1
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
2
|
Kang ES, Son DC, Kim SC. The complete chloroplast genome assembly of Solidago altissima (Lineaus, 1753) (Astereae; Asteraceae). Mitochondrial DNA B Resour 2024; 9:605-609. [PMID: 38720906 PMCID: PMC11078073 DOI: 10.1080/23802359.2024.2349138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
This study aims to report the complete chloroplast genome of Solidago altissima L., a globally recognized invasive plant. The complete genome length of S. altissima is 152,961 bp; S. altissima has a typical quadripartite structure (including a large single copy of 84,829 bp, a small single copy of 18,084 bp, and two inverted repeat regions of 25,024 bp), which is commonly found in angiosperms. The genome contains 129 genes, consisting of 85 coding sequences, 36 tRNA genes, and 8 rRNA genes. To understand the phylogenetic relationship between S. altissima and its related species, maximum likelihood analysis was performed. The results revealed that S. altissima is closely related to Symphyotrichum subulatum. The findings of the present study could provide fundamental data for the future phylogenetic and evolutionary studies, while also research on species invasion and resolving complexity of S. altissima.
Collapse
Affiliation(s)
- Eun Su Kang
- Forest Biodiversity Division, Korea National Arboretum, Gyeonggi-do, Republic of Korea
| | - Dong Chan Son
- Forest Biodiversity Division, Korea National Arboretum, Gyeonggi-do, Republic of Korea
| | - Sang-Chul Kim
- Forest Biodiversity Division, Korea National Arboretum, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Hrabovský M, Kubalová S, Mičieta K, Ščevková J. Environmental impacts on intraspecific variation in Ambrosia artemisiifolia genome size in Slovakia, Central Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33960-33974. [PMID: 38693457 PMCID: PMC11136817 DOI: 10.1007/s11356-024-33410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The quantity of DNA in angiosperms exhibits variation attributed to many external influences, such as environmental factors, geographical features, or stress factors, which exert constant selection pressure on organisms. Since invasive species possess adaptive capabilities to acclimate to novel environmental conditions, ragweed (Ambrosia artemisiifolia L.) was chosen as a subject for investigating their influence on genome size variation. Slovakia has diverse climatic conditions, suitable for testing the hypothesis that air temperature and precipitation, the main limiting factors of ragweed occurrence, would also have an impact on its genome size. Our results using flow cytometry confirmed this hypothesis and also found a significant association with geographical features such as latitude, altitude, and longitude. We can conclude that plants growing in colder environments farther from oceanic influences exhibit smaller DNA amounts, while optimal growth conditions result in a greater variability in genome size, reflecting the diminished effect of selection pressure.
Collapse
Affiliation(s)
- Michal Hrabovský
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia.
| | - Silvia Kubalová
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Karol Mičieta
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| |
Collapse
|
4
|
Loubet I, Meyer L, Michel S, Pernin F, Carrère S, Barrès B, Le Corre V, Délye C. A high diversity of non-target site resistance mechanisms to acetolactate-synthase (ALS) inhibiting herbicides has evolved within and among field populations of common ragweed (Ambrosia artemisiifolia L.). BMC PLANT BIOLOGY 2023; 23:510. [PMID: 37875807 PMCID: PMC10594812 DOI: 10.1186/s12870-023-04524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Non-target site resistance (NTSR) to herbicides is a polygenic trait that threatens the chemical control of agricultural weeds. NTSR involves differential regulation of plant secondary metabolism pathways, but its precise genetic determinisms remain fairly unclear. Full-transcriptome sequencing had previously been implemented to identify NTSR genes. However, this approach had generally been applied to a single weed population, limiting our insight into the diversity of NTSR mechanisms. Here, we sought to explore the diversity of NTSR mechanisms in common ragweed (Ambrosia artemisiifolia L.) by investigating six field populations from different French regions where NTSR to acetolactate-synthase-inhibiting herbicides had evolved. RESULTS A de novo transcriptome assembly (51,242 contigs, 80.2% completeness) was generated as a reference to seek genes differentially expressed between sensitive and resistant plants from the six populations. Overall, 4,609 constitutively differentially expressed genes were identified, of which none were common to all populations, and only 197 were shared by several populations. Similarly, population-specific transcriptomic response was observed when investigating early herbicide response. Gene ontology enrichment analysis highlighted the involvement of stress response and regulatory pathways, before and after treatment. The expression of 121 candidate constitutive NTSR genes including CYP71, CYP72, CYP94, oxidoreductase, ABC transporters, gluco and glycosyltransferases was measured in 220 phenotyped plants. Differential expression was validated in at least one ragweed population for 28 candidate genes. We investigated whether expression patterns at some combinations of candidate genes could predict phenotype. Within populations, prediction accuracy decreased when applied to an additional, independent plant sampling. Overall, a wide variety of genes linked to NTSR was identified within and among ragweed populations, of which only a subset was captured in our experiments. CONCLUSION Our results highlight the complexity and the diversity of NTSR mechanisms that can evolve in a weed species in response to herbicide selective pressure. They strongly point to a non-redundant, population-specific evolution of NTSR to ALS inhibitors in ragweed. It also alerts on the potential of common ragweed for rapid adaptation to drastic environmental or human-driven selective pressures.
Collapse
Affiliation(s)
- Ingvild Loubet
- INRAE, Agroécologie, Dijon, France
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| | | | | | | | | | - Benoit Barrès
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| | | | | |
Collapse
|
5
|
Genetic structuring and invasion status of the perennial Ambrosia psilostachya (Asteraceae) in Europe. Sci Rep 2023; 13:3736. [PMID: 36878947 PMCID: PMC9988885 DOI: 10.1038/s41598-023-30377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The perennial western ragweed (Ambrosia psilostachya DC.) arrived from North America to Europe in the late nineteenth century and behaves invasive in its non-native range. Due to its efficient vegetative propagation via root suckers, A. psilostachya got naturalized in major parts of Europe forming extensive populations in Mediterranean coastal areas. The invasion history, the spreading process, the relationships among the populations as well as population structuring is not yet explored. This paper aims to give first insights into the population genetics of A. psilostachya in its non-native European range based on 60 sampled populations and 15 Simple Sequence Repeats (SSR). By AMOVA analysis we detected 10.4% of genetic variation occurring among (pre-defined) regions. These regions represent important harbors for trading goods from America to Europe that might have served as source for founder populations. Bayesian Clustering revealed that spatial distribution of genetic variation of populations is best explained by six groups, mainly corresponding to regions around important harbors. As northern populations show high degrees of clonality and lowest levels of within-population genetic diversity (mean Ho = 0.40 ± 0.09), they could preserve the initial genetic variation levels by long-lived clonal genets. In Mediterranean populations A. psilostachya expanded to millions of shoots. Some of those were obviously spread by sea current along the coast to new sites, where they initiated populations characterized by a lower genetic diversity. For the future, the invasion history in Europe might get clearer after consideration of North American source populations of western ragweed.
Collapse
|
6
|
Meyer L, Pernin F, Michel S, Bailly G, Chauvel B, Le Corre V, Délye C. Lab meets field: Accelerated selection and field monitoring concur that non-target-site-based resistance evolves first in the dicotyledonous, allergenic weed Ambrosia artemisiifolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111202. [PMID: 35193749 DOI: 10.1016/j.plantsci.2022.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Assessing weed capacity to evolve herbicide resistance before resistance occurs in the field is of major interest for chemical weed control. We used herbicide selection followed by controlled crosses to provoke accelerated evolution of resistance to imazamox (imidazolinones) and tribenuron (sulfonyurea), two acetolactate-synthase (ALS) inhibitors targeting Ambrosia artemisiifolia. In natural populations with no herbicide application records, some plants were initially resistant to metsulfuron (sulfonylurea), a cereal herbicide. Non-target-site-based resistance (NTSR) to metsulfuron was substantially increased from these plants within two generations. NTSR to imazamox and/or tribenuron emerged in metsulfuron-selected G1 progenies and was strongly reinforced in G2 progenies selected by imazamox or tribenuron. NTSR to the herbicides assayed was endowed by partly overlapping and partly specific pathways. Herbicide sensitivity bioassays conducted over 62 ALS-inhibitor-sprayed fields identified emerging resistance to imazamox and/or tribenuron in 14 A. artemisiifolia populations. Only NTSR was detected in 13 of these populations. In the last population, NTSR was present together with a mutant, herbicide-resistant ALS allele bearing an Ala-205-Thr substitution. NTSR was thus by far the predominant type of resistance to ALS inhibitors in France. This confirmed accelerated selection results and demonstrated the relevance of this approach to anticipate resistance evolution in a dicotyledonous weed.
Collapse
Affiliation(s)
- Lucie Meyer
- INRAE, Agroécologie, F-21000, Dijon, France; BASF France Agro Division, Agroecology and Stewardship Department, F-69130, Écully, France
| | | | | | - Géraldine Bailly
- BASF France Agro Division, Agroecology and Stewardship Department, F-69130, Écully, France
| | | | | | | |
Collapse
|
7
|
Loubet I, Caddoux L, Fontaine S, Michel S, Pernin F, Barrès B, Le Corre V, Délye C. A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Sci Rep 2021; 11:19904. [PMID: 34620913 PMCID: PMC8497474 DOI: 10.1038/s41598-021-99306-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/22/2021] [Indexed: 01/21/2023] Open
Abstract
Ambrosia artemisiifolia L. (common ragweed) is a globally invasive, allergenic, troublesome arable weed. ALS-inhibiting herbicides are broadly used in Europe to control ragweed in agricultural fields. Recently, ineffective treatments were reported in France. Target site resistance (TSR), the only resistance mechanism described so far for ragweed, was sought using high-throughput genotyping-by-sequencing in 213 field populations randomly sampled based on ragweed presence. Additionally, non-target site resistance (NTSR) was sought and its prevalence compared with that of TSR in 43 additional field populations where ALS inhibitor failure was reported, using herbicide sensitivity bioassay coupled with ALS gene Sanger sequencing. Resistance was identified in 46 populations and multiple, independent resistance evolution demonstrated across France. We revealed an unsuspected diversity of ALS alleles underlying resistance (9 amino-acid substitutions involved in TSR detected across 24 populations). Remarkably, NTSR was ragweed major type of resistance to ALS inhibitors. NTSR was present in 70.5% of the resistant plants and 74.1% of the fields harbouring resistance. A variety of NTSR mechanisms endowing different resistance patterns evolved across populations. Our study provides novel data on ragweed resistance to herbicides, and emphasises that local resistance management is as important as mitigating gene flow from populations where resistance has arisen.
Collapse
Affiliation(s)
- Ingvild Loubet
- UMR Agroécologie, INRAE, Dijon, France.,USC CASPER, Anses, INRAE, Université de Lyon, Lyon, France
| | | | | | | | | | - Benoit Barrès
- USC CASPER, Anses, INRAE, Université de Lyon, Lyon, France
| | | | | |
Collapse
|
8
|
Loubet I, Caddoux L, Fontaine S, Michel S, Pernin F, Barrès B, Le Corre V, Délye C. A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Sci Rep 2021; 11:19904. [PMID: 34620913 PMCID: PMC8497474 DOI: 10.1038/s41598-021-99306-9,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/22/2021] [Indexed: 08/22/2024] Open
Abstract
Ambrosia artemisiifolia L. (common ragweed) is a globally invasive, allergenic, troublesome arable weed. ALS-inhibiting herbicides are broadly used in Europe to control ragweed in agricultural fields. Recently, ineffective treatments were reported in France. Target site resistance (TSR), the only resistance mechanism described so far for ragweed, was sought using high-throughput genotyping-by-sequencing in 213 field populations randomly sampled based on ragweed presence. Additionally, non-target site resistance (NTSR) was sought and its prevalence compared with that of TSR in 43 additional field populations where ALS inhibitor failure was reported, using herbicide sensitivity bioassay coupled with ALS gene Sanger sequencing. Resistance was identified in 46 populations and multiple, independent resistance evolution demonstrated across France. We revealed an unsuspected diversity of ALS alleles underlying resistance (9 amino-acid substitutions involved in TSR detected across 24 populations). Remarkably, NTSR was ragweed major type of resistance to ALS inhibitors. NTSR was present in 70.5% of the resistant plants and 74.1% of the fields harbouring resistance. A variety of NTSR mechanisms endowing different resistance patterns evolved across populations. Our study provides novel data on ragweed resistance to herbicides, and emphasises that local resistance management is as important as mitigating gene flow from populations where resistance has arisen.
Collapse
Affiliation(s)
- Ingvild Loubet
- UMR Agroécologie, INRAE, Dijon, France
- USC CASPER, Anses, INRAE, Université de Lyon, Lyon, France
| | | | | | | | | | - Benoit Barrès
- USC CASPER, Anses, INRAE, Université de Lyon, Lyon, France
| | | | | |
Collapse
|
9
|
Sapkota S, Boggess SL, Trigiano RN, Klingeman WE, Hadziabdic D, Coyle DR, Olukolu BA, Kuster RD, Nowicki M. Microsatellite Loci Reveal Genetic Diversity of Asian Callery Pear ( Pyrus calleryana) in the Species Native Range and in the North American Cultivars. Life (Basel) 2021; 11:531. [PMID: 34200292 PMCID: PMC8226646 DOI: 10.3390/life11060531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/05/2022] Open
Abstract
Pyrus calleryana Decne. (Callery pear) includes cultivars that in the United States are popular ornamentals in commercial and residential landscapes. Last few decades, this species has increasingly naturalized across portions of the eastern and southern US. However, the mechanisms behind this plant's spread are not well understood. The genetic relationship of present-day P.calleryana trees with their Asian P. calleryana forebears (native trees from China, Japan, and Korea) and the original specimens of US cultivars are unknown. We developed and used 18 microsatellite markers to analyze 147 Pyrus source samples and to articulate the status of genetic diversity within Asian P. calleryana and US cultivars. We hypothesized that Asian P. calleryana specimens and US cultivars would be genetically diverse and would show genetic relatedness. Our data revealed high genetic diversity, high gene flow, and presence of population structure in P. calleryana, potentially relating to the highly invasive capability of this species. Strong evidence for genetic relatedness between Asian P. calleryana specimens and US cultivars was also demonstrated. Our data suggest the source for P. calleryana that have become naturalized in US was China. These results will help understand the genetic complexity of invasive P. calleryana when developing management for escaped populations: In follow-up studies, we use the gSSRs developed here to analyze P. calleryana escape populations from across US.
Collapse
Affiliation(s)
- Shiwani Sapkota
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| | - Sarah L. Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| | - William E. Klingeman
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| | - David R. Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA;
| | - Bode A. Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| | - Ryan D. Kuster
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (S.S.); (S.L.B.); (R.N.T.); (D.H.); (B.A.O.); (R.D.K.)
| |
Collapse
|
10
|
Yun SA, Kim SC. Genetic diversity and structure of Saussurea polylepis (Asteraceae) on continental islands of Korea: Implications for conservation strategies and management. PLoS One 2021; 16:e0249752. [PMID: 33831066 PMCID: PMC8031399 DOI: 10.1371/journal.pone.0249752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Saussurea polylepis Nakai is an herbaceous perennial endemic to Korea and is highly restricted to several continental islands in the southwestern part of the Korean Peninsula. Given its very narrow geographical distribution, it is more vulnerable to anthropogenic activities and global climate changes than more widely distributed species. Despite the need for comprehensive genetic information for conservation and management, no such population genetic studies of S. polylepis have been conducted. In this study, genetic diversity and population structure were evaluated for 97 individuals from 5 populations (Gwanmaedo, Gageodo, Hongdo, Heusando, and Uido) using 19 polymorphic microsatellites. The populations were separated by a distance of 20–90 km. We found moderate levels of genetic diversity in S. polylepis (Ho = 0.42, He = 0.43). This may be due to long lifespans, outcrossing, and gene flow, despite its narrow range. High levels of gene flow (Nm = 1.76, mean Fst = 0.09), especially from wind-dispersed seeds, would contribute to low levels of genetic differentiation among populations. However, the small population size and reduced number of individuals in the reproductive phase of S. polylepis can be a major threat leading to inbreeding depression and genetic diversity loss. Bayesian cluster analysis revealed three significant structures at K = 3, consistent with DAPC and UPGMA. It is thought that sea level rise after the last glacial maximum may have acted as a geographical barrier, limiting the gene flow that would lead to distinct population structures. We proposed the Heuksando population, which is the largest island inhabited by S. polylepis, as a source population because of its large population size and high genetic diversity. Four management units (Gwanmaedo, Gageodo, Hongdo-Heuksando, and Uido) were suggested for conservation considering population size, genetic diversity, population structure, unique alleles, and geographical location (e.g., proximity).
Collapse
Affiliation(s)
- Seon A. Yun
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- * E-mail: ,
| |
Collapse
|
11
|
Banerjee AK, Hou Z, Lin Y, Lan W, Tan F, Xing F, Li G, Guo W, Huang Y. Going with the flow: analysis of population structure reveals high gene flow shaping invasion pattern and inducing range expansion of Mikania micrantha in Asia. ANNALS OF BOTANY 2020; 125:1113-1126. [PMID: 32173740 PMCID: PMC7262463 DOI: 10.1093/aob/mcaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Mikania micrantha, a climbing perennial weed of the family Asteraceae, is native to Latin America and is highly invasive in the tropical belt of Asia, Oceania and Australia. This study was framed to investigate the population structure of M. micrantha at a large spatial scale in Asia and to identify how introduction history, evolutionary forces and landscape features influenced the genetic pattern of the species in this region. METHODS We assessed the genetic diversity and structure of 1052 individuals from 46 populations for 12 microsatellite loci. The spatial pattern of genetic variation was investigated by estimating the relationship between genetic distance and geographical, climatic and landscape resistances hypothesized to influence gene flow between populations. KEY RESULTS We found high genetic diversity of M. micrantha in this region, as compared with the genetic diversity parameters of other invasive species. Spatial and non-spatial clustering algorithms identified the presence of multiple genetic clusters and admixture between populations. Most of the populations showed heterozygote deficiency, primarily due to inbreeding, and the founder populations showed evidence of a genetic bottleneck. Persistent gene flow throughout the invasive range caused low genetic differentiation among populations and provided beneficial genetic variation to the marginal populations in a heterogeneous environment. Environmental suitability was found to buffer the detrimental effects of inbreeding at the leading edge of range expansion. Both linear and non-linear regression models demonstrated a weak relationship between genetic distance and geographical distance, as well as bioclimatic variables and environmental resistance surfaces. CONCLUSIONS These findings provide evidence that extensive gene flow and admixture between populations have influenced the current genetic pattern of M. micrantha in this region. High gene flow across the invaded landscape may facilitate adaptation, establishment and long-term persistence of the population, thereby indicating the range expansion ability of the species.
Collapse
Affiliation(s)
- Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuangwei Hou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuting Lin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wentao Lan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fengxiao Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fen Xing
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanghe Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wuxia Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- For correspondence. E-mail
| |
Collapse
|
12
|
Délye C, Michel S, Pernin F, Gautier V, Gislard M, Poncet C, Le Corre V. Harnessing the power of next-generation sequencing technologies to the purpose of high-throughput pesticide resistance diagnosis. PEST MANAGEMENT SCIENCE 2020; 76:543-552. [PMID: 31270924 DOI: 10.1002/ps.5543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Next Generation Sequencing (NGS) technologies offer tremendous possibilities for high-throughput pesticide resistance diagnosis via massive genotyping-by-sequencing. Herein, we used Illumina sequencing combined with a simple, non-commercial bioinformatics pipe-line to seek mutations involved in herbicide resistance in two weeds. RESULTS DNA was extracted from 96 pools of 50 plants for each species. Three amplicons encompassing 15 ALS (acetolactate-synthase) codons crucial for herbicide resistance were amplified from each DNA extract. Above 18 and 20 million quality 250-nucleotide sequence reads were obtained for groundsel (Senecio vulgaris, tetraploid) and ragweed (Ambrosia artemisiifolia, diploid), respectively. Herbicide resistance-endowing mutations were identified in 45 groundsel and in eight ragweed field populations. The mutations detected and their frequencies assessed by NGS were checked by individual plant genotyping or Sanger sequencing. NGS results were fully confirmed, except in three instances out of 12 where mutations present at a frequency of 1% were detected below the threshold set for reliable mutation detection. CONCLUSION Analyzing 9600 plants requested 192 DNA extractions followed by 1728 PCRs and two Illumina runs. Equivalent results obtained by individual analysis would have necessitated 9600 individual DNA extractions followed by 216 000 genotyping PCRs, or by 121 500 PCRs and 40 500 Sanger sequence runs. This clearly demonstrates the interest and power of NGS-based detection of pesticide resistance from pools of individuals for diagnosing resistance in massive numbers of individuals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Véronique Gautier
- INRA, UMR1095 Génétique, Diversité et Écophysiologie des Céréales, Clermont-Ferrand, France
| | | | - Charles Poncet
- INRA, UMR1095 Génétique, Diversité et Écophysiologie des Céréales, Clermont-Ferrand, France
| | | |
Collapse
|
13
|
Vašek J, Čílová D, Melounová M, Svoboda P, Vejl P, Štikarová R, Vostrý L, Kuchtová P, Ovesná J. New EST-SSR Markers for Individual Genotyping of Opium Poppy Cultivars ( Papaver somniferum L.). PLANTS 2019; 9:plants9010010. [PMID: 31861643 PMCID: PMC7020189 DOI: 10.3390/plants9010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
High-quality simple sequence repeat (SSR) markers are invaluable tools for revealing genetic variability which could be utilized for many purposes, such as breeding new varieties or the identifying current ones, among other applications. Based on the analysis of 3.7 million EST sequences and 15 genomic sequences from bacterial artificial chromosome (BAC) libraries, 200 trinucleotide genic (EST)-SSR and three genomic (gSSR) markers were tested, where 17 of them fulfilled all criteria for quality markers. Moreover, the reproducibility of these new markers was verified by two genetics laboratories, with a mean error rate per allele and per locus equal to 0.17%. These markers were tested on 38 accessions of Papaver somniferum and nine accessions of another five species of the Papaver and Argemone genera. In total, 118 alleles were detected for all accessions (median = 7; three to ten alleles per locus) and 88 alleles (median = 5; three to nine alleles per locus) within P. somniferum alone. Multivariate methods and identity analysis revealed high resolution capabilities of the new markers, where all but three pair accessions (41 out of 47) had a unique profile and opium poppy was distinguished from other species.
Collapse
Affiliation(s)
- Jakub Vašek
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
- Correspondence: ; Tel.: +420-22438-2562
| | - Daniela Čílová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Martina Melounová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Pavel Svoboda
- Crop Research Institute, Division of Crop Genetics and Breeding, Drnovská 507/73, 6 Ruzyně, 16106 Prague, Czech Republic; (P.S.); (J.O.)
| | - Pavel Vejl
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Radka Štikarová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Luboš Vostrý
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Perla Kuchtová
- Czech University of Life Sciences, FAFNR, Department of Agroecology and Crop Production, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic;
| | - Jaroslava Ovesná
- Crop Research Institute, Division of Crop Genetics and Breeding, Drnovská 507/73, 6 Ruzyně, 16106 Prague, Czech Republic; (P.S.); (J.O.)
| |
Collapse
|
14
|
Xiong Y, Liu W, Xiong Y, Yu Q, Ma X, Lei X, Zhang X, Li D. Revelation of genetic diversity and structure of wild Elymus excelsus (Poaceae: Triticeae) collection from western China by SSR markers. PeerJ 2019; 7:e8038. [PMID: 31741794 PMCID: PMC6857585 DOI: 10.7717/peerj.8038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Hosting unique and important plant germplasms, the Qinghai-Tibet Plateau (QTP), as the third pole of the world, and Xinjiang, located in the centre of the Eurasian continent, are major distribution areas of perennial Triticeae grasses, especially the widespread Elymus species. Elymus excelsus Turcz. ex Griseb, a perennial forage grass with strong tolerance to environmental stresses, such as drought, cold and soil impoverishment, can be appropriately used for grassland establishment due to its high seed production. To provide basic information for collection, breeding strategies and utilization of E. excelsus germplasm, microsatellite markers (SSR) were employed in the present study to determine the genetic variation and population structure of 25 wild accessions of E. excelsus from Xinjiang (XJC) and the QTP, including Sichuan (SCC) and Gansu (GSC) of western China. Based on the 159 polymorphic bands amplified by 35 primer pairs developed from three related species, the average values of the polymorphic information content (PIC), marker index (MI), resolving power (Rp), Nei's genetic diversity (H) and Shannon's diversity index (I) of each pair of primers were 0.289, 1.348, 1.897, 0.301 and 0.459, respectively, validating that these SSR markers can also be used for the evaluation of genetic diversity of E. excelsus germplasms, and demonstrating the superior versatility of EST-SSR vs. G-SSR. We found a relatively moderate differentiation (F st = 0.151) among the XJC, SCC and GSC geo-groups, and it is worth noting that, the intra-group genetic diversity of the SCC group (H e = 0.197) was greater than that of the GSC (H e = 0.176) and XJC (H e = 0.148) groups. Both the Unweighted Pair Group Method with Arithmetic (UPGMA) clustering and principal coordinates analysis (PCoA) divided the 25 accessions into three groups, whereas the Bayesian STRUCTURE analysis suggested that E. excelsus accessions fell into four main clusters. Besides, this study suggested that geographical distance and environmental variables (annual mean precipitation and average precipitation in growing seasons), especially for QTP accessions, should be combined to explain the population genetic differentiation among the divergent geographical regions. These data provided comprehensive information about these valuable E. excelsus germplasm resources for the protection and collection of germplasms and for breeding strategies in areas of Xinjiang and QTP in western China.
Collapse
Affiliation(s)
- Yanli Xiong
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenhui Liu
- Qinghai Academy of Animal Science and Veterinary Medicine, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xi-ning, China
| | - Yi Xiong
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yu
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiao Ma
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiong Lei
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Daxu Li
- Sichuan Academy of Grassland Sciences, Chengdu, China
| |
Collapse
|
15
|
Diedericks G, Henriques R, von der Heyden S, Weyl OLF, Hui C. The ghost of introduction past: Spatial and temporal variability in the genetic diversity of invasive smallmouth bass. Evol Appl 2018; 11:1609-1629. [PMID: 30344631 PMCID: PMC6183467 DOI: 10.1111/eva.12652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the demographic history of introduced populations is essential for unravelling their invasive potential and adaptability to a novel environment. To this end, levels of genetic diversity within the native and invasive range of a species are often compared. Most studies, however, focus solely on contemporary samples, relying heavily on the premise that the historic population structure within the native range has been maintained over time. Here, we assess this assumption by conducting a three-way comparison of the genetic diversity of native (historic and contemporary) and invasive (contemporary) smallmouth bass (Micropterus dolomieu) populations. Analyses of a total of 572 M. dolomieu samples, representing the contemporary invasive South African range, contemporary and historical native USA range (dating back to the 1930s when these fish were first introduced into South Africa), revealed that the historical native range had higher genetic diversity levels when compared to both contemporary native and invasive ranges. These results suggest that both contemporary populations experienced a recent genetic bottleneck. Furthermore, the invasive range displayed significant population structure, whereas both historical and contemporary native US populations revealed higher levels of admixture. Comparison of contemporary and historical samples showed both a historic introduction of M. dolomieu and a more recent introduction, thereby demonstrating that undocumented introductions of this species have occurred. Although multiple introductions might have contributed to the high levels of genetic diversity in the invaded range, we discuss alternative factors that may have been responsible for the elevated levels of genetic diversity and highlight the importance of incorporating historic specimens into demographic analyses.
Collapse
Affiliation(s)
- Genevieve Diedericks
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandStellenboschSouth Africa
- Evolutionary Genomics GroupDepartment of Botany and ZoologyStellenbosch UniversityMatielandStellenboschSouth Africa
| | - Romina Henriques
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkLyngbyDenmark
| | - Sophie von der Heyden
- Evolutionary Genomics GroupDepartment of Botany and ZoologyStellenbosch UniversityMatielandStellenboschSouth Africa
| | - Olaf L. F. Weyl
- DST/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic Biodiversity (SAIAB)GrahamstownSouth Africa
- Centre for Invasion BiologySouth African Institute for Aquatic Biodiversity (SAIAB)GrahamstownSouth Africa
| | - Cang Hui
- Centre for Invasion BiologyDepartment of Mathematical SciencesStellenbosch UniversityMatielandStellenboschSouth Africa
- Mathematical Biosciences GroupAfrican Institute for Mathematical SciencesCape TownSouth Africa
| |
Collapse
|