOI: 10.1093/ckj/sfz174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background Tubulointerstitial fibrosis is a major pathological feature in chronic kidney disease (CKD) and collagen type III (COL3) is a major component of the renal fibrotic scar. We hypothesized that a dysregulated turnover of COL3 is an important determinant of CKD progression. We assessed the relationship between fragments reflecting active formation (PRO-C3) and degradation (C3M) of COL3 and CKD disease progression and mortality in a prospective cohort of CKD patients. Methods We measured PRO-C3 and C3M in urine (uPRO-C3 and uC3M) and serum (sPRO-C3 and sC3M) of 500 patients from the Renal Impairment in Secondary Care study. Disease progression was defined as a decline in estimated glomerular filtration rate >30% or the start of renal replacement therapy within 12 and 30 months. Results Levels of uC3M/creatinine decreased, whereas levels of uPRO-C3/creatinine and sPRO-C3 increased with increasing CKD stage. uC3M/creatinine was inversely and independently associated with disease progression by 12 months {odds ratio [OR] 0.39 [95% confidence interval (CI) 0.18-0.83]; P = 0.01 per doubling of uC3M/creatinine} with development of end-stage renal disease [hazard ratio (HR) 0.70 (95% CI 0.50-0.97); P = 0.03 per doubling of uC3M/creatinine]. sPRO-C3 at baseline was independently associated with increased mortality [HR 1.93 (95% CI 1.21-3.1); P = 0.006 per doubling of sPRO-C3] and disease progression by 30 months [OR 2.16 (95% CI 1.21-3.84); P = 0.009 per doubling of sPRO-C3]. Conclusions Dynamic products of COL3 formation and degradation were independently associated with CKD progression and mortality and may represent an opportunity to link pathological processes with targeted treatments against fibrosis.
Collapse
Affiliation(s)
| | | | | | - Mark Jesky
- Department of Nephrology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Charles Ferro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - Anthony Fenton
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Cockwell
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
19
|
Ochando J, Fayad ZA, Madsen JC, Netea MG, Mulder WJM. Trained immunity in organ transplantation. Am J Transplant 2020; 20:10-18. [PMID: 31561273 PMCID: PMC6940521 DOI: 10.1111/ajt.15620] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 01/25/2023]
Abstract
Consistent induction of donor-specific unresponsiveness in the absence of continuous immunosuppressive therapy and toxic effects remains a difficult task in clinical organ transplantation. Transplant immunologists have developed numerous experimental treatments that target antigen-presentation (signal 1), costimulation (signal 2), and cytokine production (signal 3) to establish transplantation tolerance. While promising results have been obtained using therapeutic approaches that predominantly target the adaptive immune response, the long-term graft survival rates remain suboptimal. This suggests the existence of unrecognized allograft rejection mechanisms that contribute to organ failure. We postulate that trained immunity stimulatory pathways are critical to the immune response that mediates graft loss. Trained immunity is a recently discovered functional program of the innate immune system, which is characterized by nonpermanent epigenetic and metabolic reprogramming of macrophages. Since trained macrophages upregulate costimulatory molecules (signal 2) and produce pro-inflammatory cytokines (signal 3), they contribute to potent graft reactive immune responses and organ transplant rejection. In this review, we summarize the detrimental effects of trained immunity in the context of organ transplantation and describe pathways that induce macrophage training associated with graft rejection.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York,Transplant Immunology UnitNational Center of MicrobiologyInstituto de Salud Carlos IIIMadridSpain
| | - Zahi A. Fayad
- Department of RadiologyTranslational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Joren C. Madsen
- Center for Transplantation Sciences and Division of Cardiac SurgeryDepartment of SurgeryMassachusetts General HospitalBostonMassachusetts
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Willem J. M. Mulder
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York,Department of RadiologyTranslational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew York,Laboratory of Chemical BiologyDepartment of Biomedical EngineeringInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
20
|
Matrix-assisted laser desorption/ionization mass spectrometry imaging to uncover protein alterations associated with the progression of IgA nephropathy. Virchows Arch 2019; 476:903-914. [PMID: 31838587 DOI: 10.1007/s00428-019-02705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
IgA nephropathy (IgAN) is one of the most diffuse glomerulonephrites worldwide, and many issues still remain regarding our understanding of its pathogenesis. The disease is diagnosed by renal biopsy examination, but potential pitfalls still persist with regard to discriminating its primary origin and, as a result, determining patient outcome remains challenging. In this pilot study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) was performed on renal biopsies obtained from patients with IgAN (n = 11) and other mesangioproliferative glomerulonephrites (MesPGN, n = 6) in order to enlighten proteomic alterations that may be associated with the progression of IgAN. Differences in the proteomic profiles of IgAN and MesPGN tissue could clearly be detected using this approach and, furthermore, 14 signals (AUC ≥ 0.8) were observed to have an altered intensity among the different CKD stages within the IgAN group. In particular, large increases in the intensity of these signals could be observed at CKD stages II and above. These signals primarily corresponded to proteins involved in either inflammatory and healing pathways and their increased intensity was localized within regions of tissue with large amounts of inflammatory cells or sclerosis. Despite much work in recent years, our molecular understanding of IgAN progression remains incomplete. This pilot study represents a promising starting point in the search for novel protein markers that can assist clinicians in better understanding the pathogenesis of IgAN and highlighting those patients who may progress to end-stage renal disease.
Collapse
|
21
|
Pilemann-Lyberg S, Rasmussen DGK, Hansen TW, Tofte N, Winther SA, Holm Nielsen S, Theilade S, Karsdal MA, Genovese F, Rossing P. Markers of Collagen Formation and Degradation Reflect Renal Function and Predict Adverse Outcomes in Patients With Type 1 Diabetes. Diabetes Care 2019; 42:1760-1768. [PMID: 31262950 DOI: 10.2337/dc18-2599] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/13/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 1 diabetes (T1D) have a higher risk of developing chronic kidney disease, cardiovascular events (CVEs), and mortality than the general population. We hypothesized that two previously published biomarkers, namely PRO-C6, a biomarker of collagen type VI formation, and C3M, a biomarker of collagen type III degradation, may be associated with impaired renal function and have prognostic value for adverse renal, CVE, and mortality in patients with T1D. RESEARCH DESIGN AND METHODS PRO-C6 and C3M in serum (sPRO-C6, sC3M) and urine (uPRO-C6, uC3M) were measured by ELISA in 663 patients with T1D ranging from normoalbuminuric to macroalbuminuric. Association of the biomarkers with mortality, CVEs, heart failure, decline in estimated glomerular filtration rate (eGFR) ≥30%, and end-stage renal disease (ESRD) were tested in Cox proportional hazards models after log2 transformation and adjusted for relevant clinical characteristics. Hazard ratios (HRs) were reported per doubling of biomarker levels. RESULTS High levels of sPRO-C6 were independently associated with a higher risk of all-cause mortality (HR 2.26 [95% CI 1.31-3.87], P < 0.0031). There was an association with higher risk of CVEs (n = 94) and heart failure (n = 28) but not after adjustment (P ≥ 0.58). In relation to renal outcomes, adjusted sPRO-C6 was associated with a higher risk of eGFR decline ≥30% in T1D, with eGFR >45 and >30 mL/min/1.73 m2, and with a higher risk of ESRD (all P ≤ 0.03). Higher uPRO-C6 was associated with a lower risk of decline in eGFR. CONCLUSIONS In patients with T1D, higher sPRO-C6 was an independent predictor of both decline in eGFR and development of ESRD and of all-cause mortality. Higher uPRO-C6 was also associated with a lower risk of decline in eGFR.
Collapse
Affiliation(s)
| | | | | | - Nete Tofte
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Signe Holm Nielsen
- Nordic Bioscience, Herlev, Denmark.,Technical University of Denmark, Lyngby, Denmark
| | | | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Heumüller SE, Talantikite M, Napoli M, Armengaud J, Mörgelin M, Hartmann U, Sengle G, Paulsson M, Moali C, Wagener R. C-terminal proteolysis of the collagen VI α3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes. J Biol Chem 2019; 294:13769-13780. [PMID: 31346034 DOI: 10.1074/jbc.ra119.008641] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
The assembly of collagen VI microfibrils is a multistep process in which proteolytic processing within the C-terminal globular region of the collagen VI α3 chain plays a major role. However, the mechanisms involved remain elusive. Moreover, C5, the short and most C-terminal domain of the α3 chain, recently has been proposed to be released as an adipokine that enhances tumor progression, fibrosis, inflammation, and insulin resistance and has been named "endotrophin." Serum endotrophin could be a useful biomarker to monitor the progression of such disorders as chronic obstructive pulmonary disease, systemic sclerosis, and kidney diseases. Here, using biochemical and isotopic MS-based analyses, we found that the extracellular metalloproteinase bone morphogenetic protein 1 (BMP-1) is involved in endotrophin release and determined the exact BMP-1 cleavage site. Moreover, we provide evidence that several endotrophin-containing fragments are present in various tissues and body fluids. Among these, a large C2-C5 fragment, which contained endotrophin, was released by furin-like proprotein convertase cleavage. By using immunofluorescence microscopy and EM, we also demonstrate that these proteolytic maturations occur after secretion of collagen VI tetramers and during microfibril assembly. Differential localization of N- and C-terminal regions of the collagen VI α3 chain revealed that cleavage products are deposited in tissue and cell cultures. The detailed information on the processing of the collagen VI α3 chain reported here provides a basis for unraveling the function of endotrophin (C5) and larger endotrophin-containing fragments and for refining their use as biomarkers of disease progression.
Collapse
Affiliation(s)
| | - Maya Talantikite
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Manon Napoli
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Jean Armengaud
- Commissariat à l'Energie Atomique (CEA)-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Innovative Technologies for Detection and Diagnostics Laboratory, 30200 Bagnols-sur-Cèze, France
| | | | - Ursula Hartmann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany .,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
23
|
Bülow RD, Boor P. Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold. J Histochem Cytochem 2019; 67:643-661. [PMID: 31116062 DOI: 10.1369/0022155419849388] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kidney fibrosis is the common histological end-point of progressive, chronic kidney diseases (CKDs) regardless of the underlying etiology. The hallmark of renal fibrosis, similar to all other organs, is pathological deposition of extracellular matrix (ECM). Renal ECM is a complex network of collagens, elastin, and several glycoproteins and proteoglycans forming basal membranes and interstitial space. Several ECM functions beyond providing a scaffold and organ stability are being increasingly recognized, for example, in inflammation. ECM composition is determined by the function of each of the histological compartments of the kidney, that is, glomeruli, tubulo-interstitium, and vessels. Renal ECM is a dynamic structure undergoing remodeling, particularly during fibrosis. From a clinical perspective, ECM proteins are directly involved in several rare renal diseases and indirectly in CKD progression during renal fibrosis. ECM proteins could serve as specific non-invasive biomarkers of fibrosis and scaffolds in regenerative medicine. The gold standard and currently only specific means to measure renal fibrosis is renal biopsy, but new diagnostic approaches are appearing. Here, we discuss the localization, function, and remodeling of major renal ECM components in healthy and diseased, fibrotic kidneys and the potential use of ECM in diagnostics of renal fibrosis and in tissue engineering.
Collapse
Affiliation(s)
- Roman David Bülow
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
24
|
Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P. Anti-fibrotic treatments: A review of clinical evidence. Matrix Biol 2018; 68-69:333-354. [DOI: 10.1016/j.matbio.2018.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
25
|
Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol 2017; 75-76:43-57. [PMID: 29247693 DOI: 10.1016/j.matbio.2017.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Cardiovascular Disease (CVD) is the most common cause of death in industrialized countries, and myocardial infarction (MI) is a major CVD with significant morbidity and mortality. Following MI, the left ventricle (LV) undergoes a wound healing response to ischemia that results in extracellular matrix (ECM) scar formation to replace necrotic myocytes. While ECM accumulation following MI is termed cardiac fibrosis, this is a generic term that does not differentiate between ECM accumulation that occurs in the infarct region to form a scar that is structurally necessary to preserve left ventricle (LV) wall integrity and ECM accumulation that increases LV wall stiffness to exacerbate dilation and stimulate the progression to heart failure. This review focuses on post-MI LV ECM remodeling, targeting the discussion on ECM biomarkers that could be useful for predicting MI outcomes.
Collapse
Affiliation(s)
- Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark; Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | | | - Morten Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
26
|
Rasmussen DGK, Fenton A, Jesky M, Ferro C, Boor P, Tepel M, Karsdal MA, Genovese F, Cockwell P. Urinary endotrophin predicts disease progression in patients with chronic kidney disease. Sci Rep 2017; 7:17328. [PMID: 29229941 PMCID: PMC5725589 DOI: 10.1038/s41598-017-17470-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Renal fibrosis is the central pathogenic process in progression of chronic kidney disease (CKD). Collagen type VI (COL VI) is upregulated in renal fibrosis. Endotrophin is released from COL VI and promotes pleiotropic pro-fibrotic effects. Kidney disease severity varies considerably and accurate information regarding CKD progression may improve clinical decisions. We tested the hypothesis that urinary endotrophin derived during COL VI deposition in fibrotic human kidneys is a marker for progression of CKD in the Renal Impairment in Secondary Care (RIISC) cohort, a prospective observational study of 499 CKD patients. Endotrophin localised to areas of increased COL VI deposition in fibrotic kidneys but was not present in histologically normal kidneys. The third and fourth quartiles of urinary endotrophin:creatinine ratio (ECR) were independently associated with one-year disease progression after adjustment for traditional risk factors (OR (95%CI) 3.68 (1.06–12.83) and 8.65 (2.46–30.49), respectively). Addition of ECR quartiles to the model for disease progression increased prediction as seen by an increase in category-free net reclassification improvement (0.45, 95% CI 0.16–0.74, p = 0.002) and integrated discrimination improvement (0.04, 95% CI 0.02–0.06, p < 0.001). ECR was associated with development of end-stage renal disease (ESRD). It is concluded that ECR predicts disease progression of CKD patients.
Collapse
Affiliation(s)
- Daniel Guldager Kring Rasmussen
- Nordic Bioscience, Herlev, Denmark. .,University of Southern Denmark, Institute of Molecular Medicine, Cardiovascular and Renal Research, Odense, Denmark.
| | - Anthony Fenton
- Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark Jesky
- Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Charles Ferro
- Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peter Boor
- Division of Nephrology, RWTH University of Aachen, Aachen, Germany.,Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | - Martin Tepel
- University of Southern Denmark, Institute of Molecular Medicine, Cardiovascular and Renal Research, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | | | | | - Paul Cockwell
- Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK.,College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|